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Abstract

The aim of this document is to explain the proof of the Mordell-Weil theorem given
in the book of Joseph H. Silverman [Sil86] which states that the group of K-rational
points of an elliptic curve over a number field is finitely generated. To introduce this
result we will define the general concept of algebraic varieties and curves. Then we will
study the properties of elliptic curves, in particular notions and results we will need for
the proof of the Mordell-Weil theorem which follows in the next part. To conclude, we
will say some words about the natural continuations like the Mazur’s theorem and the
Birch Swinnerton-Dyer conjecture.





Foreword

This document represents the achievement of my internship at the university of
Seville between the 5th of June and the 4th of August. This internship was focused on
the proof of the Mordell-Weil theorem presented in the Silverman’s book : The arithmetic
of elliptic curves [Sil86].

For the sake of clarity and for the logical succession of the ideas presented, I decided
to focus my writing on the main subject of my internship, the Mordell-Weil theorem.
Thus many topics covered during my internship will not appear here, I only kept the
results which are important in order to prove the theorem.

To avoid copying proof from books, many theorems are stated there without proof
even if they have been studied. Some references are given when theorems are not
fully proved and we can find all the material needed in [Sil86], [Har77] and [Neu99].
I focused on including only proofs in which I provided new materials as details and
explanations of specific statements. On the other hand, to show the way I studied
during this period and the points I deeply worked on, I sometimes develop subjects
more than it could be necessary.

These subjects have been pointed out by my supervisor Luis Naváez Macarro who
oriented me through this internship. I would like to thank him especially for the
numerous hours he spent with me. He was really available and taught me a lot, in
particular he helped me to take a step back to understand concepts in a general way.
I also thank the department of algebra of the university of Seville for receiving me in
really good conditions.
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Introduction

In the context of algebraic geometry, if we have for example an polynomial equation
with rational coefficients f(x,y) = 0, the question of finding rational solutions (x,y) ∈
Q2 is interpreted as describing the rational points on the curve C defined as the zeros of
f in Q2.

Thus, it is natural to be interested in properties of the rational points on a given
algebraic curve or more generally, on a given algebraic variety. One question is to know
if there are only finitely many such points. The answer depends on the genus of the
curve. The notion of genus can be defined topologically in the complex case but also
over any algebraically closed field. In the case of complex smooth curves, the two
definition coincided.

In case of genus g = 0, there are two cases : either C has no rational points, or C is
isomorphic to P1 in which case it has infinitely many rational points. In genus g > 2,
Faltings’s theorem, conjectured by Mordell in 1922 and finally proved in 1983, states
that the number of rational points is finite.

In the last case g = 1, the one we will study here, the number of rational points is not
always finite. In this case, smooth projective curves are called elliptic curves. Elliptic
curves have the great property that we can geometrically define an abelian group law
on them and the set of rational points form a subgroup. The Mordell theorem, proved
in 1922, states that this group is finitely generated. Lastly, the Mordell-Weil theorem
developed in the Weil’s thesis in 1928 is its generalisation to number fields :

Theorem (Mordell-Weil). Let K be a number field and E/K an elliptic curve.
Then the subgroup of K-rational points E(K) is finitely generated.

The road I will take to reach the proof of the Mordell-Weil theorem, suggested in
the Silverman’s book, is as follows : We will start by setting the general framework by
defining algebraic varieties in the first chapter. Definitions of dimension and smoothness
of a variety will allow us to talk about smooth curves, which are the smooth varieties
of dimension 1, in the second chapter. One of our main goals in this chapter will be to
define algebraically the genus of a curve.

Then we will focus on the elliptic curves, the smooth curves of genus one, in the third
chapter. We will characterise them with Weierstrass equations and we will geometrically
define the group law. This chapter will also cover an important result needed for the
proof of the Mordell-Weil theorem : them-torsion group is a finite group. We will finish
this third chapter with an explanation of the reduction of a curve over a residue field
and then we will be ready to start the proof of the Mordell-Weil theorem.

This proof will be the topic of the fourth chapter which is decomposed in several
parts : The weak Mordell-Weil theorem, the descent procedure, the Mordell theorem,



and the generalisation : the Mordell-Weil theorem.
We will conclude this document with a small discussion on the natural questions we

can ask ourselves. We will answer the questions “What is the structure of the torsion
group ?” and “What can we say about integral points ?” using Mazur’s and Siegel’s
theorems. We will also discuss about open problems as “What about the highest rank
that an elliptic curve can have ?” and the famous Birch Swinnerton-Dyer conjecture,
one of the seven millennium problems, which is directly linked with the Mordell-Weil
theorem.



Chapter 1

Algebraic Varieties

The aim of this first chapter is to set a rigorous general framework of our subject.
We will define affine algebraic varieties and projective ones and talk about dimension,
regularity and maps between varieties. Thus we will able to talk about curves, which
are the varieties of dimension 1, in the next chapter.

Let n,m ∈ N. Let K be a perfect field and K a fixed algebraic closure of K.

1.1 Affine varieties

In this section, we will give many definitions about about the general theory of
algebraic varieties in the affine context. First of all, let us define the affine space :

Definition (Affine space). An affine space of dimension n over K is the set of n-tuples :

An = An(K̄) =
{
P = (x1, . . . , xn) | xi ∈ K̄

}
And the set of rational points in the affine space An is :

An(K) =
{
P = (x1, . . . , xn) | xi ∈ K

}
And then, let us define algebraic sets and varieties in the affine context :

Definition (Affine algebraic set). An affine algebraic set is any set of the form :

V =
{
P ∈ An | ∀f ∈ I : f(P) = 0

}
Where I is an ideal of K̄[X] = K̄[X1, . . . ,Xn], the ring of polynomials in n variables

over K̄. To each algebraic set V we can associate an ideal which is :

I(V) =
{
f ∈ K̄[X] | ∀P ∈ V : f(P) = 0

}
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We say that an algebraic set V is defined over K if I(V) is generated by polynomials
in K[X]. We denote this by V/K and in this case, the set of K-rational points of V is :

V(K) = V ∩ An(K)

Remark 1. Since a field is noetherian K̄[X] is also noetherian from the Hilbert basis
theorem. This ensures that any ideal of the form I(V) is finitely generated.

Example 1. Let K̄ = C and V the algebraic set associated with I =
〈
X2 + Y2 − 1

〉
.

Then V(R) is the unit circle.

Definition (Affine variety). An affine algebraic set V is called affine variety if I(V) is a
prime ideal in K̄[X].

Remark 2. The condition “I(V) is prime” means the variety is irreducible, it has only one
component. This condition is not always required but as we can always come back to
the study over one component, this definition is convenient.

Example 2. The algebraic set associated with
〈
X2 − Y2

〉
is not a variety because this ideal

is not prime since X2 − Y2 admit the decomposition (X+ Y)(X− Y). This algebraic set
has two components which are the lines y = x and y = −x. The real locus V(R) is the
union of the two principal bisectors.

Definition (Function field). Let V be an affine variety. We define the affine coordinate
ring of V as :

K̄[V] = K̄[X]�I(V)
And if V is defined over K, we define the affine coordinate ring of V/K as :

K[V] = K[X]�I
(
V/K

)
Then, we define the function field of V as the quotient field K̄(V) of K̄[V].

In case in which V is defined over K, we get K(V) from K[V].

Remark 3. Polynomials in K̄[V] are defined up to a polynomial vanishing on V . So, an
element f ∈ K̄[V] induces a well-defined function f : V → K̄ and we can see K̄[V] as the
set of functions on V defined by restriction on V of a polynomial on An.

Now, we would like to define the local ring at a point P ∈ V . For this, we will need
to introduce the maximal idealMP of functions vanishing at P.

Proposition 1.1. Let V be a variety and P ∈ V . We define the ideal of functions vanishing at P
as :

Mp =
{
f ∈ K̄[V] | f(P) = 0

}
This is a maximal ideal of the coordinate ring K̄[V].
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Proof. Let us find an isomorphism between the quotient byMP and a field.
Let us define ϕ as :

ϕ : K̄[V] −→ K̄

f 7−→ f(P)

It is surjective because Id ∈ K̄[V] and its kernel isMp by definition.
By quotient’s universal property, ϕ induces an isomorphism :

ϕ : K̄[V]�MP
−→ K̄

f 7−→ f(P)

Definition (Local ring at a point). Let V be an affine variety and P ∈ V . We define the
local ring of V at P as the localization of K̄[V] atMP.

K̄[V]P =

{
Φ =

f

g
∈ K̄(V)

∣∣∣∣ f,g ∈ K̄[V],g(P) 6= 0

}

We often denote it by OV ,P and its maximal ideal by mV ,P.

An important quantity linked to a variety is its dimension :

Definition (Dimension of an affine variety). Let V be an affine variety. The dimension
of V , denoted by dim(V), is the transcendence degree of K̄(V) over K̄.

Example 3. The dimension of An is n because K̄(An) = K̄(X1, . . . ,Xn) and its transcen-
dence degree is naturally n. The dimension of an affine variety defined by a single
equation is n− 1 and the reverse is also true.

Now, we can talk about the regularity of a variety at a point :

Definition (Regularity and singular points). Let V be an affine variety, f1, . . . , fm ∈ K̄[X]
a set of generators for I(V) and P ∈ V . Then V is smooth at P if the m × n jacobian J
has rank n− dim(V) :

J =

[
∂fi

∂Xj

]
i∈J1,mK,j∈J1,nK

If V is non-singular at every point, then we say that V is non-singular or smooth.

Remark 4. We have a special case when V is defined by a single equation.
In that case, dim(V) = n− 1 so P ∈ V in singular if and only if :

∂f

∂X1
(P) = · · · = ∂f

∂Xn
(P) = 0
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There is another useful characterization of smoothness related toMp which is :

Proposition 1.2. Let V be a variety and P ∈ V . The quotientMP�M2
P

is a finite dimensional

K̄-vector space. Furthermore, V is smooth at P if and only if dimK̄
MP�M2

P
= dim(V).

Proof. Let P = (P1, . . . ,Pn) ∈ V . We will prove the result only in the special case in
which V is defined by a single equation :

V = {f = 0} ; I(V) = 〈f〉

Step 1 : Let us justify that the dimension over K̄ ofMP�M2
P

is defined.

The quotientMP�M2
P

is K̄[V]-module, annulated by the idealMP. Then we have a

finite generated module over K̄[V]�MP
= K̄, so a finite dimensional K̄-vector space.

Step 2 : To prove the result we will use that ϕ is a perfect pairing of K̄-vector space.

ϕ : Mp�M2
P
× TP −→ K̄(

g,y
)

7−→
n∑
i=1

∂g

∂Xi
(P)yi = ∇g(P) · y

Where TP =
{
y ∈ An |

n∑
i=1

∂f

∂Xi
(P)yi = 0

}
.

First of all, we have to prove it is a well-defined map : We have to check the sum
does not depend on the choice of a representative element. Let g be an element of
Mp�M2

P
. We have to understand this quotient to tell something about g. As we know,

Mp ⊆ K̄[V] is a maximal ideal. So, by Hilbert’s Nullstellensatz theorem :

Mp =

〈
Xi − Pi | i ∈ J1 ,nK

〉
I(V)

=
〈X− P〉
I(V)

So now :
MP�M2

P

∼=
〈X− P〉

〈X− P〉2 + I(V)

Let g1 and g2 be two elements ofMP such that g1 = g2 :
g1 =

n∑
j=1

αj
(
Xj − Pj

)
+ h1f

g2 =

n∑
j=1

β
(
Xj − Pj

)
+ h2f

with αj,βj ∈ K̄[V]

We have to show that ϕ
(
g1,y

)
= ϕ

(
g2,y

)
.
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∂g1

∂Xi
(P) =

∂

∂Xi

 n∑
j=1

αj
(
Xj − Pj

)
+ h1f

(P) = αi(P) + h1(P)
∂f

∂Xi
(P)

∂g2

∂Xi
(P) =

∂

∂Xi

 n∑
j=1

βj
(
Xj − Pj

)
+ h2f

(P) = βi(P) + h2(P)
∂f

∂Xi
(P)

And then, using the fact that y ∈ Tp :

ϕ
(
g1,y

)
=

n∑
i=1

αi(P)yi + h1(P)

n∑
i=1

∂f

∂Xi
(P)yi =

n∑
i=1

αi(P)yi

ϕ
(
g2,y

)
=

n∑
i=1

βi(P)yi + h2(P)

n∑
i=1

∂f

∂Xi
(P)yi =

n∑
i=1

βi(P)yi

And finally, using g1 − g2 = h3f because it is in I(V) :

ϕ
(
g1,y

)
−ϕ

(
g2,y

)
=

n∑
i=1

(αi − βi)(P)yi

=

n∑
i=1

∂g1 − g2

∂Xi
(P)yi

=

n∑
i=1

∂h3f

∂Xi
(P)yi = h3(P)

n∑
i=1

∂f

∂Xi
(P)yi = 0

Step 3 : Let us prove that ϕ is a perfect pairing.
We can easily see that ϕ is a K̄-bilinear map. Moreover it is perfect because :

• Let y ∈ Tp such that ∀g ∈Mp�M2
P
: ϕ
(
g,y
)
= 0.

