
Università di Pisa

Dipartimento di Matematica

Continuous Time Markov Chains
and Interacting Particle Systems

Author
Michel Nassif

Supervisor
Dr. Franco Flandoli

Abstract

Interacting particle systems is a recently developed field in the theory of Markov processes
with many applications: particle systems have been used to model phenomena ranging from
traffic behaviour to spread of infection and tumour growth. We introduce this field through
the study of the simple exclusion process. We will construct the generator of this process
and we will give a convergence result of the spatial particle density to the solution of the
heat equation.
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1 Markov chains

1.1 Discrete-time Markov chains

We start by reviewing the main results in the theory of discrete-time Markov chains.

Definition and basic properties

Let (Ω,F ,P) be a probability space. Let I be a countable set, called the state-space. We say
that (λi)i∈I is a measure on I if ∀i ∈ I, 0 ≤ λi <∞. If in addition the total mass

∑
i∈I λi = 1,

then we call λ a distribution. We say that a matrix P = (pij)i,j∈I is a stochastic matrix if every
row (pij)j∈I is a distribution.

Definition 1.1. Let (Xn)n∈N be a sequence of I-valued random variables. Let λ be a distribution
on I and P be a stochastic matrix. We say that (Xn) is a Markov chain with initial distribution
λ and transition matrix P (Markov(λ, P ) for short) if

(i) X0 has distribution λ

(ii) for n ∈ N, conditional on Xn = i, Xn+1 is independent of X0, . . . , Xn and has distribution
(pij)j∈I . More explicitly, for n ∈ N and i0, . . . , in+1 ∈ I,

P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = pinin+1

Proposition 1.2. A random sequence (Xn)n∈N is Markov(λ, P ) if and only if for all n ∈ N,
i0, . . . , in ∈ I,

P(X0 = i0, . . . , Xn = in) = λi0pi0i1 . . . pin−1in

Definition 1.3. Let λ be a measure on I and let P,Q be stochastic matrices. We define a new
measure λP on I by

(λP )j =
∑
i∈I

λipij

We also define a new (stochastic) matrix PQ by

(PQ)ij =
∑
k∈I

pikqkj

We define the n-th power of P by

• P 0 = Id = (δij)i,j∈I

• Pn+1 = PnP

We write p(n)
ij = (Pn)ij for the (i, j) entry in Pn.

Proposition 1.4. Let (Xn)n∈N be Markov(λ, P ). Then, for all n,m ∈ N,

(i) Pi(Xn = j) = p
(n)
ij = P(Xn+m = j|Xm = i)
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(ii) P(Xn = j) = (λP )j
Theorem 1.5 (Markov property). Let (Xn)n∈N be Markov(λ, P ), and let (Fn)n∈N be the natural
filtration of (Xn). Then, conditional on Xm = i, (Xm+n)n∈N is Markov(δi, P ) and is independent
of Fm. More explicitly, for A ∈ Fm and B ∈ P(I)⊗N,

P
(

(Xm+n)n∈N ∈ B,A
∣∣∣Xm = i

)
= P

(
(Xn)n∈N ∈ B

∣∣∣X0 = i
)
× P(A|Xm = i)

Definition 1.6. Let (Fn)n∈N be a filtration on (Ω,F). A random variable T : Ω → N ∪ {∞}
is called a stopping time if {T ≤ n} ∈ Fn. The σ-algebra FT of events determined prior to the
stopping time T consists of those events A ∈ F for which A ∩ {T ≤ n} ∈ Fn for every n ∈ N. If
(Xn)n∈N is a random sequence, we define XT on {T <∞} by

XT (ω) = XT (ω)(ω)

Theorem 1.7 (Strong Markov property). Let (Xn)n∈N be Markov(λ, P ) and let T be a stopping
time for the natural filtration (Fn)n∈N of (Xn)n∈N. Then, conditional on T < ∞ and XT = i,
(XT+n)n∈N is Markov(δi, P ) and is independent of FT . More explicitly, for A ∈ FT and B ∈
P(I)⊗N,

P
(

(XT+n)n∈N ∈ B,A
∣∣∣T < ∞, XT = i

)
= P

(
(Xn)n∈N ∈ B

∣∣∣X0 = i
)
× P(A|T < ∞, XT = i)

Class structure and recurrence

Definition 1.8. If i, j ∈ I, we say that i leads to j and write i→ j if Pi(Xn = j for some n) > 0.
We say that i communicates with j and write i↔ j if both i→ j and j → i.

Proposition 1.9. For distinct states i, j ∈ I the following are equivalent:

(i) i→ j

(ii) pi0i1pi1i2 . . . pin−1in > 0 for some states i0, i1, . . . , in with i0 = i and in = j

(iii) p(n)
ij > 0 for some n

It can be verified that ↔ is an equivalence relation on I, and thus partitions I into commu-
nicating classes. We say that a class C is closed if(

i ∈ C, i→ j
)
⇒ j ∈ C

If there is only one class, we say that the chain (or the transition matrix P ) is irreducible.

Definition 1.10. Let (Xn)n∈N be a Markov chain with transition matrix P . We say that a state
i ∈ I is recurrent if

Pi(Xn = i for infinitely many n) = 1
We say that i is transient if

Pi(Xn = i for infinitely many n) = 0

We define Ni the first passage time to state i by

Ni = inf{n ≥ 1, Xn = i}
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Theorem 1.11. The following dichotomy holds:

(i) if Pi(Ni <∞) = 1, then i is recurrent and
∑
n∈N p

(n)
ii =∞

(ii) if Pi(Ni <∞) < 1, then i is transient and
∑
n∈N p

(n)
ii <∞

In particular, every state is either recurrent or transient.

Proposition 1.12. Let C be a communicating class. Then either all states in C are recurrent
or all are transient.

Proposition 1.13. (i) Every recurrent class is closed

(ii) Every finite closed class is recurrent

Proposition 1.14. Let P be irreducible and recurrent. Then for all j ∈ I we have P(Nj <
∞) = 1.

Invariant distributions and positive recurrence

Definition 1.15. Let λ be a measure on I and let P be a stochastic matrix. We say that λ is
invariant for P if λP = λ.

Proposition 1.16. Let (Xn)n∈N be Markov(λ, P ) and suppose that λ is invariant for P . Then
(Xm+n)n∈N is also Markov(λ, P ).

For a fixed state k, consider for each i the expected time spent in i betweet visits to k

γki = Ek
[Nk−1∑
n=0

1Xn=i

]
Proposition 1.17. Let P be irreducible and recurrent. Then:

(i) γkk = 1

(ii) γk = (γki )i∈I satisfies γkP = γk

(iii) 0 < γki <∞ for all i ∈ I

Theorem 1.18. Let P be irreducible and let λ be an invariant measure for P with λk = 1. Then
λ ≥ γk. If in addition P is recurrent, then λ = γk. In particular, P has an invariant measure
which is unique up to scalar multiples.

Definition 1.19. Let i ∈ I be a recurrent state. We say that i is positive recurrent if Ei[Ni] <∞.
Otherwise we say that i is null recurrent.

Theorem 1.20. Let P be irreducible. Then the following are equivalent:

(i) every state is positive recurrent
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(ii) some state is positive recurrent

(iii) P has an invariant distribution

Moreover, when (iii) holds, the invariant distribution is unique and is given by

πi = 1
Ei[Ni]

Convergence to equilibrium

Definition 1.21. We call a state i ∈ I aperiodic if p(n)
ii > 0 for all sufficiently large n

It can be shown that i is aperiodic if and only if gcd{n ≥ 1, p(n)
ii } = 1. It can also be shown

that if P is irreducible and has an aperiodic state i, then all states are aperiodic.

Theorem 1.22 (Convergence to equilibrium). Let P be irreducible and aperiodic. Let λ be any
distribution, and let (Xn)n∈N be Markov(λ, P ). Then, for all j ∈ I,

P(Xn = j) −−−−→
n→∞

1
Ej [Nj ]

In particular, for all i, j ∈ I,
p

(n)
ij −−−−→n→∞

1
Ej [Nj ]

Ergodic theorem

Theorem 1.23 (Ergodic theorem). Let P be irreducible and let λ be any distribution. If (Xn)n∈N
is Markov(λ, P ) then

1
n

n−1∑
k=0

1Xk=i −−−−→
n→∞

1
Ei[Ni]

a.s.

Moreover, in the positive recurrent case, for any bounded function f : I → R we have

1
n

n−1∑
k=0

f(Xk) −−−−→
n→∞

∫
I

fdπ a.s.

where π is the unique invariant distribution.

1.2 Continuous-time Markov chains

Definition and construction

Let (Ω,F ,P) be a probability space, and let I be a countable set equipped with the discrete
topology. A continuous-time random process (Xt)t≥0 with values in I is a family of random
variables Xt : Ω → I. We say that (Xt)t≥0 is right-continuous if all paths are right-continuous,
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that is for all ω ∈ Ω, t 7→ Xt(ω) is right-continuous. By definition of the discrete topology on I,
every path of a right-continuous process must remain constant for a while in each new state. As in
the discrete case, given a filtration (Ft)t≥0 on (Ω,F) we say that a random variable T : I → [0,∞]
is a stopping time if for t ≥ 0, {T ≤ t} ∈ Ft. The σ-algebra FT of events determined prior to
the stopping time T consists of those events A ∈ F for which A ∩ {T ≤ t} ∈ Ft for every t ≥ 0.
If (Xt)t≥0 is a random process, we define XT on {T <∞} by

XT (ω) = XT (ω)(ω)

Now let (Xt)t≥0 be a right-continuous process on I. We define the jump times J0, J1, . . . of
(Xt)t≥0 by

J0 = 0
Jn+1 = inf{t ≥ Jn, Xt 6= XJn}

Jn is a stopping time for (Xt)t≥0 for n ∈ N. We define the holding times S1, S2, . . . by

Sn =
{
Jn − Jn−1 if Jn−1 <∞
∞ otherwise

Note that right-continuity forces Sn > 0 for all n ≥ 1. The explosion time ζ is defined by

ζ = sup
n
Jn =

∞∑
n=1

Sn

The discrete-time process (ξn)n∈N given by ξn = XJn is called the jump process of (Xt)t≥0. This
is simply the sequence of values taken by (Xt)t≥0 up to explosion.

We shall not consider what happens to a process after explosion. So it is convenient to
adjoin to I a new state, say ∞, and require that Xt = ∞ if t ≥ ζ. Any process satisfying
this requirement is called minimal. Note that a minimal process may be reconstructed from its
jumping (or holding) times and jump process

Xt =
{
ξn if Jn ≤ t < Jn+1
∞ if t ≥ ζ

Definition 1.24. We say that Q = (qij)i,j∈I is a Q-matrix on I if it satisfies the following
conditions:

(i) 0 ≤ −qii <∞ fir all i ∈ I

(ii) qij > 0 for all i, j ∈ I

(iii)
∑
j∈I qij = 0 for all i

We will sometimes find it convenient to write ai or a(i) as an alternative notation for −qii. If
Q is a Q-matrix, we define the jump matrix Π of Q by

if ai > 0,
{
πij = qij/ai if j 6= i
πii = 0

if ai = 0,
{
πij = 0 if j 6= i
πii = 1

Then Π is a stochastic matrix on I.
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Now we can give the definition of a continuous-time Markov chain. Let (Xt)t≥0 be a minimal
right-continuous process on I. We say that (Xt)t≥0 is a Markov chain with initial distribution
λ and generator matrix Q if its jump chain (ξn)n∈N is a discrete-time Markov chain with initial
distribution λ and transition matrix Π and if conditional on (ξn)n∈N, its holding times Sn are
independent and distributed according to an exponential law of parameter a(ξn). We say that
(Xt)t≥0 is Markov(λ,Q) for short.

Remark 1.25. Notice that the conditional distribution of (S1, S2, . . . , Sn) given (ξk)k∈N depends
only on (ξ0, ξ1, . . . , ξn−1) and therefore, conditional on (ξ0, ξ1, . . . , ξn−1), S1, S2, . . . , Sn are still
independent exponential random variables of parameters a(ξ0), a(ξ1), . . . , a(ξn−1) respectively.

We can construct such a process as follows: let (ξn)n∈N be discrete-time Markov(λ,Π) and let
(Tn)n≥1 be independent exponential random variables of parameter 1, independent of (ξn)n∈N.
Set Sn = Tn/a(ξn−1), Jn =

∑n
k=1 Sk and

Xt =
{
ξn if Jn ≤ t < Jn+1
∞ if t ≥ ζ

Then (Xt)t≥0 has the required properties. We now turn our attention to the explosion time ζ
of a Markov chain (Xt)t≥0 with Q-matrix Q. We are interested in conditions that guarantee
(Xt)t≥0 is non-explosive (i.e. ζ =∞ a.s.). We begin with a lemma:

Lemma 1.26. Let (Sn)n≥1 be a sequence of independent random variables with Sn ∼ E(λn) and
0 < λn <∞ for all n.

(i) if
∑∞
n=1

1
λn

<∞, then
∑∞
n=1 Sn <∞ a.s.

(ii) if
∑∞
n=1

1
λn

=∞, then
∑∞
n=1 Sn =∞ a.s.

Proof. (i) Suppose
∑∞
n=1

1
λn

<∞. Then, by monotone convergence

E
[ ∞∑
n=1

Sn
]

=
∞∑
n=1

1
λn

<∞

so
∑∞
n=1 Sn <∞ a.s.

(ii) Suppose that
∑∞
n=1

1
λn

= ∞. Then
∑∞
n=1 min(1, 1

2λn ) = ∞, and since log(1 + x) ≥
min(1, 1

2x ) for all x ≥ 0,
∑∞
n=1 log(1 + 1/λn) = ∞. So, by monotone convergence and

independence,

E
[

exp
(
−
∞∑
n=1

Sn

)]
=
∞∏
n=1

E
[

exp(−Sn)
]

=
∞∏
n=1

(
1 + 1

λn
)
)−1 = exp

(
−
∞∑
n=1

log(1 + 1/λn)
)

= 0

So exp
(
−
∑∞
n=1 Sn

)
= 0 and

∑∞
n=1 Sn =∞ a.s.
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Theorem 1.27. Let (Xt)t≥0 be Markov(λ,Q). Then (Xt)t≥0 does not explode if any one of the
following conditions holds:

(i) supi∈I ai <∞

(ii) X0 = i, and i is recurrent for the jump chain.