Consider gi = αi(Xi − Pi) + hifwith αi 6= 0. Then :

∀i ∈ {1, . . . ,n} : ϕ
(
gi,y

)
= αiyi = 0 and then yi = 0

• Let g ∈MP�M2
P

such that ∀y ∈ Tp : ϕ
(
g,y
)
= 0, which means∇g(P) ∈ T⊥P .

If P is singular, then Tp = An and T⊥P = {0} so∇g(P) = 0 and g = 0.

If P is smooth, then dim Tp = n − 1 and dim T⊥P = 1. Since ∇f(P) ∈ T⊥P we have
∇g(P) = λ∇f(P). Then g = 0 inMP�M2

P
because :

MP�M2
P

∼= K̄n�〈∇f(P)〉
g =
∑

aν(X− P)
ν 7−→ ∇g(P) =

(
ae1 , . . . ,aen

)
To conclude, ϕ is a perfect pairing so dimK̄

MP�M2
P
= dim TP and P is smooth if and

only if dim TP = n− 1. This concludes the special case V = {f = 0}.
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1.2 Projective varieties

We will now define projective varieties which are often better than affine ones
because they take advantage of the good properties of projective spaces.

Definition (Projective space). The projective space of dimension n over K is the set of
non-zero n+ 1-tuples modulo collinearity :

Pn = Pn(K̄) =
An \ {0}

∼

Where P ∼ Q⇔∃λ ∈ K̄∗ : P = λQ. We denoted by [x0, . . . , xn] the equivalence class of P.
As usual, we define the set of K-rational points as :

Pn(K) =
{
[x0, . . . , xn] ∈ Pn | xi ∈ K

}
As we are now working on a quotient, we have to be sure that our polynomials can

move to the quotient. This will be possible if they are homogeneous :

Definition (Homogeneous polynomial). A polynomial f ∈ K̄[X] is said homogeneous
of degree d if :

∀λ ∈ K̄ : f(λX) = λdf(X)

An ideal I ⊆ K̄[X] is said homogeneous if it is generated only by homogeneous
polynomials.

Definition (Projective algebraic set). Let I be a homogeneous ideal of K̄[X] = K̄[X1, . . . ,Xn],
the ring of polynomials in n variables over K̄. A projective algebraic set is any set of
the form :

V =
{
P ∈ Pn | ∀f ∈ I homogeneous : f(P) = 0

}
Each algebraic set V is associated with a homogeneous ideal which is :

I(V) =
{
f ∈ K̄[X] | f homogeneous and ∀P ∈ V : f(P) = 0

}
We say that an algebraic set V is defined over K if I(V) is generated by homogeneous

polynomials in K[X]. We denote this by V/K and in this case, the set of K-rational points
of V is :

V(K) = V ∩ Pn(K)

Definition (Projective variety). A projective algebraic set is called projective variety if
I(V) is a prime ideal in K̄[X].
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We want to make a link between affine and projective varieties. We can show that
the projective space Pn is covered by affine charts U0, . . . ,Un which are isomorphic to
An :

Ui = {Xi 6= 0}

They are included in the projective space and we have a natural bijection :

φi : An −→ Ui ⊆ Pn

(x1, . . . , xn) 7−→
[
x1, . . . , xi−1, 1, xi, . . . , xn

]
With inverse :

φ−1
i : Ui −→ An

[x0, . . . , xn] 7−→
(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn

xi

)
Let V be a projective algebraic set with ideal I(V) ⊆ K̄[X]. Let denote V ∩ An the

space φ−1
i (V ∩Ui) for a good choice of i. Then :

I
(
V ∩ An

)
=
{
f
(
Y1, . . . ,Yi−1, 1,Yi, . . . ,Yn

)
| f(X0, . . . ,Xn) ∈ I(V)

}
⊆ K̄[Y]

This transformation is called dehomogenization with respect Xi. The reverse pro-
cess, called homogenization, consist in homogenizing the polynomial using the new
variable :

∀f ∈ K̄[Y] : f̂(X0, . . . ,Xn) = Xdi f
(
X0

Xi
, . . . ,

Xi−1

Xi
,
Xi+1

Xi
, . . . ,

Xn

Xi

)
; Xj = XiYj

Where d = deg(f) is the smallest integer for which f̂ is a polynomial.

Definition (Projective closure). Let V be an affine algebraic set seen as subset of Pn. The
projective closure of V , denoted V , is the projective algebraic set associated with the
homogeneous ideal :

I(V) =
〈
f̂(X) ∈ K̄[X] | f ∈ I(V)

〉
An important property of the projective closure is the link that it establishes between

projective and affine varieties :

Proposition 1.3. Let V be an affine variety. Then V is a projective variety and V = V ∩ An.
Let V be a projective variety. Then V ∩ An is an affine variety and either V ∩ An = ∅ or
V = V ∩ An.

Proof. [Har77, p. 11, I.2.3]

Now we can extend the notions defined for affine varieties to projective varieties.
For that, we will get back in the affine context and define the properties of protective
varieties from the properties of the associated affine varieties.
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Definition (Function field). Let V/K be a projective variety. Let us choose an affine
chart Ui ⊆ Pn such that V ∩An 6= ∅. Then the function field of V is the function field of
V ∩ An.

Definition (Dimension). Let V/K be a projective variety. Let us choose an affine chart
Ui ⊆ Pn such that V ∩ An 6= ∅. Then the dimension of V is the dimension of V ∩ An.

Definition (Regularity and singular points). Let V be a projective variety and P ∈ V .
Let us choose An ⊆ Pn such that P ∈ An. Then P is singular at P if V ∩ An is singular at
P.

Definition (Local ring at P). Let V be a projective variety and P ∈ V . Let us choose
An ⊆ Pn such that P ∈ An. Then the local ring of V at P is the local ring of V ∩ An at P.

A functionΦ ∈ K̄(V) is regular or defined at P if Φ ∈ K̄[V]P.

1.3 Maps between varieties

As usual, since now we have defined objects we are interested in the link between
them, in other words in good maps between them :

Definition (Rational map : First definition). Let V1 and V2 be two projective varieties.
A rational map from V1 to V2 is a map :

φ : V1 −→ V2

P 7−→ [f0, . . . , fn]

Where f0, . . . , fn ∈ K̄(V1) satisfy the following condition for all P ∈ V1 in which they are
defined :

φ(P) =
[
f0(P), . . . , fn(P)

]
∈ V2

We say that φ is defined over K if it exists λ ∈ K̄∗ such that λf0, . . . , λfn ∈ K(V1).

A rational map φ is not necessarily defined on all V1, but sometimes it can be
possible to evaluate φ at P even if some fi are not regular. We regularize the situation
by replacing each fi with gfi for an appropriate g ∈ K̄(V1) :

Definition (Morphism : First definition). Let V1 and V2 be two projective varieties. A
rational map φ : V1 → V2 is said regular or defined at P ∈ V1 if there is a function
g ∈ K̄(V1) such that each gfi is regular at P and there is one gfi which is non-zero at P.
If such a g exists, we set :

φ(P) =
[
(gf0)(P), . . . , (gfn)(P)

]
A rational map which is regular everywhere is called morphism.
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As we work with projective spaces, we can clear the denominator which leads to
another definitions which only use regular functions :

Definition (Rational map : Reworked definition). Let V1 and V2 be two projective
varieties. A rational map from V1 to V2 is a map :

φ : V1 −→ V2

P 7−→ [φ0, . . . ,φn]

Where φ0, . . . ,φn ∈ K̄[V1] are homogeneous polynomials with same degree and not all
in I(V1) such that :

∀f ∈ I(V2) : f
(
φ0(X), . . . ,φn(X)

)
∈ I(V1)

Such a φ is well-defined provided it exists i such that φi(P) 6= 0. However, as before,
if all φi are zero at P, we can alter φ to make sense of φ(P) :

Definition (Morphism : Reworked definition). Let V1 and V2 be two projective varieties.
A rational map φ : V1 → V2 is said regular or defined at P ∈ V1 if there exists homoge-
neous polynomials of same degree ψ0, . . . ,ψn ∈ K̄[X] such that at least one is non-zero
at P and :

∀i, j : φiψj ≡ φjψi mod I(V1)

If this occurs, we set φ(P) =
[
ψ0(P), . . . ,ψn(P)

]
. A rational map which is regular

everywhere is called morphism.

Definition (Isomorphism). Let V1 and V2 be two varieties.

• An isomorphism between V1 and V2 is a morphism φ : V1 → V2 such that it exists a
morphism ψ : V2 → V1 satisfying ψ ◦ φ and φ ◦ ψ are identity maps on V1 and V2

respectively.

• We say that V1 and V2 are isomorphic, denoted V1
∼= V2, if it exists an isomorphism

between them. We say that V1/K and V2/K are isomorphic over K if the morphisms φ
and ψ can be defined over K.

Exercise 1 (Silverman I.1.6). Let V be the variety defined by Y2Z = X3 + Z3.
Show the map φ is a morphism :

φ : V −→ P2

[X, Y,Z] 7−→
[
X2,XY,Z2

]
Answer. Let us focus on P = [0, 1, 0] which is the only point where φ is not clearly
regular.
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Method 1 :
To prove that φ is regular at P, we can find g ∈ K̄(V) such that all gφi’s are regular

and at least one is non-zero.

After some calculations, we find a solution g =
X2Y

Z
. Then we can calculate φ(P) :

φ(P) =

[
XZ
(
Y2 − Z2

)
, Y2
(
Y2 − Z2

)
,X2YZ

]
(P) = [0, 1, 0]

So φ is regular at P and then it is a morphism.

Method 2 :
Another equivalent solution is to find ψ0, ψ1 and ψ2 such that :

• The ψi’s are homogeneous polynomials in K̄[X] with the same degree.

• The image of P is not zero : ∃i : ψi(P) 6= 0.

• The cross products are equals : ∀i, j : φiψj ≡ φjψi mod I(V).

The aim is to alter φ by replacing it by the ψi’s. The ψi’s are chosen in respect of
I(V) to preserve φ, this is what the last condition says. It is a way to define the same
function φ at P.

Well, let us find the ψi’s. We are looking for something which is non-zero at P :

Y2Z = X3 + Z3⇒ X3 = Z
(
Y2 − Z2

)
⇒ X3

Z
= Y2 − Z2

Let put ψ1 = Y
2 − Z2 at first. Let us check some conditions :

φ0ψ1 = φ1ψ0⇔ X2
(
Y2 − Z2

)
= XYψ0

We see we miss a Y, so let correct : ψ1 = Y
(
Y2 − Z2

)
. Now :

φ0ψ1 = φ1ψ0⇔ X2Y
(
Y2 − Z2

)
= XYψ0⇒ψ0 = X

(
Y2 − Z2

)
Let us check another condition :

φ0ψ2 = φ2ψ0⇔ X2ψ2 = Z
2X
(
Y2 − Z2

)
= ZX4⇒ψ2 = ZX

2

Let us verify the last one :

φ1ψ2 = φ2ψ1⇔ XYZX2 = Z2Y
(
Y2 − Z2

)
yet YZX3 = YZ2

(
Y2 − Z2

)
So φ is regular at P and φ(P) =

[
ψ0(P),ψ1(P),ψ2(P)

]
= [0, 1, 0].

Then, φ is regular on V , it is a morphism.

However φ : P2 → P2 cannot be a morphism because we have seen the φi’s have a
common zero which is P. Then, as I(P2) = {0}, we cannot alter the φi’s to regulate the
situation like we did before : φ is not regular at P.
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Exercise 2 (Silverman I.1.7). Let V be the variety defined by Y2Z = X3 and let φ be the
map :

φ : P1 −→ V

[S, T ] 7−→
[
S2T ,S3, T 3

]
1. Show that φ is a morphism.

2. Find a rational map ψ : V → P1 so that φ ◦ ψ and ψ ◦ φ are the identity maps
wherever they are defined.

3. Is φ an isomorphism ?

Answer. Let us develop all the details.
The map φ is regular everywhere. Moreover, ∀P ∈ P1, φ(P) ∈ V because :

X3 =
(
S2T
)3

=
(
S3
)2
T 3 = Y2Z

Then φ is a morphism. An inverse, where it can be defined, is :

ψ =
[
X5,Z2Y3

]
=
[
X2, YZ

]
= [Y,X]

We can verify :

ψ

([
S2T ,S3, T 3

])
=
[
S3,S2T

]
= [S, T ]

φ
(
[Y,X]

)
=
[
Y2X, Y3,X3

]
=
[
Y2X, Y3, Y2Z

]
= [X, Y,Z]

Now, the question is : Does that inverse make φ be an isomorphism ? The first indi-
cation is to see that V is singular while P1 is smooth. Then φ cannot be a isomorphism.

This is concluding the exercise but I would like to develop. We know that P is
singular so his local ring cannot be a regular local ring. That means mV ,P is not principal.

As mP1,Q is principal, φ∗ cannot be an isomorphism :

φ∗ : OV ,P −→ OP1,Q

f 7−→ f ◦ φ
where Q = [0, 1] and φ(Q) = P

We conclude that φ is not a isomorphism.
To develop a bit more, we will prove that OV ,P is not regular without using that P
is singular. We will use Nakayama’s lemma to prove that the maximal ideal of OV ,P

cannot be generated by a single element.
We will work in the affine chart {Z = 1} 3 P. We have :

OV ,P =

(
K̄[X, Y]
〈X3 − Y2〉

)
〈X,Y〉

; OP1,Q = K[S]〈S〉
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The aim is to prove that
〈
X, Y

〉
cannot be generated by a single element.