Proof. Set Tn = a(ξn−1)Sn. Then conditional on (ξn)n∈N, (Tn)n≥1 are independent exponential
random variables with parameter 1. The conditional distribution of (Tn)n≥1 given (ξn)n∈N does
not depend on (ξn)n∈N, so (Tn)n≥1 are unconditionally independent exponential random variables
with parameter 1.

(i) Set a = supi∈I ai. Then

aζ =
∞∑
n=1

aSn ≥
∞∑
n=1

Tn =∞

a.s. using the previous lemma.

(ii) i is recurrent for the jump chain, which means that (ξn)n∈N visits i infinitely often, at times
N1, N2, . . . , says. Then

aiζ =
∞∑
n=1

aiSn ≥
∞∑
m=1

aiSNm+1 =
∞∑
m=1

TNm+1 =∞

a.s.

Remark 1.28. In particular, if I is finite or if the jump chain is irreducible and recurrent, then
(Xt)t≥0 does not explode.

Strong Markov property

Theorem 1.29 (Strong Markov property). Let (Xt)t≥0 be a continuous-time Markov chain with
Q-matrix Q, and let T be a stopping time for the natural filtration (Ft)t≥0 of (Xt)t≥0. Then,
conditional on T <∞ and XT = i, (Xt+T )t≥0 is Markov(δi, Q) and is independent of FT .

Transition function, Kolmogorov equations

In this paragraph, we will assume that a = supi∈I ai < ∞ and that for all i ∈ I, ai > 0 so
that πii = 0. We introduce the matrices P (t) on I defined by

pij(t) = Pi(Xt = j)

the probability to be at site j at time t for the Markov chain that starts from i. It follows from
the Markov property of the process that these matrices form a semigroup, i.e. that P (t + s) =
P (t)P (s) or more explicitly

pij(t+ s) =
∑
k∈I

pik(t)pkj(s)
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On the other hand, since we assumed that supi ai <∞, it follows from the previous identity that
the function t 7→ P (t) is continuously differentiable. In fact, we have the following result.

Theorem 1.30. t 7→ P (t) satisfy the Chapman-Kolmogorov backward equations{
pij(0) = δij
p′ij(t) =

∑
k∈I aiπik(pkj(t)− pij(t))

which can be written in the more compact form{
P (0) = id
P ′(t) = QP (t)

where Q is the Q-matrix of the Markov chain (Xt)t≥0. In particular,

P ′(0) = Q

so that as t→ 0, for all i, j ∈ I,

pij(t) = δij + qijt+ o(t)

Proof. The proof relies on the following estimates. For all i 6= j,∣∣∣pii(t)− 1
t

+ ai

∣∣∣ ≤ 2a2t (a)∣∣∣pij(t)
t
− aiπij

∣∣∣ ≤ a2t
(
πij +

∞∑
n=2

π
(n+2)
ij

(at)n

n!

)
(b)

Assuming these inequalities hold, and using the semigroup property of (P (t))t≥0, we have

pij(t+ h)− pij(t)
h

− (QP (t))ij =
∑
k 6=i

(pik(h)
h
− aiπik

)
pkj(t) +

(pii(h)− 1
h

+ ai

)
pij(t)

Then∣∣∣pij(t+ h)− pij(t)
h

− (QP (t))ij
∣∣∣ ≤∑

k 6=i

∣∣∣pik(h)
h
− aiπik

∣∣∣+
∣∣∣pii(h)− 1

h
+ ai

∣∣∣
≤
∑
k 6=i

a2h
(
πik +

∑
n≥0

π
(n+2)
ik

(ah)n

n!

)
+ 2a2h by (a) and (b)

≤
(
1 + exp(ah)

)
a2h+ 2a2h −−−→

h→0
0

so that p′ij(t) = (QP (t))ij . By definition of P (t), it is clear that pij(0) = δij which proves
the theorem. It remains to prove inequalities (a) and (b). We start with (a). To compute the
probability to be at i at time t for a Markov chain starting from i, we may decompose the event
{Xt = i} according to the number of jumps before time t. Thus, since supi ai <∞, the chain is
non-explosive and

pii(t) = Pi(Xt = i) =
∞∑
n=0

Pi(Xt = i, Jn ≤ t < Jn+1) =
∞∑
n=0

Pi(ξn = i, Jn ≤ t < Jn+1)
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The first two terms in the sum are

Pi(ξ0 = i, J0 ≤ t < J1) + Pi(ξ1 = i, J1 ≤ t < J2) = Pi(t < J1) + 0 = exp(−ait)

so that ∣∣∣pii(t)− 1
t

+ ai

∣∣∣ ≤ ∣∣∣1
t

(
1− exp(−ait)

)
− ai

∣∣∣+ 1
t

∑
n≥2

Pi(ξn = i, Jn ≤ t < Jn+1)

≤ ta2
i + 1

t

∑
n≥2

Pi(ξn = i, Jn ≤ t < Jn+1)

by Taylor’s theorem. Now∑
n≥2

Pi(ξn = i, Jn ≤ t < Jn+1) = Pi
( ⋃
n≥2
{ξn = i, Jn ≤ t < Jn+1}

)
≤ Pi(J2 ≤ t) because (Jn)n is increasing

=
∑
k 6=i

Pi(S1 + S2 ≤ t|ξ1 = k)Pi(ξ1 = k)

≤
∑
k 6=i

Pi
(ai
a
S1 + ak

a
S2 ≤ t

∣∣∣ξ1 = k
)
Pi(ξ1 = k)

Conditional on ξ0 = i and ξ1 = k, S1 and S2 are independent exponential random variables
with parameters ai and ak respectively. So Pi

(
ai
a S1 + ak

a S2 ≤ t
∣∣∣ξ1 = k

)
= P(Y ≤ t) where

Y ∼ Γ(2, a). In particular,

Pi
(ai
a
S1 + ak

a
S2 ≤ t

∣∣∣ξ1 = k
)
≤ 1

2a
2t2

and finally ∣∣∣pii(t)− 1
t

+ ai

∣∣∣ ≤ a2t+ 1
t

∑
k 6=i

P(Y ≤ t)Pi(ξ1 = k)

≤ a2t+ 1
t
P(Y ≤ t) ≤ 2a2t

which proves (a). We now turn to the estimate (b). With the same decomposition of the event
{Xt = i}, we have that for j 6= i

pij(t) = Pi(Xt = j) =
∞∑
n=0

Pi(ξn = j, Jn ≤ t < Jn+1)

= Pi(ξ1 = j, J1 ≤ t < J2) +
∞∑
n=2

Pi(ξn = j, Jn ≤ t < Jn+1)

and then∣∣∣pij(t)
t
− aiπij

∣∣∣ ≤ ∣∣∣1
t
Pi(ξ1 = j, J1 ≤ t < J2)− aiπij

∣∣∣+ 1
t

∑
n≥2

Pi(ξn = j, Jn ≤ t < Jn+1)

9



Now for any n ≥ 1, conditional on (ξ0, . . . , ξn), Sn+1 is an exponential random variable with
parameter a(ξn). In particular, conditional on FJn , Sn+1 is an exponential random variable with
parameter a(ξn), and

Pi(Jn+1 > t|FJn) = Pi(Sn+1 > t− Jn|FJn) = exp
(
− a(ξn)(t− Jn)

)
We use this for n = 1 to get the equality

Pi(ξ1 = j, J1 ≤ t < J2) = Ei
[
1ξ1=j1J1≤t exp

(
− aj(t− J1)

)]
and we can compute the last expression and then bound the term∣∣∣1

t
Pi(ξ1 = j, J1 ≤ t < J2)− aiπij

∣∣∣
from above using Taylor’s theorem. Similarly, since ξn and Jn are FJn -measurable, we have

Pi(ξn = j, Jn ≤ t < Jn+1) = Ei
[
1ξn1Jn≤tEi[1Jn+1>t|FJn ]

]
= Ei

[
1ξn=j1Jn≤t exp

(
− a(ξn)(t− Jn)

)]
≤ Pi(ξn = j, Jn ≤ t)

= Pi(Jn ≤ t|ξn = j)π(n)
ij

As before, we want to bound Pi(Jn ≤ t|ξn = j) writing Jn = S1 + . . . + Sn and using the
conditional distribution of (S1, . . . , Sn) given (ξ0, . . . , ξn−1).

Pi(Jn ≤ t|ξn = j) = Pi(S1 + · · ·+ Sn ≤ t|ξn = j)

=
∑

z=j1,...,jn−1

Pi(S1 + . . .+ Sn ≤ t|Az, ξn = j)Pi(Az|ξn = j)

≤
∑

z=j1,...,jn−1

P(Y ≤ t)Pi(Az|ξn = j)

= P(Y ≤ t) ≤ (at)n

n!

where Y ∼ Γ(n, a) and Az = {ξ1 = j1, . . . , ξn−1 = jn−1}. Combining everything, we get (b).

Remark 1.31. In a similar way, we can show that t 7→ P (t) satisfy the Chapman-Kolmogorov
forward equations

P ′(t) = P (t)Q

Theorem 1.32. Let (Xt)t be a continuous-time Markov chain with generator L and let (Ft)t
be its natural filtration. Let F : R+ × I → R be a bounded function which is smooth in the first
coordinate uniformly over the second: for each i ∈ I, F (·, i) is twice continuously differentiable
and there exists a constant C such that for j = 1, 2,

sup
(s,i)

∣∣∣djF
dsj

(s, i)
∣∣∣ ≤ C
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Define the real processes MF
t and NF

t by

MF
t = F (t,Xt)− F (0, X0)−

∫ t

0
(∂s + L)F (s,Xs)ds

NF
t = (MF

t )2 −
∫ t

0

(
LF 2(s,Xs)− 2F (s,Xs)LF (s,Xs)

)
ds

Then (MF
t )t and (NF

t )t are (Ft)t- martingales.

Class structure and recurrence

From now on, we consider only Markov chains that are minimal (i.e. those that die after
explosion). Then the class structure is simply the discrete-time class structure of the jump chain
(ξn)n∈N.

Definition 1.33. We say that i leads to j and write i→ j if

Pi(Xt = j for some t ≥ 0) > 0

We say that i communicates with j and write i↔ j if both i→ j and j → i.

The notions of communicating class, closed class and irreducibility are inherited from the
jump chain.

Proposition 1.34. For distinct states i, j ∈ I the following are equivalent:

(i) i→ j

(ii) i→ j for the jump chain

(iii) qi0i1qi1i2 . . . qin−1in > 0 for some states i0, i1, . . . , in with i0 = i and in = j

(iv) pij(t) > 0 for all t > 0

(v) pij(t) > 0 for some t > 0

Proof. Implications (iv)⇒ (v)⇒ (i)⇒ (ii) are clear.

(ii)⇒ (iii) By Proposition 1.9, there are states i0, i1, . . . , in with i0 = i and in = j such
that πi0i1πi1i2 . . . πin−1in > 0, which implies (iii)

(iii)⇒ (iv) If qij > 0, then

pij(t) ≥ Pi(J1 ≤ t, ξ1 = j, S2 > t)
= (1− exp(−ait))πij exp(−ajt) > 0

for all t > 0, so if (iii) holds, then

pij(t) ≥ pi0i1(t/n) . . . pin−1in(t/n) > 0

for all t > 0, and (iv) holds.
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Definition 1.35. We say that a state i ∈ I is recurrent if

Pi
(
{t ≥ 0, Xt = i} is unbounded

)
= 1

We say that i is transient if

Pi
(
{t ≥ 0, Xt = i} is unbounded

)
= 0

We define Ti the first passage time of (Xt)t≥0 to state i by

Ti = inf{t ≥ J1, Xt = i}

We also denote by Ni the first passage time of (ξn)n∈N to state i.

Note that if (Xt)t≥0 can explode starting from i, then i is certainly not recurrent.

Theorem 1.36. (i) if i is recurrent for the jump chain (ξn)n∈N then i is recurrent for (Xt)t≥0

(ii) if i is transient for the jump chain, then i is transient for (Xt)t≥0

(iii) every state is either recurrent or transient

(iv) recurrence and transience are class properties

Proof. (i) Suppose i is recurrent for (ξn)n∈N. If X0 = i then (Xt)t≥0 does not explode and
Jn → ∞. Also XJn = ξn = i infinitely often, so {t ≥ 0, Xt = i} is unbounded, with
probability 1.

(ii) Suppose i is transient for (ξn)n∈N. If X0 = i, then

N = sup{n ∈ N, ξn = i} <∞

so {t ≥ 0, Xt = i} is bounded by JN+1 which is finite, with probability 1, because
(ξn, n ≤ N) cannot include an absorbing state.

Theorem 1.37. The following dichotomy hold:

(i) if
(
ai = 0

)
or
(
ai > 0 and Pi(Ti <∞) = 1

)
, then i is recurrent and

∫∞
0 pii(t)dt =∞

(ii) if ai > 0 and Pi(Ti <∞) < 1, then i is transient and
∫∞

0 pii(t)dt <∞

Proof. If ai = 0, then (Xt)t≥0 cannot leave i, so i is recurrent, pii(t) = 1 for all t, and∫∞
0 pii(t)dt =∞. Suppose then that ai > 0. Then

Pi(Ni <∞) = Pi(Ti <∞)
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so i is recurrent if and only if Pi(Ti <∞) = 1 by Theorem 1.36 and the corresponding result for
the jump chain. We shall now show that∫ ∞

0
pii(t)dt = 1

ai

∞∑
n=0

π
(n)
ii

so that i is recurrent if and only if
∫∞

0 pii(t)dt =∞, again using the corresponding result for the
jump chain. To establish the equality, we use Fubini’s theorem∫ ∞

0
pii(t)dt =

∫ ∞
0

Ei[1Xt=i]dt = Ei
∫ ∞

0
1Xt=idt

= Ei
∫ ζ

0
1Xt=idt = Ei

∞∑
n=0

∫ Jn+1

Jn

1ξn=idt

= Ei
∞∑
n=0

Sn+11ξn=i =
∞∑
n=0

Ei[Sn+1|ξn = i]Pi(ξn = i)

= 1
ai

∞∑
n=0

π
(n)
ii

Finally, we show that recurrence and transience are determined by any discrete-time sampling
of (Xt)t≥0.
Proposition 1.38. Let h > 0 be given and set Zn = Xnh.