Let us remind the Nakayama’s lemma :

Lemma 1.4 (Nakayama). Let (R,m) be a local ring and M be a finitely generated R-module.
Then M�mM has a structure of R�m-vector space and the set {m1, . . . ,mk} is a minimal
generator set forM if and only if {m1, . . . ,mk} is a basis forM�mM.

Let us denote A =
K̄[X, Y]
〈X3 − Y2〉 and m =

〈
X, Y

〉
. Then mAm is a finite generated

A-module and {X, Y} is basis of mAm�m2Am
:

Now, we can notice that :

m2 =
〈
X2,XY, Y2

〉
=
〈
X2,XY,X3

〉
=
〈
X2,XY

〉
Let α and β be in K̄. Then :

αX+ βY = 0 in mAm�m2Am

⇔ αX+ βY ∈ m2Am =
〈
X2,XY

〉
in A

⇔ αX+ βY = GX2 +HXY in A where G,H ∈ Am

⇔ P
(
αX+ βY

)
= QX2 + RXY in A where P,Q,R ∈ A and P /∈ m

⇔ P(αX+ βY) −QX2 − RXY ∈
〈
X3 − Y2〉 in K̄[X, Y]

⇔ P0,0αX+ P0,0βY = 0 in K̄[X, Y]

⇔ P0,0α = P0,0β = 0⇔ α = β = 0 because P0,0 6= 0

And we conclude that {X, Y} is a basis of
mAm

m2Am

so the cardinal of a minimal set of gener-

ators for mAm is 2. We have proved that OV ,P is not a regular ring, which concludes.



Chapter 2

Algebraic curves

Now we will focus our study on curves which are the varieties of dimension 1,
and more specifically we will often work with smooth curves. Our aim is to study the
general geometric properties of curves and to define the genus of a curve. Thus, we will
be able to define the main object of our subject : the elliptic curves which are the curves
of genus 1.

2.1 Curves

Definition (Curves). We call projective curve any projective variety of dimension 1.

From now on, all curves will be understood as projective. A very important property
in the case of smooth curves is that the locals rings K̄[C]P are discrete valuation rings.

Definition (Discrete valuation ring). A discrete valuation on a ring R is a function :

v : R \ {0} −→ Z

Which satisfies for all x,y ∈ R \ {0} :

• v(xy) = v(x) + v(y)

• v(x+ y) > min
{
v(x), v(y)

}
A discrete valuation ring is a ring admitting a discrete valuation v.

Proposition 2.1. A ring is a discrete valuation ring if and only if it is a principal ideal domain
with only one non-zero maximal ideal.

Proposition 2.2. LetC be a curve and P ∈ C a smooth point. Then K̄[C]P is a discrete valuation
ring. Its maximal idealMP is principal.
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Proof.

We know that K̄[C]P is a local ring defined as the localisation at P, ie. relative to the
maximal ideal MP. Let us show that MP is principal. Since P is a smooth point, we
know from [1.2] that :

dimK̄
MP�M2

P
= 1

Then by Nakayama [1.4],MP is principal and we conclude that K̄[C]P is a discrete
valuation ring using [2.1].

Let us define the valuation on our locals fields K̄[C]p :

Definition (Valuation on OC,P). Let C be a curve and P ∈ C a smooth point. The
normalized valuation on K̄[C]P is defined by :

ordP : K̄[C]P −→ N ∪ {∞}

f 7−→ ordP(f) = max
{
d ∈ N | f ∈Md

P

}
We can extend ordP : K̄(C)→ Z ∪ {∞} by defining :

ordP

(
f

g

)
= ordP(f) − ordP(g)

A uniformizer for C at P is a generator of the principal maximal ideal MP, this
means a function π ∈ K̄(C) such as ordP(π) = 1.

Definition (Order of function). Let C be a curve and P ∈ C a smooth point. The order
of f at P is ordP(f).

• If ordP(f) > 0 then f has a zero at P.

• If ordP(f) < 0 then f has a pole at P.

If ordP(f) > 0 then f is regular or defined at P. Otherwise f has a pole and we set
f(P) =∞. The order of f at P is the multiplicity of the zero or the pole of f at P.

Proposition 2.3. Let C be a smooth curve and f ∈ K̄(C)∗. Then there are only finitely many
points of C at which f has a zero or a pole. If f has no poles, then f ∈ K̄.

Proof. See [Har77, p. 41, I.6.5] for the finiteness of poles. The finiteness of zeros is
deduced considering 1/f. For the last statement, see [Har77, p. 18, I.3.4].
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2.2 Map between curves

In the case of curves, we have a bijection :

K(C) ∪ {∞} ←→ {f : C→ P1 defined over K}

f 7−→ φ =

[1, 0] at poles of f

[f, 1] otherwise

Let C/K be a smooth curve and f ∈ K(C). Then f defines a rational map :

f : C −→ P1

P 7−→
[
f(P), 1

]
Using the next proposition, f is a morphism, given by :

f(P) =

[1, 0] =∞ if f has a pole at P[
f(P), 1

]
if f is regular at P

Conversely, let φ : C→ P1 be the rational map defined over K by φ = [f,g]. Then :

• Either g = 0 and in this case φ is the constant map [1, 0] and we denote φ =∞.

• Or g 6= 0 and φ correspond to the function
f

g
∈ K(C).

The next proposition is an important result which will motivate us to work with
smooth curves :

Proposition 2.4. Le C be a curve and P ∈ C a smooth point. Let φ : C→ V be a rational map
to a variety V ⊆ PN. Then φ is regular at P. In particular, if C is smooth φ is a morphism.

Proof. Let us define φ = [f0, . . . , fN] with fi ∈ K̄(C). Let us choose an uniformizer
t ∈ K̄(C) for C at P. For n = min

{
ordP fi | i ∈ J0 ,NK

}
we have ordP

(
t−nfi

)
> 0 and

equal zero for at least one i. Then each t−nfi is regular at P and they are not all zero.
We conclude that φ is regular at P.

Theorem 2.5. Let C1 and C2 be two curves and φ : C1 → C2 a morphism. Then φ is either
constant or surjective.

Proof. [Har77, p. 137, II.6.8]
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Definition (Induced map on function field). Let C1/K and C2/K be two curves and
φ : C1 → C2 a non-constant rational map defined over K. Then the composition by φ
induces an injection on function fields :

φ∗ : K(C2) −→ K(C1)

f 7−→ φ∗f = f ◦ φ

Definition (Degree of map of curves). Let φ : C1 → C2 be a map of curves defined over
K. If φ is constant, we define the degree of φ to be 0. Otherwise we define its degree to
be as :

degφ =
[
K(C1) : φ

∗K(C2)
]

Proposition 2.6. Let C1 and C2 be smooth curves and let φ : C1 → C2 be a map of degree 1.
Then φ is an isomorphism.

Proof. [Sil86, p. 21, II.2.4.1]

Definition (Ramification index). Let C1 and C2 be two smooth curves and φ : C1 → C2

a non-constant map. The ramification index of φ at P ∈ C1, denoted eφ(P), is defined
by :

eφ(P) = ordP
(
φ∗tφP

)
where tφP ∈ K(C2) is a uniformizer at φ(P)

A map φ is said unramified at P if eφ(P) = 1 and unramified if it is unramified at every
point.

Remark 5. The notion of ramification is a generalisation of the notion of multiplicity of a
zero or a pole but for any point. To give an intuition, let us remind the classical case :

Let h be a holomorphic function with a zero of multiplicitym at x0. Then :

h(x0) = 0 ; h(x) = 0 + · · ·+ 0 +
h(m)(x0)

m!
(x− x0)

m
+ · · ·

We notice that h has the same behaviour at x0 than x 7→ (x− x0)
m. Let us generalise the

description of the behaviour at a point by saying that for h(x0) = y0, h is ramified of
order e if :

h(x0) = y0 ; h(x) = y0 + · · ·+ 0 +
h(m)(x0)

m!
(x− x0)

e
+ · · ·

So h has the same behaviour at x0 than x 7→ y0 + (x− x0)
e. The behaviour at a point can

be expressed as a power e and that is exactly why we introduce the ramification index.
Well, we would like to say that φ is ramified at P0 with index ramification e if :

“ φ(P0) = Q ; φ(P) = Q+ 0 + · · ·+ 0 +
φ(e)(P0)

e!
(P − P0)

e
+ · · · ′′
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But that is not defined because we obviously could not talk about addition or
derivative. The idea to generalize it is to say that φ : C1 → C2 is ramified at P0 with
ramification index e if e is the highest power of t dividingφ∗s according to the following
diagram :

C1
φ

// C2

OC1,P OC2,Q
φ∗

oo

mC1,P = 〈t〉
?�

OO

mC2,Q = 〈s〉
?�

OO

φ∗uu

I =
〈
φ∗(s)

〉
= meC1,P

?�

OO

We keep the intuition of expressing φ as a power of a fundamental element : the
uniformizer. In this construction, the uniformizer t plays the role of “P − P0”.

To conclude, to talk locally about the behaviour of a function between curves at
a point, it is enough to talk about the highest power of the uniformizer dividing this
function in the local ring associated to this point.

Proposition 2.7. Let φ : C1 → C2 be a non-constant map of smooth curves and f ∈ K(C2)
∗.

ordP
(
φ∗f
)
= eφ(P) ordφ(P)(f)

Proof. As C1 and C2 are smooth curves, OC1,P and OC2,φP are regular local rings.
That means mC1,P and mC2,φP are principal. Once again we have the following

diagram :

C1
φ

// C2
f // K

OC1,P OC2,φP
φ∗

oo

mC1,P = 〈s〉
?�

OO

mC2,φP = 〈t〉
?�

OO

φ∗(mC2,φP)vv

〈φ∗(t)〉 = meC1,P

?�

OO

Let fφP ∈ OC2,φP be the germ of f around φ(P) and ν be the order of fφP at φ(P).
Then fφP = utν where u is a unit of OC2,φP and we have φ∗

(
fφP
)

= φ∗(utν) =

φ∗(u)φ∗(t)
ν ∈ meC1,P. Indeed, we have

〈
φ∗(t)

〉
= meC1,P = 〈se〉 with by definition

e = eφ(P). So φ∗(t) = vse and :

φ∗
(
fφP
)
= φ∗(u)φ∗(t)

ν
= φ∗(u)vν

(
se
)ν
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To conclude :
ordP

(
φ∗f
)
= eν = eφ(P) ordφP(f)

Proposition 2.8. Let φ : C1 → C2 and ψ : C2 → C3 two non-constant maps of smooth curves.
We have a link between degree and ramification :

∀Q ∈ C2 : deg(φ) =
∑

P∈φ−1(Q)

eφ(P)

Then, φ is unramified if and only if ∀Q ∈ C2 : deg(φ) = ]φ−1(Q).
Plus, ramification index is compatible with composition :

∀P ∈ C1 : eψ◦φ(P) = eφ(P)eψ(φP)

Proof. [Har77, pp. 137-138, II.6.8, II.6.9]

2.3 Divisors

Divisors are weighted sums of points which can be used to characterise the mul-
tiplicity of functions at each point. It is a notion needed to state the Riemann-Roch
theorem and then to define the genus of a curve.

Definition (Divisor group). Let C be a curve. The divisor group of C, denoted Div(C),
is the free abelian group generated by the points of C.

The elements of Div(C), the divisors of C, are formal sums :

D =
∑
P∈C

nP · (P) where nP ∈ Z are all zero except for finitely many P ∈ C.

Definition (Degree of a divisor). Let C be a curve and D ∈ Div(C). The degree of D is :

deg(D) =
∑
P∈C

nP

Definition (Special divisor group). Let C be a curve. We define the group of divisors of
degree 0 as :

Div0(C) =
{
D ∈ Div(C) | deg(D) = 0

}
We define the group of divisors defined over K as :

DivK(C) =
{
D ∈ Div(C) | ∀σ ∈ GK̄/K : Dσ = D

}
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Remark 6. The action of the Galois group GK̄/K on projective points is Pσ =
[
xσ0 , . . . , xσn

]
then the action over divisors is defined by :

Dσ =
(∑
P∈C

nP · (P)
)σ

=
∑
P∈C

nP ·
(
Pσ
)

Definition (Divisor of a map). Let C be a smooth curve and f ∈ K̄(C)∗. We can associate
to f the divisor div(f) given by :

div(f) =
∑
P∈C

ordP(f) · (P)

Remark 7. Let us recall that ordP(f) is non zero if and only if P is a zero or a pole of f. So
it is well defined because from [2.3], the number of poles and zeros is finite. Then the
divisor associated to a function is the weighted sum of its zeros and poles. Coefficients
of the weighting are the multiplicities.

Remark 8. If f ∈ K(C) then div(f)σ = div(fσ) = div(f) so div(f) ∈ DivK(C).

Definition (Principal divisors and Picard group). Let C be a smooth curve. A divisor
D ∈ Div(C) is principal if it exists f ∈ K̄(C)∗ such as D = div(f). Two divisors D1 and
D2 are linearly equivalent if D1 −D2 is principal.