(i) if i is recurrent for (Xt)t≥0, then i is recurrent for (Zn)n∈N
(ii) if i is transient for (Xt)t≥0, then i is transient for (Zn)n∈N

Proof. To prove (i) we use for nh ≤ t < (n+ 1)h the estimate

pii
(
(n+ 1)h

)
≥ exp(−aih)pii(t)

Then by monotone convergence,∫ ∞
0

pii(t)dt ≤ h exp(aih)
∞∑
n=1

pii(nh)

and (i) follows by Theorem 1.11. To prove the estimate above, write

pii
(
(n+ 1)h

)
=
∑
j∈I

pij(t)pji
(
(n+ 1)h− t

)
≥ pii(t)pii

(
(n+ 1)h− t

)
combined with the following inequality

pii
(
(n+ 1)h− t

)
= Pi(X(n+1)h−t = i)
≥ Pi(J1 > (n+ 1)h− t)
≥ Pi(J1 > h) = exp(−aih)

(ii) is clear.
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Invariant distribution and positive recurrence

Definition 1.39. Let λ be a measure on I. We say that λ is invariant for the Q-matrix Q if
λQ = 0.

Proposition 1.40. Let Q be a Q-matrix with jump matrix Π and let λ be a measure on I. The
following are equivalent:

(i) λ is invariant for Q

(ii) µΠ = µ (i.e. µ is invariant for the stochastic matrix Π) where µi = aiλi

Proof. We have ai(πij − δij) = qij for all i, j ∈ I so(
µ(Π− Id)

)
j

=
∑
i∈I

µi(πij − δij) =
∑
i∈I

λiqij = (λQ)j

This means that we can use the existence and uniqueness results for invariant measures
established in the discrete-time case.

Theorem 1.41. Suppose that Q is irreducible and recurrent. Then Q has an invariant measure
λ which is unique up to scalar multiples.

Definition 1.42. Let i ∈ I be a recurrent state. If ai = 0 or if ai > 0 and Ei[Ti] <∞ then we
say i is positive recurrent. Otherwise we say that i is null recurrent.

As in the discrete-time case, positive recurrence is tied up with the existence of an invariant
distribution.

Theorem 1.43. Let Q be an irreducible Q-matrix. Then the following are equivalent:

(i) every state is positive recurrent

(ii) some state is positive recurrent

(iii) Q is non-explosive and has an invariant distribution λ

Moreover, when (iii) holds, we have for all i ∈ I

λi = 1
aiEi[Ti]

Proof. Let us exclude the trivial case I = {i}. Then irreducibility forces ai > 0 for all i ∈ I. It
is obvious that (i) implies (ii). Define µi = (µij)j∈I by

µij = Ei
∫ Ti∧ζ

0
1Xt=jdt
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By monotone convergence, ∑
j∈I

µij = Ei[Ti ∧ ζ]

By Fubini’s theorem, and using the identity Ti = JNi ,

µij = Ei
∞∑
n=0

∫ Ti

0
1Xt=j1Jn≤t<Jn+1dt

= Ei
Ni−1∑
n=0

∫ ∞
0

1ξn=j1Jn≤t<Jn+1dt

= Ei
∞∑
n=0

Sn+11ξn=j,n<Ni

=
∞∑
n=0

Ei[Sn+1|ξn = j]Ei[1ξn=j,n<Ni ]

= 1
aj

Ei
∞∑
n=0

1ξn=j,n<Ni

= 1
aj

Ei
Ni−1∑
n=0

1ξn=j =
γij
aj

Now suppose that (ii) holds, then i is certainly recurrent, so the jump chain is recurrent, and Q
is non-explosive. We know that γiΠ = γi by Proposition 1.17, so µiQ = 0 by Proposition 1.40.
But µi has finite total mass ∑

j∈I
µij = Ei[Ti] <∞

so we obtain an invariant distribution λ by setting λj = µij/Ei[Ti]

On the other hand, suppose (iii) holds. Denote by λ an invariant distribution for Q. Fix
i ∈ I and set νj = λjaj

λiai
, then νi = 1 and νΠ = ν by Proposition 1.40, so νj ≥ γij for all j ∈ I by

Theorem 1.18. So

Ei[Ti] =
∑
j∈I

µij =
∑
j∈I

γij
aj

≤
∑
j∈I

νj
aj

=
∑
j∈I

λj
λiai

= 1
λiai

<∞

so i is positive recurrent. Since Q is irreducible, it is recurrent, hence Π is recurrent. By Theorem
1.18, νj = γij and the preceding inequality becomes Ei[Ti] = 1/(λiai).

Theorem 1.44. Let Q be irreducible and recurrent, and let λ be a measure. Let s > 0 be given.
The following are equivalent:

(i) λQ = 0

(ii) λP (s) = λ
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Proof. Since Q is recurrent, it is non-explosive, and P (s) is recurrent by Proposition 1.38. Hence
any λ satisfying (i) or (ii) is unique up to scalar multiples. From the proof of Theorem 1.43, if
we fix i ∈ I and set

µj = Ei
∫ Ti

0
1Xt=jdt

then µQ = 0. Thus to prove the equivalence, it suffices to show that µP (s) = µ. By the strong
Markov property at Ti,

Ei
∫ Ti+s

Ti

1Xt=jdt = Ei
∫ s

0
1Xt=jdt

Hence, by using Fubini’s theorem,

µj = Ei
∫ s+Ti

s

1Xt=jdt

=
∫ ∞

0
Pi(Xs+t = j, t < Ti)dt

=
∫ ∞

0

∑
k∈I

Pi(Xs+t = j, t < Ti|Xt = k)Pi(Xt = k)

=
∫ ∞

0

∑
k∈I

P(Xs = j|X0 = k)Pi(t < Ti|Xt = k)Pi(Xt = k) by the Markov property at t

=
∫ ∞

0

∑
k∈I

pkj(s)Pi(t < Ti, Xt = k)

=
∑
k∈I

(
Ei
∫ Ti

0
1Xt=kdt

)
pkj(s) =

∑
k∈I

µkpkj(s)

Corollary 1.45. Let Q be an irreducible non-explosive Q-matrix having an invariant distribution
λ. If (Xt)t≥0 is Markov(λ,Q) then so is (Xs+t)t≥0 for any s ≥ 0.

Theorem 1.46. Let Q be a Q-matrix and λ be a measure on I. Suppose that supi ai <∞ and
ai > 0 for all i. Then the following are equivalent:

(i) λQ = 0

(ii) λP (t) = λ for every t ≥ 0

Convergence to equilibrium

We now investigate the limiting behaviour of pij(t) as t→∞. The situation is simpler than
in the discrete-case as there is no longer any possibility of periodicity.