The divisor class group, denoted Pic(C) is the quotient of Div(C) by the subgroup
of principal divisors. We define PicK(C) as the subgroup of Pic(C) fixed by GK̄/K.

Proposition 2.9. Let C be a smooth curve and f ∈ K̄(C)∗. Then div(f) = 0 if and only if
f ∈ K̄∗. And we know that f has the same number of zero and poles :

deg div(f) = 0

Proof. Look at the remark [10].

Definition (Induced map on divisors). Let φ : C1 → C2 be a non-constant map of
smooth curves. Then φ induces a Z-linear map :

φ∗ : Div(C2) −→ Div(C1)

(Q) 7−→
∑

P∈φ−1(Q)

eφ(P) · (P)

Remark 9. Let C be a smooth curve and f ∈ K̄(C)∗ be a non-constant polynomial.
As we have seen, f induces a map f : C→ P1 and then f∗ : Div (P1)→ Div(C).

Finally, we remark that div(f) = f∗
(
(0) − (∞)

)
. It is a special case where we are

looking at the image of the difference between the two special points (0) and (∞). We
are looking at the order of zeros and poles.
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Proposition 2.10. Let φ : C1 → C2 and ψ : C2 → C3 be two non-constant maps of smooth
curves. Then (ψ ◦ φ)∗ = φ∗ ◦ψ∗ and ∀D ∈ Div(C2),∀f ∈ K̄(C2)

∗ :

deg
(
φ∗D

)
=
(
degφ

)(
degD

)
; φ∗

(
div(f)

)
= div

(
φ∗f
)

Proof. [Sil86, p. 29, II.3.6]

Remark 10. Now we can prove easily that, for f ∈ K̄(C) :

deg div(f) = deg f∗
(
(0) − (∞)

)
= deg(f) − deg(f) = 0

2.4 Differentials

Our goal in this section is to define the canonical divisor which is used in the
Riemann-Roch theorem. It is the last notion we need to define the genus algebraically.

Definition (Differentials). Let C be a curve. We denoted byΩC the space of meromor-
phic differential forms on C. It is the K̄-vector space generated by the differentials, the
symbols dx for x ∈ K̄(C) satisfying :

• ∀x,y ∈ K̄(C) : d(x+ y) = dx+ dy

• ∀x,y ∈ K̄(C) : d(xy) = xdy+ ydx

• ∀a ∈ K̄ : da = 0

Definition (Induced map on differentials). Let φ : C1 → C2 be a non-constant map of
curves. The associated field map φ∗ : K̄(C2)→ K̄(C1) induces a map on differentials :

φ∗ : ΩC1 −→ ΩC2∑
fi dxi 7−→

∑(
φ∗fi

)
d
(
φ∗xi

)
Proposition 2.11. Let C be a curve. ThenΩC is a one dimensional K̄(C)-vector space.

Proof. [Mat80, 27.A.B]

Proposition 2.12. Let C be a curve, P ∈ C and t ∈ K̄(C) a uniformizer at P. Then for each
ω ∈ ΩC, it exists a unique g ∈ K̄(C) which only depends onω and t and satisfies :

ω = gdt

The function g is denoted by
ω

dt
.
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Proof. [Sil86, p.31, II.4.3]

Definition (Order on differentials). Let C be a curve, P ∈ C and t ∈ K̄(C) a uniformizer
at P. Then we define the order ofω ∈ ΩC at P as :

ordP(ω) = ordP

(
ω

dt

)
This quantity is well defined because it is independent of the choice of the uniformizer.

Proof. Let us show that ordP(ω) does not depends on the choice of the uniformizer.

Let t and t ′ be two different uniformizers at P. Then
dt
dt ′

is regular at P from the
next lemma and we conclude using :

ordP

(
ω

dt

)
= ordP

(
ω

dt
dt
dt ′

)
= ordP

(
ω

dt ′

)
+ ordP

(
dt
dt ′

)
= ordP

(
ω

dt ′

)

Lemma 2.13. Let C be a curve, P ∈ C and t ∈ K̄(C)∗ a uniformizer at P. Let f ∈ K̄(C)∗ be

regular at P. Then
df
dt

is regular at P.

Proof. [Har77, p. 300]

Proposition 2.14. Let C be a curve andω ∈ ΩC be a non-zero differential. Then ordP(ω) = 0
for all but finitely many P ∈ C.

Proof. [Sil86, p. 31, II.4.3]

We can now define the divisor of a differential :

Definition (Divisor of differentials). Letω be a differential on C. The divisor associated
toω ∈ ΩC is the formal sum :

div(ω) =
∑
P∈C

ordP(ω) · (P)

The differentialω is said :

• regular or holomorphic if ∀P ∈ C : ordP(ω) > 0.

• non-vanishing if ∀P ∈ C : ordP(ω) 6 0.
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Definition (Canonical divisor). Let C be a curve. The canonical divisor class on C
is the class of div(ω) seen in Pic(C) for any non-zero differential ω ∈ ΩC. We call
canonical divisor any element of Div(C) for which its class in Pic(C) is the canonical
divisor class.

Remark 11. Canonical divisor class is well defined because for ω1 and ω2 two non-zero
differentials, it exists a function f ∈ K̄(C)∗ such thatω1 = fω2. Then :

div(ω1) = div(f) + div(ω2)

Then the image of div(ω1) and div(ω2) is the same in Pic(C). A canonical divisor
is simply a divisor D which can be written as D = div(ω) where ω is a non-zero
differential.

Example 4. The canonical divisor of the projective line P1 is KP1 = −2(∞).
Indeed, let x ∈ K̄[P1] ⊆ K̄(P1) be the coordinate function. We are looking for the

value :
div
(
dx
)
=
∑
P∈P1

ordP
(
df
)
· (P)

Let P be an element of the affine chart U0 = {P = [x,y] | x 6= 0}. We can take
t = x− x(P) as uniformizer at P. Then :

ordP
(
dx
)
= ordP

(
d
(
x− x(P)

))
= ordP(1) = 0

At the infinity, we take
1
x

as uniformizer and then :

ord∞(dx) = ord∞
(
−x2 d

1
x

)
= ord∞

(
−x2

)
= −2

Because polynomials over P1 of degree d have a pole of multiplicity d at∞.

2.5 Riemann-Roch theorem

We will now enunciate the Riemann-Roch theorem which algebraically define the
notion of genus of a curve as the unique integer gwhich satisfies a given equation.

In the case of a smooth projective curve C defined over the complex numbers, the
notion of genus we will define coincides with the topological genus associated with C
seen as a Riemann surface. However, as we will work over general fields we need this
algebraic definition but the idea is similar.

To state this equation we have to start by defining the space L (D).

Definition (Ordering relation on divisors). Let C be a curve and D ∈ Div(C).
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• We say that D is positive, denoted D > 0, if nP > 0 for all P ∈ C.

• We say than D1 is greater than D2, denoted D1 > D2, if D1 −D2 is positive.

Remark 12. The comparison between divisors is an easy way to impose conditions about
multiplicity order of zeros or poles at a point. For example, div(f) > (P) − n(Q) means
f is a regular function with at least one zero at P and a pole at most order n at Q.

This is a direct consequence of the definition of div(f) as f∗
(
(0) − (∞)

)
.

Definition (L (D) space). Let C be a smooth curve andD ∈ Div(C) a divisor. We define
L (D) as the set of maps with divisor greater than −D :

L (D) =
{
f ∈ K̄(C)∗ | div(f) > −D

}
∪ {0}

Remark 13. Thus L (D) is the set of functions fwhich have poles at P with multiplicity
at most nP for all nP > 0 and zeros at P with multiplicity at least nP for all nP < 0.

Proposition 2.15. Let C be a curve and D ∈ Div(C). Then L (D) is a finite dimensional
K̄-vector space and we denote by `(D) its dimension dimK̄L (D).

Moreover :

• If D < 0 then L (D) = {0} and `(D) = 0.

• If D ′ ∼ D then L
(
D ′
)
∼= L (D) and `

(
D ′
)
= `(D).

Proof. For the finiteness of the dimension, see [Har77, II.5.19].
Now, let us prove the two other results. Let f ∈ L (D) a non-zero function. Then :

deg div(f) = 0 and 0 > deg(−D) = −deg(D) then deg(D) > 0

Finally, if D ′ ∼ D then D = D ′ + div(g) and the map f 7→ fg is an isomorphism
between L (D) and L

(
D ′
)
.

Let us finally state this Riemann-Roch theorem :

Theorem 2.16 (Riemann-Roch 1865). Let C be a smooth curve and KC a canonical divisor.
Then it exists an integer g > 0 such that for all D ∈ Div(C) :

`(D) − `(KC −D) = deg(D) − g+ 1

This integer g is called genus of the curve C.

Proof. See at [Har77, IV.1.3].

Corollary 2.17. Let C be a smooth curve and KC a canonical divisor. So we have :
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• `(KC) = g.

• deg(KC) = 2g− 2.

• For all D ∈ Div(C) such as deg(D) > 2g− 2, `(D) = deg(D) − g+ 1.

Proof. For the first point, let us consider D = 0. Then L (0) = K̄ and `(0) = 1 so :

`(KC) = deg(D) − g+ 1 − `(D) = g

For the second point, let us consider D = KC. We have :

deg(KC) = `(KC) − `(KC − KC) + g− 1 = g− 1 + g− 1 = 2g− 2

Finally, if deg(D) > 2g − 2 then deg(KC −D) < 0 and `(KC −D) = 0 from [2.15].

Remark 14. The number `(D) is the dimension of the space of functions which are
solutions to the problem of finding functions with a prescribed number of zeroes and
allowed number of poles.

We can notice in the case of meromorphic function, ie. C is the Riemann sphere P1
C,

that for a divisor D such as deg(D) = 0 we found an unique solution to this problem,
up to a constant :

`(D) = deg(D) − g+ 1 − `(KC −D) = 1

Because the genus of P1 is g = 0 and deg(D) = 0 > 2g− 2 so `(KC −D) = 0.

The assumption deg(D) = 0 could seems restrictive but in fact it is a natural assump-
tion since the number of zeros and poles counted with multiplicities of an holomorphic
functions on C, extended in a meromorphic function on C, are equals. Then for any
meromorphic function on the Riemann sphere, we already knew from complex analysis
that deg

(
div(f)

)
= 0. We conclude that meromorphic function on P1

C are uniquely
determined, up to a multiplicative constant, by the specification of its zeros and poles
which is a really nice result also well known in complex analysis.

Proposition 2.18. Let C/K be a smooth curve and D ∈ DivK(C).
Then L (D) has a basis of functions in K(C).

Proof. [Sil86, p. 36, II.5.8]



Chapter 3

Elliptic curves

In this chapter we will study our main object : the elliptic curves. We will develop
all the necessary stuff for the proof of the Mordell-Weil theorem which will be stated
and proved in the next chapter.

Our study will start with the link between elliptic curves and equations in Weier-
strass form. Then we will define the group structure on an elliptic curve. Finally we
will explain the procedure of reduction of an elliptic curve over a residue field. This last
point will be used at a crucial moment in the proof of the Mordell-Weil theorem.

3.1 Elliptic curves and Weierstrass Equations

Definition (Elliptic curve). We call elliptic curve any non-singular projective curve of
genus 1. More precisely, an elliptic curve is a couple (E,O) where E is the curve and
O ∈ E is a specified point. An elliptic curve is defined over K, denoted E/K, if E is
defined over K and O ∈ E(K).

Remark 15. The specification of the point O is needed to put a group structure without
ambiguity. We will choose O as the identity of the group (E,⊕). However, we will often
omit it when it is not problematic.

We will now see that any elliptic curve can be defined as a locus in P2 by a Weierstrass
equation and that each non-singular Weierstrass equation can be seen as an elliptic
curve with base point O = [0, 1, 0]. This will give us a geometrical visualisation of the
elliptic curves as plane cubics.

Let us study Weierstrass equations.

Definition (Weierstrass equation). A Weierstrass equation is an equation of the form :

Y2Z+ a1XYZ+ a3YZ
2 = X3 + a2X

2Z+ a4XZ
2 + a6Z

3 with a1, . . . ,a6 ∈ K̄
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Figure 3.1: Three elliptic curves

Remark 16. I follow the standard labelling notation which are comfortable to use even
if at first sight it can be surprising. To remember them, think that even numbers are
associated to powers of x and odd numbers to terms with y.

We will now show that in characteristic different from 2 and 3 we can reduce, by
linear change of variables, such type of equation to a simpler form.

Proposition 3.1. Let K be a field of characteristic different from 2 and 3. Then any Weierstrass
equation can be reduced to the form :

y2 = x3 +Ax+ B with A,B ∈ K̄

The homogenized equation still defines a locus in P2.

Remark 17. Even if we will focus our study on number fields, which means we will be
in characteristic zero, we will still stay in the general case for a moment. Indeed, we
will need general results to talk about elliptic curves on number fields when we will
reduce them modulo p and look at the reduced curves over residue fields.