Theorem 1.47 (Convergence to equilibrium). Let Q be an irreducible, non-explosive Q-matrix
having an invariant distribution λ. Suppose (Xt)t≥0 is Markov(µ,Q) where µ is any distribution
on I. Then for all j ∈ I, we have

P(Xt = j) −−−→
t→∞

λj
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Proof. Let (Xt)t≥0 and (Yt)t≥0 be independent copies of the chain, with X0 ∼ µ and Y0 ∼ π, and
define Ft = σ(Xs, Ys, s ≤ t). Set Wt = (Xt, Yt), then (Wt)t≥0 is an irreducible, non-explosive
Markov chain on I × I with initial distribution

P(W0 = (i, j)) = µiπj

and Q-matrix
q̃(i,j),(k,l) = δikqjl + δjlqik

Denote by π̃ the distribution on I × I defined by π̃(i,j) = πiπj . Then, using the invariance of π
for Q,

(π̃Q̃)(k,l) =
∑
i,j∈I

(
πiπjδikqjl + δjlqik

)
=
∑
j∈I

πkπjqjl +
∑
i∈I

πiπlqik = 0

So π̃ is an invariant distribution for Q̃. In particular, Q̃ is recurrent and, using Proposition 1.14,
we have

P(Xt = Yt = i for some t ≥ 0) = 1

where i ∈ I is fixed. Now set

τ = inf{t ≥ 0, Xt = Yt = i}

Zt =
{
Xt for t ≤ τ
Yt for t > τ

Z ′t =
{
Yt for t ≤ τ
Xt for t > τ

W ′t = (Zt, Z ′t)

Then τ is an (Ft)t≥0-stopping time a.s. finite, and (Xτ , Yτ ) = (i, i). By the strong Markov
property applied to (Wt)t≥0 at time τ , (Xt+τ , Yt+τ )t≥0 is Markov(δ(i,i), Q̃) and is independent
of Fτ . By the same argument, (Yt+τ , Xt+τ )t≥0 is Markov(δ(i,i), Q̃) and is independent of Fτ .
So (W ′t )t≥0 is Markov with the same initial distribution as (Wt)t≥0 and the same Q-matrix. In
particular, (Zt)t≥0 ∼ (Xt)t≥0 is Markov(µ,Q).∣∣P(Xt = j)− πj

∣∣ =
∣∣P(Zt = j)− P(Yt = j)

∣∣
=
∣∣P(t ≤ τ,Xt = j)− P(t ≤ τ, Yt = j)

∣∣
=
∣∣E[1t≤τ (1Xt=j − 1Yt=j)

]∣∣
≤ P(τ ≥ t) −−−→

t→∞
∞

Theorem 1.48. Let Q be an irreducible Q-matrix and let µ be any distribution. Suppose that
(Xt)t≥0 is Markov(µ,Q). Then, for all j ∈ I,

P(Xt = j) −−−→
t→∞

1
aiEj [Tj ]

17



Ergodic theorem

Theorem 1.49 (Ergodic theorem). Let Q be irreducible and let µ be any distribution. Suppose
(Xt)t≥0 is Markov(µ,Q). Then, for i ∈ I,

1
t

∫ t

0
1Xs=ids −−−→t→∞

1
aiEi[Ti]

a.s.

Moreover, in the positive recurrent case, for any bounded function f : I → R we have

1
t

∫ t

0
f(Xs)ds −−−→

t→∞

∫
fdλ a.s.

where λ is the unique invariant distribution.

2 Simple exclusion process

2.1 Definition and basic properties

For a positive integerN , denote by TN = Z/NZ the torus withN points and let TdN = (TN )d.
The points of TdN are called sites and are denoted by the letters x, y and z. An interacting particle
system is a continuous-time Markov chain (ηt)t with state space NTdN describing the collective
behaviour of stochastically interacting "particles" evolving in TdN . Elements of the state space NTdN

are called configurations and are denoted by the letters η, ξ and ζ. For η ∈ NTdN and x ∈ TdN , we
think of η(x) ∈ N as the number of particles at site x for configuration η. The simplest example of
an interaction particle system is the independent random walks: particles evolve as independent
continuous-time random walks on the torus. A more sophisticated interacting particle system
and the one we will study is the simple exclusion process: instead of just superposing independent
random walks, we add a constraint allowing at most one particle per site. The state space is
therefore {0, 1}TdN . The particles move on TdN according to the following rules:

• a particle at x ∈ TdN waits an exponential time with parameter 1, independently of other
particles

• at the end of that time, it chooses a neighbouring site y with uniform probability

• if y is vacant, it goes to y, otherwise it stays at x.

Thus an exclusion interaction is superimposed on otherwise independent continuous-time random
walks. We are only interested in the nearest-neighbour simple exclusion process, which means
that particles only jump to adjacent sites. The generator of this process is

LNf(η) =
∑
x∈Td

N

∑
|z|=1

(2d)−1η(x)(1− η(x+ z))
(
f(ηx,x+z)− f(η)

)
for f : {0, 1}TdN → R and η ∈ {0, 1}TdN , where ηx,x+z is the configuration obtained from η by
letting a particle jump from x to x + z when this is possible. More explicitly, if η(x) = 1 and
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η(x+ z) = 0, then

ηx,x+z(y) =

η(y) if y /∈ {x, x+ z}
η(x)− 1 if y = x
η(x+ z) + 1 if y = x+ z

Otherwise, ηx,x+z = η. Here is a heuristic argument: we know that the generator may be written
as

LNf(η) =
∑
η̃

λ(η)p(η, η̃)
(
f(η̃)− f(η)

)
Assume that the process is starting from configuration η. Notice that all accessible states are of
the form ηx,x+z since only one particle can move at a time. For a particle at a site x, denote by
τ(η, x) the exponential clock with parameter λ(η, x) = 1 associated to the configuration. Now
the clock of the system is τ(η) = min

{
τ(η, x), x ∈ TdN such that η(x) = 1

}
, which is to say that

the configuration changes exactly when one particle moves. Then τ(η) is an exponential random
variable with parameter λ(η) =

∑
x, η(x)=1 λ(η, x) =

∑
x∈Td

N
η(x). Now

p(η, ηx,x+z) = P
(
τ(η, x) = τ(η), x η−→ x+ z

)
= P

(
τ(η, x) = τ(η)

)
P
(
x

η−→ x+ z|τ(η, x) = τ(η)
)

where {x η−→ x + z} is the event “A particle at site x in configuration η moves to site x + z”.
By a simple computation, P

(
τ(η, x) = τ(η)

)
= λ(η, x)/λ(η) = 1/λ(η). On the other hand,

P
(
x

η−→ x+ z|τ(η, x) = τ(η)
)

= (2d)−1η(x)1|z|=1. Thus the generator becomes

LNf(η) =
∑
x∈Td

N

∑
|z|=1

(2d)−1η(x)
(
f(ηx,x+z)− f(η)

)
which coincides with the generator given earlier since ηx,x+z = η when η(x+ z) = 1.

For α ∈ [0, 1], we denote by να = νNα the Bernoulli product measure of parameter α on
{0, 1}TdN . More explicitly, under να, the events {η, η(x) = 1} are independent for x ∈ TdN and

να({η, η(x) = 1}) = α = 1− να({η, η(x) = 0})

In particular, for any configuration η,

να({η}) = αλ(η)(1− α)N
d−λ(η)

where λ(η) =
∑
x η(x) is the number of particles.

Theorem 2.1. The Bernoulli measures {να, α ∈ [0, 1]} are invariant for the simple exclusion
process.

Proof. Let Q be the Q-matrix of the Markov chain. Fix a configuration η.

ναQ(η) =
∑
η̃

να(η̃)Q(η̃, η)

=
∑
x∈TdN
η(x)=1

∑
|z|=1

η(x+z)=0

να(ηx,x+z)Q(ηx,x+z, η) + να(η)Q(η, η)

where the second equality makes use of the fact that only one particle can move at a time and it
can only jump to adjacent sites. On the one hand, as seen earlier, να(η) only depends on η through
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the total number of particles λ(η). In particular, να(ηx,x+z) = να(η) since both configurations
have the same number of particles. On the other hand, if η(x) = 1 and η(x+ z) = 0, then

Q(ηx,x+z, η) = (2d)−1ηx,x+z(x+ z)(1− ηx,x+z(x))
= (2d)−1 = Q(η, ηx,x+z)

So
ναQ(η) = να(η)

( ∑
x∈TdN
η(x)=1

∑
|z|=1

η(x+z)=0

Q(η, ηx,x+z) +Q(η, η)
)

= 0

using the zero-sum property of a Q-matrix, which concludes the proof.

2.2 Hydrodynamic equation for simple exclusion process

A hydrodynamic equation describes the macroscopic behaviour of a system when microscopic
interactions occur between the particles. In this section we prove the hydrodynamic behaviour
of nearest neighbour symmetric simple exclusion processes and show that the hydrodynamic
equation is the heat equation. Let (ηNt )t≥0 be the symmetric simple exclusion process on TdN .
(ηNt )t≥0 is a random element taking values in D

(
[0,∞), {0, 1}TdN

)
. In order to work in a fixed

space as N increases, we consider the empirical measure associated to the particle system defined
by

πNt = 1
Nd

∑
x∈Td

N

ηNt (x)δx/N

We shall prove that πNt converges, in a way to be specified later, to a measure absolutely con-
tinuous with respect to the Lebesgue measure and satisfying the heat equation in a weak sense.

We briefly present the strategy of the proof. Fix T > 0. The time trajectory of the empirical
measure (πNt )0≤t≤T is a random element taking values in D

(
[0, T ],M+(Td)

)
where Td is the

d-dimensional torus andM+(Td) is the set of positive measures on Td with mass bounded by 1.
Fix a profile ρ0 : Td → [0, 1] and denote by (µN )N a sequence of probability measures on {0, 1}TdN
associated to ρ0 in a sense to be specified later. Define

σ : {0, 1}T
d
N −→M+(Td)

η 7−→ 1
Nd

∑
x∈Td

N

η(x)δx/N

Now let QN be the probability measure on D
(
[0, T ],M+(Td)

)
corresponding to the process

(πNt )0≤t≤T speeded up by N2 and starting from µNσ−1. In other words, QN is the distribution
of the process (πNt )0≤t≤T with initial distribution µNσ−1. Our goal is to prove that, for each
fixed time t, the empirical measure πNt converges in probability to ρ(t, u)du where ρ(t, u) is the
solution of the heat equation with initial condition ρ0.

We shall proceed in two steps. We first prove that the process (πNt )0≤t≤T converges in distri-
bution to the deterministic path (ρ(t, u)du)0≤t≤T and then argue that convergence in distribution
to a deterministic weakly continuous trajectory implies convergence in probability at any fixed
time 0 ≤ t ≤ T . To prove the first step, it suffices to show the weak convergence of the sequence
of probability measures (QN ) to the Dirac measure concentrated on the solution of the heat
equation.
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Weak convergence in D
(
[0, T ],M+(Td)

)
We work onM+(Td), the set of positive measures on Td with mass bounded by 1 endowed

with the weak topology. Denote by C(Td) the space of continuous functions on Td with values in
R. Since Td is compact, C(Td) endowed with the topology of uniform convergence is a separable
Banach space and by the Riesz-Markov theorem, its (topological) dual space is M(Td), the
space of signed measures on Td. By Banach-Alaoglu theorem, the unit ball ofM(Td) is weakly
(sequentially) compact. The dual norm on M(Td) being the total variation norm, M+(Td) is
a subset of the unit ball of M(Td). Furthermore, M+(Td) is weakly (sequentially) closed in
M(Td). Hence,M+(Td) is weakly (sequentially) compact.

We may define a metric δ on M+(Td) by introducing a dense countable family (gk)f≥1 in
C(Td) and by setting

δ(µ, ν) =
∞∑
k=1

1
2k min

{
1,
∣∣〈µ, gk〉 − 〈ν, gk〉∣∣}

where 〈µ, g〉 =
∫
Td gdµ for µ ∈ M+(Td) and g ∈ C(Td). It can be shown that the above

metric induces the weak topology onM+(Td). Then (M+(Td), δ) is a compact metric space. In
particular, it is separable and complete.

We now turn our attention to the space D
(
[0, T ],M+(Td)

)
. Since M+(Td) is a compact

metric space, we have the following characterisation of relative compactness for sequences of
probability measures on D

(
[0, T ],M+(Td)

)
(cf. Appendix B).

Theorem 2.2. Let (PN ) be a sequence of probability measures on D
(
[0, T ],M+(Td)

)
. The

sequence is relatively compact if and only if

∀ε > 0, lim
γ→0

lim sup
N→∞

PN
(
µ,w′µ(γ) > ε

)
= 0

To prove relative compactness of a sequence (QN ) of probability measures onD
(
[0, T ],M+(Td)

)
,

the condition stated above is often difficult to verify. Instead, the following corollary states that
it is enough to check relative compactness for the sequences of probability measures obtained by
projecting (QN ) onto a dense countable subset of C(Td).

Corollary 2.3. Let (QN ) be a sequence of probability measures on D
(
[0, T ],M+(Td)

)
and let

{gk, k ≥ 1} be a dense family of C(Td). (QN ) is relatively compact if and only if for every k ≥ 1,
the sequence (QNT−1

k ) of probability measures on D
(
[0, T ],R

)
is relatively compact, where

Tk : D
(
[0, T ],M+(Td)

)
−→ D

(
[0, T ],R

)
(µt)t 7−→

(
〈µt, gk〉

)
t

Proof. For the necessity, we show that Tk is continuous. Let (µn) be a sequence inD
(
[0, T ],M+(Td)

)
converging to µ in the Skorokhod topology. There exists a sequence (λn) of strictly increasing
continuous mappings of [0, T ] onto itself such that ‖λn − id‖ → 0 and

sup
t
δ
(
µn ◦ λn(t), µ(t)

)
→ 0

In particular,

sup
t

min
{

1,
∣∣〈µn ◦ λn(t), gk〉 − 〈µ(t), gk〉

∣∣} ≤ 2k sup
t
δ
(
µn ◦ λn(t), µ(t)

)
→ 0
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so that supt
∣∣〈µn ◦ λn(t), gk〉 − 〈µ(t), gk〉

∣∣ → 0 which proves that 〈µn, gk〉 → 〈µ, gk〉 in the Sko-
rokhod topology, so that Tk is continuous and the result follows from the continuous mapping
theorem. For the sufficiency, fix ε > 0 and β > 0. Choose kε such that 21−kε ≤ ε. Fix γ > 0 and
a partition {ti} such that mini |ti − ti−1| > γ. For all i and all ti−1 ≤ s < t < ti, we have