Proof. Let us consider a general Weierstrass equation :

Y2Z+ a1XYZ+ a3YZ
2 = X3 + a2X

2Z+ a4XZ
2 + a6Z

3 with a1, . . . ,a6 ∈ K̄ (∗)

Then we consider the dehomogenized equation :

y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6 with a1, . . . ,a6 ∈ K̄

First of all, we want to remove the xy and y terms. For this, we want to complete
the square. The trick is to consider 4(∗) and so we can find y1 such as y2

1 = 4y2 +

4a1xy+ 4a3y+ f(x). A solution is y1 = 2y+ a1x+ a2, we apply the change of variables

y 7→ 1
2
(y1 − a1x− a3) :
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4
22 (y1 − a1x− a3)

2
+

4
2
(y1 − a1x− a3)[a1x+ a3] = 4x3 + 4a2x

2 + 4a4x+ 4a6

⇔
(
y2

1 + a
2
1x

2 + a2
3−2a1xy1−2a3y1 − 2a1a3x

)
+
(

2a1xy1 − 2a2
2x

2 − 2a1a3x
)

+
(

2a3y1 − 2a1a3 − 2a2
3

)
= 4x3 + 4a2x

2 + 4a4x+ 4a6

⇔ y2
1 = 4x3 +

(
4a2 − a

2
1

)
x2 + (4a4 + 2a1a3)x+

(
4a6 + a

2
3

)
⇔ y2

1 = 4x3 + b2x
2 + 2b4x+ b6

Now we are trying to delete the term with x2. The idea is to apply a change of
variables x 7→ λ(x1 + µ). A good choice of (λ,µ) is

(
36−1,−3b2

)
as the calculation

shows :

y2
1 = 4 · 36−3(x1 − 3b2)

3
+ 36−2b2(x1 − 3b2)

2
+ 2 · 36−1b4(x1 − 3b2) + b6

y2
1 = 4 · 36−3

(
x3

1−32b2x
2
1 + 33b2

2x1 + 33b3
2

)
+ 36−2

(
b2x

2
1 − 2 · 3b2x1 + 32b3

2

)
+ 2 · 36−1b4x1 − 3 · 36−1b2b4 + b6

y2
1 = 108−2x3

1 + 108−2
(

33b2
2 − 2 · 3 · 36 · 4−1b2 + 2 · 362 · 4−1b4

)
x1

+ 108−2
(

33b3
2 + 32 · 36 · 4−1b3

2 − 3 · 362 · 4−1b2b4 + 1082b6

)
y2

1 = 108−2
(
x3

1 +
(
−27b2

2 + 24 · 27b4

)
x1 +

(
54b3

2 − 27 · 54b2b4 + 54 · 216b6

))
y2

1 = 108−2
(
x3

1 − 27c4x1 − 54c6

)
y2

1 = 108−2
(
x3 +Ax+ B

)
We conclude by the change of variable y1 7→ 108−1y2. Notice that the characteristic

must not be 2 or 3 to be able to do these changes of variables. We already could have
concluded at the 3rd step but we develop the calculation to obtain this table of constants
we will need for the next calculations :

Let us sum up. In the general case :

y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6

If Char(K) 6= 2 :
y2 = 4x3 + b2x

2 + 2b4x+ b6

If Char(K) 6= 2 and 3 :

y2 = x3 +Ax+ B = x3 − 27c4x− 54c6
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Constant In function of ai and bi
b2 4a2 + a

2
1

b4 2a4 + a1a3

b6 4a6 + a
2
3

c4 b2
2 − 24b4

c6 −b3
2 + 36b2b4 − 216b6

Table 3.1: Constants values

Let us introduce the discriminant of a Weierstrass equation. It will be a useful
quantity for characterise the smoothness of the curve.

Definition (Discriminant). Let C be a curve defined by a Weierstrass equation :

y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6

We define the discriminant of E as ∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 with b8 =

a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a

2
4. In characteristic different form 2 and 3, the elliptic

curve can be rewritten as y2 = x3 +Ax+ B and ∆ = −16(4A3 + 27B2).

Let us now check what can happens at a non-smooth point.

Definition (Node and cusp). Let C be a curve given by a Weierstrass equation :

f(x,y) = y2 + a1xy+ a3y− x3 − a2x
2 − a4x− a6 = 0

Let P = (x0,y0) be a singular point. Then ∂xf(P) = 0 and ∂yf(P) = 0 so :

f(x,y) − f(x0,y0) = ∂
2
xf(P)

(x− x0)
2

2
+ ∂x∂yf(P)(x− x0)(y− y0)

+ ∂2
yf(P)

(y− y0)
2

2
+ ∂3

xf(P)
(x− x0)

3

3!
=
(
(y− y0) − α(x− x0)

)(
(y− y0) − œβ(x− x0)

)
− (x− x0)

3

• We say that P is a node if α 6= β. Then we have two tangent lines at P :

y− y0 = α(x− x0) ; y− y0 = β(x− x0)

• We say that P is a cusp if α = β. Then we have only one tangent line at P :

y− y0 = α(x− x0)
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Finally, let us classify the different the cases of regularity.

Proposition 3.2. Let C be given by a Weierstrass equation with discriminant ∆.
Let c4 be the quantity defined in [Table 3.1]. Then :

• C is smooth if and only if ∆ 6= 0.

• C has a node if and only if ∆ = 0 and c4 6= 0.

• C has a cusp if and only if ∆ = 0 and c4 = 0.

Proof. [Sil86, p.46, III.1.4]

Once we have defined Weierstrass equations and characterised their smoothness,
we could state a main theorem of the elliptic curves theory :

Theorem 3.3 (Elliptic curves and Weierstrass equations). Let E be an elliptic curve defined
over K. There are functions x,y ∈ K(E) such that the following function φ is an isomorphism
between E/K and the curve C with φ(O) = [0, 1, 0].

φ : E −→ C ⊆ P2

P 7−→
[
x(P),y(P), 1

]
Where the curve C is defined by the Weierstrass equation :

C : Y2 + a1XY + a3Y = X3 + a2X
2 + a4X+ a6 with a1, . . . ,a6 ∈ K

The functions x and y are called Weierstrass coordinates for the elliptic curve E/K.
Reciprocally, any smooth curve C defined by a Weierstrass equation is an elliptic curve over
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K with base point O = [0, 1, 0]. Furthermore, two Weierstrass equations for E are related by a
linear change of variables :

X = u2X ′ + r ; Y = u3Y ′ + su2X ′ + t with u ∈ K∗ and r, s, t ∈ K

Proof.
We are looking for Weierstrass coordinates. We will find them as elements of

L
(
n(O)

)
using the Riemann-Roch theorem. Let n > 1 and let us look at the vector

space associated to the divisor n(O) :

L
(
n(O)

)
= {f ∈ K̄(E)∗ | div(f) > −n(O)} ∪ {0}

So L
(
n(O)

)
represents the vector space of all functions with poles of multiplicity

less or equal to n at O. From 2.17 in the special case g = 1 :

dimK̄L
(
n(O)

)
= n

Furthermore, L
(
n(O)

)
⊆ L

(
(n+ 1)(O)

)
because −n(O) > −(n+ 1)(O). Let us

choose x,y ∈ K(E) such that {1, x} is a basis of L
(
2(O)

)
and {1, x,y} is a basis of

L
(
3(O)

)
. Then we can choose K-rational coefficients using [2.18] because n(O) ∈

DivK(E).
Now we consider L

(
6(O)

)
. Its dimension is 6 but it also contains the seven functions

1, x,y, xy, x2,y2, x3 because x (resp. y) have a pole of exact order 2 (resp. 3). The upper
bound is clear by definition of L

(
n(O)

)
and the lower bound is deduced by the fact

that if the order of the pole at O of x (resp. y) is less than 2 (resp. 3) then x ∈ L
(
1(O)

)
(resp. y ∈ L

(
2(O)

)
) and the sets considered are not basis.

Thus, we have a linear combination between these functions :

∃λi ∈ K with at leat one non-zero : λ1 + λ2x+ λ3y+ λ4xy+ λ5x
2 + λ6y

2 + λ7x
3 = 0

We can take λi ∈ K, still from [2.18]. Let us notice that λ6 and λ7 are non zero because
all the other terms have poles at O of different orders so all the λj should vanish. We
would like to find a Weierstrass equation with x and y as coordinates, so we proceed to
the change of variables (x,y) 7→

(
−λ6λ7x1, λ6λ

2
7y1

)
:

λ1 − λ2λ6λ7x+ λ3λ6λ
2
7y+ λ4λ

2
6λ

2
7y+ λ4λ

2
6λ

2
7x

2 − λ5λ
2
6λ

3
7xy+ λ3

6λ
4
7y

2 − λ3
6λ

4
7x3 = 0

Thus, dividing by λ3
6λ

4
7 we get a cubic equation in Weierstrass form.

Let us prove that φ : E → C has degree 1, or equivalently that K(E) = K(x,y).
Consider the map [x, 1] : E→ P1. Since x has a double pole at O and no other poles, this
map has degree 2 from [2.8]. Thus

[
K(E) : K(x)

]
= 2. Similarly the map [1,y] : E→ P1

has degree 3 so
[
K(E) : K(y)

]
= 3. Thus

[
K(E) : K(x,y)

]
divides both 2 and 3 so it is 1.
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Finally, let us prove that C is smooth to conclude that φ is an isomorphism Suppose
that C is singular. Then it exists a rational map ψ : C → P1 of degree one. It follows
that the composition ψ ◦ φ : E → P1 is a map of degree one between smooth curve.
Therefore, from [2.6], it is an isomorphism But this contradicts the fact that E has genus
one and P1 has genus zero. Thus C is smooth, and now another use of [2.6] tell us that
the degree one map φ : E→ C is an isomorphism.

Corollary 3.4. Let E/K be an elliptic curve with Weierstrass coordinates x and y.

K(E) = K(x,y) ;
[
K(E) : K(x)

]
= 2

3.2 Group law on elliptic curves

In this section, we develop one of the most fundamental properties of elliptic curves,
the abelian group structure.

Then we will be able to talk aboutm-torsion points and we will show that they form
a finite group, which is a result we will need in the next chapter.

3.2.1 Geometric group law

We will now define the group law using Weierstrass equations.

Definition (Composition law). Let E be an elliptic curve and P, Q in E.
To construct P +Q, we consider the line L between P and Q, which is the tangent

line if P = Q. Let R be the third intersection point of Lwith E. Let L ′ be the line between
R and O. We set P +Q as the third intersection point of L ′ with E.

Remark 18. From Bézout’s theorem, two projective curves intersects in n ×m points
counted with multiplicities where n andm are the degree of each curve. This theorem
ensures that the line L intersects E in three points counted with multiplicities.

Remark 19. Geometrically, in an affine piece, the algorithm consists in considering the
point R aligned with P and Q and taking its symmetrical with respect to (Ox). Indeed,
O is considered as the point at the infinity in this chart. Then L ′ is the vertical line
passing through R. This construction is then really clear geometrically speaking.

Proposition 3.5. The composition law + is a commutative group law on E.

• O is the neutral element : ∀P ∈ E : P +O = P.

• Every element has a inverse : ∀P ∈ E,∃(−P) ∈ E : P + (−P) = O.

• The law is associative : ∀P,Q,R ∈ E : (P +Q) + R = P + (Q+ R).
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Figure 3.4: Addition algorithm on the curve y2 = x3 − 3x+ 3

• The law is commutative : ∀P,Q ∈ E : P +Q = Q+ P.

Furthermore, if the not necessarily distinct points P, Q and R are aligned then P +Q+ R = O.

Then any elliptic curve has a group structure defined geometrically and which
satisfy the formulas stated in the next subsection. There is another way to define a
group law on an elliptic curve which consist of noticing that for everyD ∈ Pic0(E) there
is a unique P ∈ E such that D ∼ (P) − (O). Thus we can look at the following function.

σ : Pic0(E) −→ E

D 7−→ (P) − (O)

It is an isomorphism between the abelian group Pic0(E) and E. This give us another
group structure. In fact, these two definitions coincides and will we will content
ourselves with the first one.

3.2.2 Addition and duplication formulas

Let us give explicit formula which will be used in the following chapter. Calculation
are not developed here and can be found in [Sil86, III.2].

Proposition 3.6. Let E be an elliptic curve defined by a Weierstrass equation.

E : y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6

Let P = (x,y). Then −P = (x,−y− a1x− a3). Let P1 + P2 = P3 with Pi = (xi,yi).



33 3. Elliptic curves

• If x1 = x2 and y1 + y2 + a1x2 + a3 = 0 then P1 + P2 = O.

• Otherwise y = λx+ v is the line passing by P1 and P2 so :x3 = λ
2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − v− a3

Where λ and v are calculated as :

λ v

x1 6= x2
y2 − y1

x2 − x1

y1x2 − y2x1

x2 − x1

x1 = x2
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

As a special case we have :

x
(
[2]P

)
=
x4 − b4x

2 − 2b6x− b8

4x3 + b2x2 + 2b4x+ b6

In characteristic zero, we get the reduced formulas :

−P = (x,−y) ;
x(P1 + P2) =

(
y2 − y1

x2 − x1

)2

− x1 − x2

x
(
[2]P

)
=
x4 − 2Ax2 − 8Bx+A2

4x3 + 4Ax+ 4B

An important remark is that the group law can be defined using rational functions.
Thus, if P and Q are K-rational points, their sum P +Q too. This gives us the stability
of the K-rationality by addition. Then we can define the group of K-rational points on
which we will be focused on.

Definition (K-rational point subgroup). Let E be an elliptic curve defined over K.

E(K) = E ∩ P2(K) =
{
(x,y) ∈ K2 | f(x,y) = 0

}
∪ {O} is a subgroup of E.

Our aim is to prove that this subgroup is finitely generated. To do that, we will need
an intermediate result : the finiteness ofm-torsion points.

3.2.3 Torsion points

Definition (m-multiplication map). Let E be an elliptic curve andm ∈ Z.
We define them-multiplication map by :

[m] : E −→ E
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[m]P =


P + · · ·+ P ifm > 0

O ifm = 0

[−m](−P) ifm < 0

Proposition 3.7 (Finiteness ofm torsion group). Let E be an elliptic curve.
The group ofm-torsion points E[m] is finite.

Proof.
To shorten the proof, we will admit1 that the [m] multiplication map has degreem2.
Since deg

(
[m]
)
= m2, [m] is a finite separable map. Hence [Sil86, p. 72, III.4.10] :∣∣E[m]

∣∣ = ∣∣∣ker
(
[m]
)∣∣∣ = deg

(
[m]
)
= m2

3.3 Reduction

In this section, let K be a number field. We denoteMK the set of inequivalent absolute
values on K, M∞

K and M0
K the subsets of archimedean and nonarchimedean absolute

values in MK respectively. For any v ∈ M0
K, we denote Kv the completion of K with

respect to the discrete valuation v. We define its local ring Rv as :

Rv =
{
x ∈ Kv | v(x) > 0

}
We also define the group of unit of Rv as R∗v =

{
x ∈ K | v(x) = 0

}
and its maximal

ideal mv =
{
x ∈ K | v(x) > 0

}
. Finally we define its residue field kv as Rv�mv.

In the following section, we will introduce the reduction of elliptic curves, namely
the procedure which given an elliptic curve E/K and v ∈M0

K match a curve Ẽv/kv over
the residue field. We will see that this curve may not be smooth at some point and thus
not an elliptic curve.

3.3.1 Minimal Weierstrass equation

Let v ∈M0
K. Let C/K be a curve defined by a Weierstrass equation :

C : Y2 + a1XY + a3Y = X3 + a2X
2 + a4X+ a6 with a1, . . . ,a6 ∈ K

If ai ∈ K then ai ∈ Kv but we are not sure that ai ∈ Rv. However, we will need
that condition to reduce the curve. Then, the idea is to find a good change of variables

1In fact, we could develop this fact but we would need introduce isogeny and dual isogeny.
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such that all coefficients are in Rv. We also look for minimize the valuation v(∆) of the
discriminant.

Definition (Minimal Weierstrass equation). Let E/Kv be an elliptic curve with v ∈M0
K.

A Weierstrass equation for E is called a minimal Weierstrass equation for E at v if v(∆)
is minimized with the condition a1,a2,a3,a4,a6 ∈ Rv.

Proposition 3.8. Every elliptic curve E/Kv has a minimal Weierstrass equation.

Proof. It is easy to find some Weierstrass equation with all ai ∈ Rv. For that, look at
the substitution (x,y) 7→

(
u−2x,u−3y

)
. This leads to a new equation in which ai is

replaced by uiai. Then it suffices to choose u ∈ Rv with a valuation large enough.

As soon as we have v(ai) > 0 for all i, we get v(∆) > 0. Then there is at least one of
the equations that minimizes v(∆) since v is a discrete valuation.

Remark 20. For arbitrary K, there is an algorithm of Tate that determines whether a given
equation is minimal.

3.3.2 Reduction modulo v

Let K be a number field and v ∈M0
K. We look at the reduction map :

Rv −→ kv

a 7−→ ã

Using this map, we can reduce an elliptic curve modulo a residue field by reducing
all the coefficients of one of its minimal Weierstrass equations for v. We get a curve
Ẽv/kv which can be singular and thus not an elliptic curve.

Ẽv : y
2 + ã1xy+ ã3y = x3 + ã2x

2 + ã4x+ ã6

We can define a reduction map on the points :

ρv : E(Kv) −→ Ẽv(kv)

P = [x,y, z] 7−→ P̃ = [x̃, ỹ, z̃]

This is the reduction of an elliptic curve. Of course, the curve Ẽv/kv may be singular.
In this case, we consider the set Ẽns(kv) of the non-singular points which is in fact a
group.
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3.3.3 Good and bad reduction

Finally we can define the concept we will need in the next chapter.

Definition (Good and bad reduction over K). Let K be a number field, v be a discrete
valuation, Kv be a local field complete for v and E/Kv be an elliptic curve. We say that :

• E has a good or stable reduction over Kv if Ẽv/kv is non singular.

• E has a bad reduction over Kv if Ẽv/kv is singular.

- E has a multiplicative or semi-stable reduction if Ẽv/kv has a node.

- E has an additive or unstable reduction if Ẽv/kv has a cusp.

Using the proposition [3.2], we can characterise each case.

Proposition 3.9. Let E/Kv be an elliptic curve given by a minimal Weierstrass equation :

y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6

Let ∆ be the associated discriminant and c4 the usual quantity [Table 3.1].

• E has a good reduction if and only if v(∆) = 0.

In this case Ẽv/kv is an elliptic curve.

• E has a multiplicative reduction if and only if v(∆) > 0 and v(c4) = 0.

In this case Ẽns is a multiplicative group :

Ẽns(kv) ∼= k×v

• E has an additive reduction if and only if v(∆) > 0 and v(c4) > 0

In this case Ẽns is an additive group :

Ẽns(kv) ∼= k+v

Proof. [Sil86, p. 196, VII.5.1]

Definition (Reduction at v). Let K be a number field and E/K be an elliptic curve.
Let v ∈ M0

K be a discrete valuation. Then E is said to have good (respectively bad)
reduction at v if E has good (respectively bad) reduction when it is so considered over
the completion Kv. Taking a minimal Weierstrass equation for E over Kv, we denote
Ẽv/kv the reduced curve over the residue field.
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Proposition 3.10 (Reduction map). Let v ∈M0
K be a discrete valuation such that v(m) = 0

and such that E has a good reduction at v. Then the reduction map ρm,v : E(K)[m] −→ Ẽv(kv)

is injective.

Proof. [Sil86, p. 192 ,VII.3.1]



Chapter 4

Mordell-Weil Theorem

The moment of the core theorem and proof has now arrived. As announced in
the introduction, we will divide this chapter in a few parts to clarify the idea of the
proof. Let us introduce it properly. Mordell-Weil theorem tells us that the number of
generators of E(K) is finite :

Theorem 4.1 (Mordell-Weil 1928). Let K be a number field and E/K an elliptic curve.
Then the subgroup of K-rational points E(K) is finitely generated.

As an immediate corollary, we deduce that the torsion group E(K)tors is finite and
our knowledge about finitely generated abelian groups leads us to this description of
the structure of E(K) :

Corollary 4.2. Let K be a number field and E/K be an elliptic curve.

E(K) ∼= E(K)tors × Z
r

The integer r is called the rank of E/K.

In the next chapter, we will talk more about the structure of E(K)tors and the rank.
But for the moment, we will focus on the main part of our development, namely the
proof of this theorem.

4.1 Weak Mordell-Weil Theorem

The first part and also the hardest one is to prove the so called weak Mordell-Weil
theorem which will be used to deduce the Mordell-Weil theorem using the descent
procedure presented in the second part.



39 4. Mordell-Weil Theorem

4.1.1 Theorem and reduction lemma

Let us state this weak theorem :

Theorem 4.3 (Weak Mordell-Weil theorem). Let K be a number field and E/K be an elliptic

curve. Then for allm > 2 the quotient
E(K)

mE(K)
is a finite group.

The idea behind the proof of the Mordell-Weil theorem is to think that generators of
the group E(K) can be chosen as the representatives of the classes of the group E(K)

2E(K) ,
with some additional finite number of points with a special property. Then the finiteness
of this group is necessary to proceed like that. The following lemma will enable us to
assume that E[m] ⊆ E(K) which will used further :

Lemma 4.4. Let L/K be a finite Galois extension.

If
E(L)

mE(L)
is finite then

E(K)

mE(K)
is finite.

Proof. Let us consider the inclusion E(K) ↪→ E(L). It induce a natural map

E(K)

mE(K)
→ E(L)

mE(L)

which has I as kernel :

I =
E(K) ∩mE(L)

mE(K)

For each P in I, we can choose QP ∈ E(L) such that [m]QP = P. Then we can define :

λP : GL/K −→ E[m]

σ 7−→ λP(σ) = Q
σ
P −QP

Since [m]
(
QσP −QP

)
=
(
[m]QP

)σ
−Q = Pσ − P = 0,

(
QσP −QP

)
is effectively in E[m].

We will now prove that Λ is a injective :

Λ : I −→ Map
(
GL/K,E[m]

)
P 7−→ λP

Let P and P ′ be points in E(K) ∩mE(L) such that λP = λP ′ . Then :

∀σ ∈ GL/K : (QP −QP ′)
σ
= QP −QP ′

So QP −QP ′ ∈ E(K) and it follows that :

P − P ′ = [m]Qp − [m]QP ′ = [m](QP −QP ′) ∈ mE(K)
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Then P = P ′ in I and Λ is injective. Since GL/K and E[m] are finite sets, there is only
a finite number of maps between them. Thus, I is finite and we have an exact sequence
of finite groups :

0 −→ I −→ E(K)

mE(K)
−→ E(L)

mE(L)

Remark 21. Now we can assume that E[m] ⊆ E(K) because, K does not satisfy this
assumption, we could consider the Galois extension L of K containing all points ofm
torsion. It is again a finite Galois extension. Then using the lemma, we prove the weak
Mordell-Weil theorem for L and it will imply the result for K.

4.1.2 Kummer Pairing

To prove the finiteness of the group E(K)
mE(K)

we will use the Kummer pairing to find
an equivalent property easier to prove because we have more tools, especially thanks to
the Galois and discrete valuation theory.

Definition (Kummer pairing). Let P be in E(K) and Q ∈ E(K̄) such as [m]Q = P.
We define :

κ : E(K)×GK̄/K −→ E[m]

(P,σ) 7−→ Qσ −Q

This application is called Kummer pairing.

We will prove that is a perfect paring and then the finiteness of E(K)
mE(K)

will be
equivalent to the finiteness of GL/K, for an appropriate L, since from [3.7] we know that
E[m] is finite. Finally, we prove that the weak Mordell-Weil theorem will be equivalent
to the finiteness of this specific extension L/K.

Proposition 4.5. The Kummer pairing is well defined, bilinear and :

• Its kernel on the left ismE(K).

• Its kernel on the right is GK̄/L where L = K
(
[m]−1

E(K)
)

.

Hence, the Kummer pairing induces a perfect pairing :

κ̃ :
E(K)

mE(K)
×GL/K −→ E[m]

Proof.
To show that κ is well defined, we have to prove that κ(P,σ) does not depend on the

choice of Q associated to P and that κ(P,σ) ∈ E[m].
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• Let Q and Q ′ be such as [m]Q = [m]Q ′ = P. Then Q ′ = Q + T with T ∈ E[m]

and we have :

κ
(
Q ′,σ

)
= (Q+ T)

σ
− (Q+ T) = Qσ + Tσ −Q− T = Qσ −Q

Because since E[m] ⊆ E(K), Tσ = T .

• Let P ∈ E(K) and σ ∈ GK̄/K. Then :

[m]κ(P,σ) = [m]Qσ − [m]Q = Pσ − P = O

Let us prove that κ is bilinear.

• For linearity in P, let P,R ∈ E(K) and we write [m]P ′ = P, [m]R ′ = R. Then for
Q = P ′ + R ′ :

κ(P + R,σ) = Qσ −Q =
(
P ′ + R ′

)σ
−
(
P ′ + R ′

)
= κ(P,σ) + κ(R,σ)

• For linearity in σ, let σ, τ ∈ GK̄/K. We have :

κ(P,σ ◦ τ) = Qσ◦τ −Q
=
(
Qσ −Q

)τ
+
(
Qτ −Q

)
= κ(P,σ)τ + κ(P, τ)

= κ(P,σ) + κ(P, τ)

Since κ(P,σ) ∈ E[m] ⊆ E(K).

Let us calculate the kernel on the left and on the right :

• Suppose that P ∈ mE(K) and Q ∈ E(K) such that [m]Q = P. Then :

κ(P,σ) = Qσ −Q = O

Suppose that for all σ ∈ GK̄/K, κ(P,σ) = 0. ThenQ is in the fixed field,Q ∈ E(K)
and then P ∈ mE(K).

• Suppose that σ ∈ GK̄/L. By definition Q ∈ [m]−1
E(K) ⊆ L then :

κ(P,σ) = Qσ −Q = O

Suppose that for all P, κ(P,σ) = 0. Then σ fixes all points of L and σ ∈ GK̄/L.

The induced perfect bilinear pairing is clear from what precedes.
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4.1.3 Properties of L and finiteness theorem

We will now introduce some of the properties of L/K. Then we will show that any
extension with such properties is finite which will enable us to conclude the proof of
the weak theorem.

Proposition 4.6. Let L/K be an extension and v be a discrete valuation on K.
Let w ∈ML such that the restriction of w at K is v. Then :

[Lw : Kv] = ev[lw : kv]

The integer ev is called the index of ramification of L/K at v. The extension L/K is unrami-
fied at v if ev = 1. For any S ⊆MK, we say that the extension L/K is unramified outside S if
it is unramified at all v /∈ S.

Remark 22. The condition ev = w(πK) = 1 where πK is an uniformizer of Kmeans that
πK is inert in L. In other words, if πK is an uniformizer of K it will also be an uniformizer
of L.

There is another way to define the unramification using the inertia group :

Definition (Inertia group). Let Kv be a complete local field and kv be his residue field.
The inertia group of Kv is the set Iv ⊆ GK̄v/Kv of the elements that act trivially on the
residue field kv.

Definition (Unramified set). Let A be a set on which GK̄v/Kv acts. We say that A is
unramified at v if the action of Iv on A is trivial. Let S ⊆ MK. We say that A is
unramified outside S if it is unramified at all v /∈ S.

Let us look at the properties of L :

Proposition 4.7. Let L = K
(
[m]−1

E(K)
)

. We have the following properties :

• The extension L/K is abelian and has exponentm.

• The extension L/K in unramified outside S.

S =M∞
K ∪
{
v ∈M0

K | E has bad reduction at v
}
∪
{
v ∈M0

K | v(m) 6= 0
}

Proof. For the first point, we just have to consider the injection :

Λ : GL/K −→ Hom
(
E(K),E[m]

)
σ 7−→ κ

(·,σ)
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This gives an abelian structure on GL/K since :

Λ(σ ◦ τ)(P) = Qσ◦τ −Q =
(
Qσ −Q

)τ
+
(
Qτ −Q

)
= Λ(σ)(P)

τ
+Λ(τ)(P)

= Λ(σ)(P) +Λ(τ)(P) since E[m] ⊆ E(K)
= Λ(σ)(P) +Λ(τ)(P)

σ

= Λ(τ ◦ σ)(P)

And with exponentm because remembering Λ(σ)(P) ∈ E[m] :

Λ
(
σm
)
(P) = [m]Λ(σ)(P) = O

Let us prove that L/K is unramified outside S.
Let v ∈Mk \ S. LetQ ∈ E(K̄) such that [m]Q ∈ E(K) and let K ′ = K(Q). It is enough

to show that K ′/K is unramified at v because L is the compositum of all these K ′.

Let v ′ ∈MK ′ be a place lying above v and let k ′v ′/kv be the corresponding extension
of residue fields. Since we assume that v /∈ S, E has a good reduction at v so it also has
good reduction at v ′. We have the reduction map :

ρv ′ : E
(
K ′
)
−→ Ẽ

(
k ′v ′
)

P 7−→ P̃

Let Iv ′/v ⊆ GK̄/K be the inertia group of v ′/v and take σ ∈ Iv ′/v.

• By definition, σ act trivially on Ẽ
(
k ′v ′
)

thus :

Q̃σ −Q = Q̃σ − Q̃ = Õ

• Since [m]Q ∈ E(K) :

[m]
(
Qσ −Q

)
=
(
[m]Q

)σ
− [m]Q = O

Then Qσ − Q ∈ E(K)[m] is in the kernel of ρm,v, so from [3.10] : Qσ = Q. This
proves that Q is fixed by every element of the inertia group Iv ′/v, hence K ′ = K(Q) is
unramified over K at v ′. Since it is true for all v ′ lying over v and for every v /∈ S, this
completes the proof that K ′/K is unramified outside S. We conclude that L is unramified
outside S.

Remark 23. Furthermore, the set S is finite since E has a good reduction for all but finitely
many v ∈M0

K. Indeed, if E is defined by a Weierstrass equation and has discriminant ∆,
we have v(∆) = 0 for all but finitely many v ∈M0

K and in these conditions the reduced
curve Ẽv/kv is non-singular.
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We will now prove that all extensions satisfying these properties are finite.

Proposition 4.8. Let K be a number field and S ⊆ MK be a finite set of places that contains
M∞
K . Let L/K be the maximal abelian extension of K having exponentm and that is unramified

outside of S. Then L/K is a finite extension.

In the following proof, we will use some fundamental theorems of algebraic number
theory : the main theorem of Kummer theory, the ideal class theorem and another one,
the Dirichlet’s S-units theorem. To keep the proof as fluid as possible I made the choice
not to explain this classical number theory concepts and theorems here. This would
lead me too far away from the main topic. A good book to understand them is [Neu99].

Proof.
Step 1 : Reduction Case

First of all, we can make the assumption that K contains themth roots of the unity.
Indeed, if we have the result for a finite extension K ′ over Kwith S ′ the set of places of K ′

lying over S, that means that the abelian extension L/K ′ of exponentm and unramified
outside S ′ is finite, then L/K is also finite.

Furthermore, we can also increase the size of S by adding new places because it
will only make L larger. Then we adjoin to S all the absolute values v ∈MK such that
v(m) 6= 0. We also adjoin a finite number of places such that the ring of S integer RS is a
principal ideal domain :

RS =
{
a ∈ K | ∀v ∈MK \ S : v(a) > 0

}
This is possible using the fact that the class number of K is finite.

Step 2 : Kummer theorem
We know apply the main theorem of Kummer theory, which says that if a field

of characteristic 0 contains Um, then its maximal abelian extension of exponent m is
obtained by adjoining allmth roots of all his elements. We deduce that L is the largest
subfield of K

(
m
√
a | a ∈ K

)
which is also unramified outside S.

Step 3 : Expression of L.
Let us take v ∈ MK \ S and consider the equation Xm − a = 0 over the local

field Kv. Since v(m) = 0 and the discriminant of Xm − a is ±mmam−1 we see that
Kv(

m
√
a)/Kv is unramified if and only if ordv(a) ≡ 0 modm. Indeed, let w be the

unique extension at Kv
(
m
√
a
)

of the valuation v. Then Kv
(
m
√
a
)
/Kv is unramified if and

only if v(Kv) = w
(
Kv
(
m
√
a
))

[Neu99, (7.11)]. So this extension is unramified if and only
if :

w
(
m
√
a
)
= 0 +

ordv(a)
m

∈ v(Kv)⇔m | ordv(a)⇔ ordv(a) ≡ 0 modm
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Finally, we note that when we adjoin mth roots, it is necessary to take only one
representative for each class in K∗/(K∗)m so for :

TS =
{
a ∈ K∗/

(
K∗
)m

| ∀v ∈MK \ S : ordv(a) ≡ 0 modm
}

We have L = K
(
m
√
a | a ∈ TS

)
. To conclude the proof, it is enough to show that TS is

finite.

Step 4 : Finiteness of TS
Let us show that the natural map Λ : R∗S → TS is surjective. Let a ∈ K∗ represent

an element of TS. Then the ideal aRS is themth power of an ideal in RS since the prime
ideal of RS corresponds to the valuation v /∈ S. As RS is a principal ideal domain, we
can find b ∈ K∗ such that aRS = Im = 〈b〉m = bmRS then :

∃u ∈ R∗S : a = ubm

We conclude that a and u represents the same element in TS which proves that
R∗S surjects onto TS. Moreover,

(
R∗S
)m is contained in the kernel of Λ then we have a

surjection :
Λ : R

∗
S�(R∗S)m −→→ TS

Finally, the Dirichlet’s S-unit theorem indicates us that R∗S is finitely generated so we
have a surjection onto TS from a finite group. It follows that TS is finite and it completes
the proof : L/K is a finite extension.

Now that we have all ingredients let us put them together :

Proof of the weak Mordell-Weil Theorem. Let L = K([m]−1
E(K)). From [3.7], we know

that E[m] is finite. Thus E(K)
mE(K)

is finite if and only if GL/K is finite by [4.5]. Now, [4.7]
shows that L satisfies the assumptions of [4.8]. Then L/K is finite and we deduce the
result.

4.2 The Descent Procedure

Now we know that E(K)
mE(K)

is finite we would like to deduce a result on E(K) now.
We can easily check that is not enough to affirm that E(K) is finitely generated. But with
some additional assumptions, in particular the existence of a height function, this is
true. It is what the descent procedure states. We state it in the general context of abelian
groups which include our case.

Theorem 4.9 (Descent Theorem). Let A be an abelian group. Suppose that there is a height
function h : A→ R with the three following properties :
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• Let Q ∈ A. There is a constant C1, depending on A and Q such that :

∀P ∈ A : h(P +Q) 6 2h(P) + C1 (1)

• There is an integerm > 2 and a constant C2, depending on A such that :

∀P ∈ A : h(mP) > m2h(P) − C2 (2)

• For every constant C3, the set
{
P ∈ A | h(P) 6 C3

}
is finite.

Then we have the following result :

If
A

mA
is finite then A is finitely generated.

The idea of the procedure is to express any point P ∈ A as a linear combination of
representatives of the cosets in A

mA
and a point with height less than a constant. This is

possible as soon as h satisfies the two first assumptions. Finally, we can conclude if the
set of points with height less than a constant is finite : the third assumption.

All the smartness of this idea is based on the introduction of the notion of height. A
height is a function which will satisfy the exact properties we need. All that we expect
is that such height functions exist. It is the subject of the next part.

Proof. Let P ∈ A. Let Q1, . . . ,Qr ∈ A be representatives of the finitely many cosets in
A
mA

. We now show that the difference between P and an appropriate linear combination
of Q1, . . . ,Qr is a multiple of a point whose height is smaller than a constant C3 inde-
pendent of P. Then Q1, . . . ,Qr and the finitely many points with height less than C3 are
generators for A.

Let us start by writing P −Qi1 = mP1 for the appropriate i1 ∈ J1 , rK such as P = Qi1

in A
mA

. We continue by defining Pn−1 −Qin = mPn. We have :

P = mnPn +

n∑
j=1

mj−1Qij

And for any index j :

h
(
Pj
)
6

1
m2

(
h
(
mPj

)
+ C2

)
from (2)

=
1
m2

(
h
(
Pj−1 −Qij

)
+ C2

)
from definition

6
1
m2

(
2h
(
Pj−1

)
+ C ′1 + C2

)
from (1)

WhereC ′1 is the maximum of the constants associated to the points
{
−Qil | l ∈ J1 , rK

}
.
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We deduce by induction :

h(Pn) 6

(
2
m2

)n
h(P) +

(
1
m2 +

2
m4 +

4
m6 + · · ·+ 2n−1

m2n

)(
C ′1 + C2

)
6

(
2
m2

)n
h(P) +

2
m2

(
C ′1 + C2

)
6

1
2n
h(P) +

1
2
(
C ′1 + C2

)
Indeed,

1
m2 +

2
m4 +

4
m6 + · · ·+ 2n−1

m2n =
1
m2

n−1∑
k=0

(
2
m2

)k
6

1
m2

n−1∑
k=0

(
1
2

)k
6

2
m2 .

Then for n big enough :

h(Pn) 6 1 +
1
2
(
C ′1 + C2

)
We conclude that every point P ∈ A is a linear combination of points of the set :

G = {Q1, . . . ,Qr} ∪
{
Q0 ∈ A | h(Q0) 6 C3

}
where C3 = 1 +

1
2
(
C ′1 + C2

)
From the third assumption of the height function h, G is a finite set, forming a

generator set of A.

In order to prove the Mordell-Weil theorem, we now just have to find a height
function satisfying these conditions and we deduce the result from the weak Mordell-
Weil theorem and the descent procedure.

4.3 Mordell Theorem

Let us focus on the case of K = Q to illustrate the mechanisms of the proof before
resolving the general case. Let us find a good height function on E(Q).

4.3.1 Definition of height function on E(Q)

Definition (Height on Q). Let t ∈ Q and write t = a
b

as a fraction in lowest terms.
The height of t is defined by :

H(t) = max
{
|a|, |b|

}
A height function is somehow a way to compute the complexity of a point. For

example, 2
3 and 162

244 are very close but 162
244 seem more complicated and we effectively

have:
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H

(
2
3

)
= 3 < 244 = H

(
162
244

)
Then, we will only keep points which are simple, let us say H(P) 6 C3. It will be

obvious that there are only finite number of such points, and we have already one of
our wanted properties.

Definition (Height on E(Q)). Let E/Q be an elliptic curve defined by its Weierstrass
equation :

(E) : y2 = x3 +Ax+ Bwith A,B ∈ Z

The logarithmic height on E(Q) relative to the given Weierstrass equation is the
function :

hx : E(Q) −→ R+

P 7−→ hx(P) =

logH
(
x(P)

)
if P 6= O

0 if P = O

4.3.2 Verification of its properties

Now, we are going to show that hx is a good height function, which means that is
satisfies the expected properties :

Lemma 4.10. Let E/Q be an elliptic curve defined by its Weierstrass equation :

(E) : y2 = x3 +Ax+ B with A,B ∈ Z

Then we have the following properties :

• Let Q ∈ E(Q). There is a constant C1 that depends on Q and E such that :

∀P ∈ E(Q) : hx(P +Q) 6 2hx(P) + C1

• There is a constant C2 that depends on E such that :

hx
(
[2]P

)
> 4hx(P) − C2

• For every constant C3, the set of points with height less than C3 is finite :

]
{
P ∈ E(Q) | hx(P) 6 C3

}
< +∞

Proof.
For P0 = O or P ∈ {O,±P0} assuming that C1 > max {hx(P0),h

(
[2]P0

)
} is enough.
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In the other case, let us write :

P = (x,y) =
(
a

d2 ,
b

d3

)
; P0 = (x0,y0) =

(
a0

d2
0
,
b0

d3
0

)

The addition formula [3.6] gives us :

x(P + P0) =

(
y− y0

x− x0

)2

− x− x0

Then, after developing and using relation from the Weierstrass equation, we have :

x(P + P0) =

(
aa0 +Ad

2d2
0

)(
ad2

0 + a0d
2
)
+ 2Bd4d4

0 − 2bb0dd0(
ad2

0 + a0d2
)2

So we get H
(
x(P + P0)

)
6 C ′1 max {|a|2, |d|2, |bd|} where C ′1 only depends on P0 and E.

Indeed, cancellation between numerator and denominator can only decrease the height
of the fraction so we have easily the previous estimation. To conclude, it suffices to find
an upper bound to |bd| since H

(
x(P)

)
= max {|a|, |d|2}.

Once again we use the Weierstrass equation :

b2 = a3 +Aad4 + Bd6

So we get |b| 6 C ′′1 max {|a|3/2, |d|3}. Then we have :

H
(
x(P + P0)

)
6 C1 max {|a|2, |d|4} = C1H

(
x(P)

)2

Thus, by applying logarithm :

hx(P + P0) 6 2hx(P) + C1

Let us show the second point : For P = (x,y) such that [2]P = O, we just have to
take C2 6 4 max

{
hx(Q) | Q ∈ E(Q)

}
. In the other case, duplication formula [3.6] says

that we have :

x
(
[2]P

)
=
x4 − 2Ax2 − 8Bx+A2

4x3 + 4Ax+ 4B
Let us define F and G the associated homogeneous polynomials :

F(X,Z) = X4 − 2AX2Z2 − 8BXZ3 +A2Z4 ; G(X,Z) = 4X3Z+ 4AXZ3 + 4BZ4

Then, writing x =
a

b
, we obtain :

x
(
[2]P

)
=
F(a,b)
G(a,b)
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Now, we have to lower bound the height of this fraction. So this time we need to
control the cancellation between the numerator and the denominator.

To do this, we will need some relations, which will be given by F and G. Indeed,
F(X, 1) and G(X, 1) are relatively prime polynomials so they generate the unit ideal in
Q[X]. It is implies the existence of identities :

f1F+ g1G = 4∆Z7 ; f2F+ g2G = 4∆X7 (∗)

With :

∆ = 4A3 + 27B2

f1(X,Z) = 12X2Z+ 16AZ3

g1(X,Z) = 3X3 − 5AXZ2 − 27BZ3

f2(X,Z) = 4
(
4A3 + 27B2)X3 − 4A2BX2Z+ 4A

(
3A3 + ZZB2)XZ2 + 12B

(
A3 + 8B2)Z3

g2(X,Z) = A2bX2 +A
(
5A3 + 32B2)X2Z+ 2B

(
13A3 + 96B2)XZ2 − 3A2(A3 + 8B2)Z3

Let δ = gcd(F(a,b),G(a,b)) be the cancellation in the fraction x([2]P). From the
equations (∗), δ divide 4∆ so we get |δ| 6 |4∆| and we have bound the reduction of
height :

H(x([2]P)) >
max {|F(a,b)|, |G(a,b)|}

|4∆|

We now want to lower bound this quantity in term of H so we need to higher bound
the |4∆|. Using (∗) we have :

∣∣4∆b7
∣∣ 6 2 max {|f1|, |g1|}max {|F|, |G|}∣∣4∆a7
∣∣ 6 2 max {|f2|, |g2|}max {|F|, |G|}

We also know that from expression of f1, f2,g1,g2 :

max {|f1|, |f2|, |g1|, |g2|} 6 Cmax {|a|2, |b|3}

Where C depends on E. Combining all these informations we deduce :

max {
∣∣4∆a7

∣∣, ∣∣4∆b7
∣∣} 6 2Cmax {|a|3, |b|3}max {|F|, |G|}

So we obtain :

H(x([2]P)) >
max {|F|, |G|}

|4∆|
> (2C)−1 max {|a|4, |b|4}

And remembering H(x(P)) = max {|a|, |b|} we have :

H(x([2]P)) > (2C)−1
H(x(P))

4
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Which gives us the result by applying logarithm :

hx([2]P) > 4hx(P) − C2

Let us show the last point :

For any constantC,
{
t ∈ Q | H(t) 6 C

}
=

{
a

b
∈ Q | |a| 6 C and |b| 6 C

}
is clearly

finite. Furthermore, for each value of x, there are at most two values of y such that
(x,y) ∈ E. Thus

{
P ∈ E(Q) | hx(P) 6 C3

}
is finite.

4.3.3 Mordell-Weil Theorem on Q

Now that we have defined a height function on E(Q) with the good properties, we
can use the weak theorem and the descent procedure together to conclude the proof of
the Mordell-Weil theorem for K = Q.

Theorem 4.11 (Mordell 1922). Let E/Q be an elliptic curve.
Then the group E(Q) is finitely generated.

Proof. The weak Mordell-Weil theorem [4.3] tells us that
E(Q)

2E(Q)
is finite. From [4.10],

hx : E(Q)→ R is a height function satisfying descent procedure’s assumptions ([4.9])
form = 2. Then E(Q) is finitely generated.

4.4 Mordell-Weil Theorem

4.4.1 General height function

Let us look at the general case. In fact, we just have to find a good height function
on E(K) for any number field K, that is a function which satisfy the assumptions of
[4.9]. And then the weak theorem and the descent procedure that we developed in the
general case will induce the Mordell-Weil theorem.

We will not explain the details of the construction but only give the idea about how
it works. One can look at the book of Silverman [Sil86] to find the proof and details.

The first step is to define the height of a point P ∈ PN(K). The idea is to generalise
the height function HQ defined on PN(Q) as follows. Let P ∈ PN(Q). Then we can find
homogeneous coordinates [x0, . . . , xn] of P such that :

x0, . . . , xN ∈ Z and gcd(x0, . . . , xN) = 1



4. Mordell-Weil Theorem 52

For such choices of coordinates, we define :

HQ(P) = max
{
|x0|, . . . , |xN|

}
To generalise this definition, we need to introduce the local degree :

Definition (Local degree). Let K be a number field and v ∈MK a valuation.
We call local degree the quantity nv = [Kv : Qv].

Then we can define a height function on PN(K) as follows. For P = [x0, . . . , xN] ∈
PN(K) with x0, . . . , xN ∈ K :

HK(P) =
∏
v∈MK

max
{
|x0|v, . . . , |xN|v

}nv
Using two important standard lemmas, the extension lemma and the product lemma

we can deduce interesting properties, in particular for a finite extension L/K we have :

HL(P) = HK(P)
[L:K]

Which permit us to define a height H independently of the choice of field :

∀P ∈ PN(K) : H(P) = HK(P)
1

[K:Q]

The proof of following lemmas can be found in [Lan94, II.1, V.1].

Lemma 4.12 (Extension lemma). Let L/K/Q be a tower of number fields and let v ∈MK. Let
denote w | v the valuations w ∈ML which restricted to K are equal to v. Then :∑

w∈ML
w|v

nw = [L : K]nv

Lemma 4.13 (Product lemma). Let x be a non-zero element of K. Then :∏
v∈MK

|x|
nv
v = 1

Finally we can define our height function on E(K̄) as :

hf : E(K̄) −→ R
P 7−→ hf(P) = h

(
f(P)

)
Where f ∈ K̄(E) and h(P) = log

(
H(P)

)
is the absolute logarithmic height.

The hard part is to show that this function is well defined and satisfies the three
expected properties. Then, as in the case of K = Q, we deduce the Mordell-Weil theorem
from the weak theorem and the descent procedure.
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4.4.2 Mordell-Weil theorem

Theorem 4.14 (Mordell-Weil 1928). Let K be a number field and E/K be an elliptic curve.
Then the group E(K) is finitely generated.

Proof. The weak Mordell-Weil theorem [4.3] tells us that
E(K)

2E(K)
is finite. Furthermore,

hf : E(Q)→ R is a height function satisfying descent procedure’s assumptions [4.9] for
m = 2. Then E(K) is finitely generated.



Chapter 5

Continuation and open questions

We already know that E(K) is a finitely generated abelian group, there are natural
questions appearing about its fundamentals characteristics namely its rank and its
torsion group. We are going say some words about it before introducing the famous
Birch Swinnerton-Dyer conjecture.

5.1 Torsion group and rank

The first question that we could ask is :

“What is the structure of the torsion group E(K)tors ?”

For that question, answers are more satisfying. In the case K = Q we have Mazur’s
theorem which precisely gives the possible torsion groups :

Theorem (Mazur 1978). Let E/Q be an elliptic curve.
Then E(Q)tors is isomorphic to one of these 15 groups :

Z�nZ for n ∈ {1, . . . , 10} ∪ {12} ; Z�2Z×
Z�2nZ for n ∈ {1, 2, 3, 4}

Furthermore, each of theses cases occur.

The generalisation to a general number field has been studied by Kamienny which
proved the result with Mazur in 1995 for the quadratic fields. Finally, the general result
was procured by Merel :

Theorem 5.1 (Merel 1996). Let d ∈ N∗. Then it exists a number B(d) such that for all number
fields K with [K : Q] 6 d and all elliptic curves E/K :

Card
(
E(K)tors

)
6 B(d)

This is non-trivially equivalent to say that the set S(d) of prime numbers p for which there
exists a number field K/Q of degree at most d and an elliptic curve E/K such that E has a
K-rational point of order p, is finite and more precisely that if d > 1, p ∈ S(d) then p < d3d2 .
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Remark 24. Mazur’s theorem shows that S(1) = {2, 3, 5, 7} and the extended theorem to
the quadratic field established with Kamienny that S(2) = {2, 3, 5, 7, 11, 13}.

The Merel theorem is a special case of the torsion conjecture or uniform boundedness
conjecture which states that the order of the torsion group of an abelian variety over a
number field can be bounded in terms of the dimension of the variety and the number
field.

Another natural question which follows the previous one is :

“Is the rank of an elliptic curve bounded ?”

To this question very few is known and it is an still open question. The conjecture is
that the rank can be arbitrary large. However the elliptic curve over Q with the highest
observed rank [Duj17], found by Elkies in 2006, has a rank at least 28 but we do not
even known its exact rank.

y2 + xy+ y = x3 − x2 −20067762415575526585033208209338542750930230312178956502 x

+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429

However, in contrast with this conjecture, there is another which states that the
“average rank” of an elliptic curve is 1

2 and that the repartition is 50% for each case r = 0
and r = 1, and 0% for r > 2. In 2015, Bhargava and Shankar proved that the average
rank of an elliptic curve over Q is bounded above by 7

6 .

5.2 Birch Swinnerton-Dyer conjecture

These theorems give very precise informations on the torsion group E(K) of K-
rational points but the rank is still mysterious because we do not have general theorems
and in practice there is no universal procedure to calculate it. So it is a really hard
problem to establish the rank of an elliptic curve.

However, the Birch Swinnerton-Dyer conjecture states a link between the rank of an
elliptic curve E/K and an analytic quantity, namely a specific function called Hasse-Weil
L-function. The Birch Swinnerton-Dyer conjecture is an open question since the 1960s
and is one of the seven problems of the millennium put on prize by the Clay institute of
mathematics. A simplified version of the conjecture could be stated as follows :

“The rank of an elliptic curve E/K is the annulation order
of its associated L-function at s = 1.”
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Let us define this L-function. It is a variation of the Riemann’s zeta function and
Dirichlet’s L-function. It is defined as a Euler product of terms defined for each prime
number :

L(E, s) =
∏
p

Lp(E, s)

Where Lp(E, s) = (1 − ap−s + p1−2s)−1 and a = 1 + p − |Ẽp
(
Fp
)
| for good primes.

There is some more tricks and definitions for the finite number of primes where the
reduction is bad.

We notice that this product converges only for Re(z) > 3
2 and it was not even know

when the conjecture have been stated that we can extend this function by analytic
continuation over the whole complex plane. This property was conjectured by Hasse
and proved by Deuring in 1941 for elliptic curves with complex multiplication. It was
then proved for all elliptic curves over Q as a consequence of the modularity theorem.

A partial result have been given by Kolyvagin in 1990. Since we know that every
elliptic curve over Q is modular (2001), we can formulate it as follows :

“ If L(E, s) ∼ c(s− 1)m for c 6= 0 andm ∈ {0, 1} then the conjecture holds.”

So the conjecture is true if the elliptic curve E/Q has rank zero or one.

Another important partial result is the case of elliptic curve over function fields.
Artin and Tate showed in the 1960s that the conjecture holds in this case if and only if
the Tate-Shafarevich group X(E) is finite. The finiteness of this group was, with the
analytic continuation on C, the two main conjecture in the 1960s. But if the last one have
been solved, the finiteness of X(E) is still an open question.

And that is all. Nothing have been proved for elliptic curve of rank greater than 1,
but computations suggest that this conjecture is true even if the road to a general proof
still seems to be very long. Many references could be checked and a lot of interesting
articles have been published on this subject. For my part, I will only cite the official
description [Wil01] given by the Clay institute through an article written by A. Wiles.
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