δ(µ(t), µ(s)) =
∞∑
k=1

2−k min
{

1,
∣∣〈µ(t), gk〉 − 〈µ(s), gk〉

∣∣}
≤

kε∑
k=1

2−k
∣∣〈µ(t), gk〉 − 〈µ(s), gk〉

∣∣+ ε

2

≤
kε∑
k=1

2−kw〈µ,gk〉[ti−1, ti) + ε

2

So

wµ[ti−1, ti) = sup
ti−1≤s<t<ti

δ(µ(t), µ(s)) ≤
kε∑
k=1

2−kw〈µ,gk〉[ti−1, ti) + ε

2

Now, taking the maximum over i and then the infimum over all γ-sparse sets {ti}, we have

w′µ(γ) ≤
kε∑
k=1

2−kw′〈µ,gk〉(γ) + ε

2

By assumption, there exists γ0 such that for all k ≤ kε, γ ≤ γ0 and N ≥ 1,

QN
(
µ, w′〈µ,gk〉(γ) > ε/2

)
≤ β2−k

Therefore, for all γ ≤ γ0 and N ≥ 1,

QN
(
µ,

kε∑
k=1

2−kw′〈µ,gk〉(γ) > ε/2
)
≤ QN

( kε⋃
k=1

{
µ, w′〈µ,gk〉(γ) > ε/2

})
≤

kε∑
k=1

QN
(
µ, w′〈µ,gk〉(γ) > ε/2

)
≤ β

Finally

QN
(
µ, w′µ(γ) > ε

)
≤ QN

(
µ,

kε∑
k=1

2−kw′〈µ,gk〉(γ) > ε/2
)
≤ β

The hydrodynamic equation

Definition 2.4. Let ρ0 : Td → [0, 1] be an initial density profile. We say that a sequence (µN ) of
probability measures on {0, 1}TdN is associated to ρ0 if for every continuous function G : Td → R
and for every ε > 0, we have

lim
N→∞

µN
(
η,
∣∣∣N−d ∑

x∈Td
N

G(x/N)η(x)−
∫
Td
G(u)ρ0(u)du

∣∣∣ > ε

)
= 0
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or equivalently

lim
N→∞

µNσ−1
(
π ∈M+(Td),

∣∣∣〈π,G〉 − 〈ρ0, G〉
∣∣∣ > ε

)
= 0

Theorem 2.5. Let ρ0 : Td → [0, 1] be an initial density profile and let (µN ) be a sequence of
probability measures associated to ρ0. Let (ηNt )t be the simple exclusion process on TdN with
initial distribution µNσ−1 and let πNt be the empirical measures associated to the configuration
ηNt . Then, for every t > 0, the sequence (πNN2t)N converges in probability to the absolutely
continuous measure ρ(t, u)du where ρ(t, u) is the unique solution to the heat equation with initial
condition ρ0 {

∂tρ(t, u) = (2d)−1∆ρ(t, u), t ≥ 0, u ∈ Td
ρ(0, u) = ρ0(u), u ∈ Td

Proof. For the sake of simplicity we will prove the theorem for d = 1, the proof being valid
in higher dimensions. We start by fixing a time T > 0 and letting QN be the probability
measure on D

(
[0, T ],M+(T)

)
corresponding to the Markov process (πNN2t, t ∈ [0, T ]) with initial

distribution µNσ−1. To prove that the sequence QN is weakly convergent, we shall show that it
is relatively compact and that all converging subsequences converge to the same limit which is
the Dirac measure (denoted hereafter by Q∗) concentrated on the solution of the heat equation
(cf. Corollary A.6).

First step: relative compactness. Denote by C2(T) the space of twice continuously
differentiable functions on T. C2(T) is separable and dense in C(T) for the uniform topology.
Applying Corollary 2.3. it suffices to check that for every G ∈ C2(T) the sequence QNT−1

G is
relatively compact where

TG : D
(
[0, T ],M+(T)

)
−→ D

(
[0, T ],R

)
(µt)t 7−→

(
〈µt, G〉

)
t

Fix a function G ∈ C2(T). Notice that QNT−1
G is the distribution of the process

(
〈πNN2t, G〉, t ∈

[0, T ]
)
which takes values in D

(
[0, T ],R

)
. We shall therefore apply Theorem B.5. For the first

condition,

QNT−1
G

(
x, ‖x‖ ≥ a

)
= QN

(
π, sup

t
|〈πt, G〉| ≥ a

)
= P

(
sup
t
|〈πNN2t, G〉| ≥ a

)
Since the total mass of the empirical measure πNN2t is bounded by 1, |〈πNN2t, G〉| ≤ ‖G‖ and it
follows that lima→∞ lim supN QNT−1

G (x, ‖x‖ ≥ a) = 0. It remains to prove the second condition,
or, as we shall do, the one of Remark B.6. Notice that

QNT−1
G (x, wx(γ) > ε) = P(w〈πN

N2·,G〉(γ) > ε)

So we shall prove that
lim
a→∞

lim sup
N

P(w〈πN
N2·,G〉(γ) > ε) = 0 (a)

Now applying Theorem 1.32 with the Markov chain (ηNN2t) whose generator is N2LN and the
function

F : R+ × {0, 1}TN −→ R

(t, η) 7−→ 〈σ(η), G〉 = N−1
∑
x

η(x)G(x/N)
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we have the identity:

〈πNN2t, G〉 = 〈πN0 , G〉+
∫ t

0
N2LNF (s, ηNN2s)ds+MG,N

t (b)

where (MG,N
t ) is a martingale. But for sites x, z and configuration η such that η(x) = 1 and

η(x+ z) = 0,

F (s, ηx,x+z)− F (s, η) = N−1
∑
y

(
ηx,x+z(y)− η(y)

)
G(y/N) = N−1{G((x+ z)/N)−G(x/N)

}
So by a change of variables and a summation by parts

LNF (s, η) = (2N)−1
∑
x

∑
|z|=1

η(x)(1− η(x+ z))
{
G((x+ z)/N)−G(x/N)

}
= −(2N)−1

∑
x

∑
|z|=1

η(x+ z)(1− η(x))
{
G((x+ z)/N)−G(x/N)

}
= (4N)−1

∑
x

∑
|z|=1

(
η(x)− η(x+ z)

){
G((x+ z)/N)−G(x/N)

}
= (4N)−1

∑
x

∑
|z|=1

η(x)
{
G((x+ z)/N) +G((x− z)/N)− 2G(x/N)

}
= (2N3)−1

∑
x

η(x)∆NG(x/N) = (2N2)−1〈σ(η),∆NG〉

where ∆NG(x/N) = N2{G((x + 1)/N) + G((x − 1)/N) − 2G(x/N)
}
is the discrete Laplacian.

The identity (b) becomes

〈πNN2t, G〉 = 〈πN0 , G〉+ (1/2)
∫ t

0
〈πNN2s,∆NG〉ds+MG,N

t (c)

Now to prove (a), it suffices to prove the same condition for each of the terms of the identity (c).
The initial term 〈πN0 , G〉 does not contribute in this respect. For the second term, the condition
follows from the estimate ∣∣∣ ∫ t

s

〈πNN2s,∆NG〉ds
∣∣∣ ≤ γ‖∆NG‖ ≤ γ‖G′′‖

for all γ > 0 and |t− s| ≤ γ. The second inequality is a consequence of Taylor’s theorem. As for
the third term, we first recall Doob’s maximal inequality for a right-continuous, square-integrable
martingale (Mt):

P
(

sup
t∈[a,b]

∣∣Mt −Ma

∣∣ > ε
)
≤ 1
ε2
E
[

sup
t∈[a,b]

∣∣Mt −Ma

∣∣] ≤ 4
ε2
E
[∣∣Mb −Ma

∣∣2]
Now we fix γ > 0 and we choose a γ-sparse set {ti}. Notice that for any pair t, s ∈ [0, T ]
satisfying |t − s| ≤ γ, either both t, s lie in the same interval (ti−1, ti] or they lie in adjacent
intervals. Notice also that identity (b) clearly shows (MG,N

t ) is right-continuous, so we can apply
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Doob’s inequality. We have

P
(
wMG,N· (γ) > ε

)
= P

(
sup
|t−s|≤γ

∣∣MG,N
t −MG,N

s

∣∣ > ε
)

≤ P
(

sup
i

sup
t∈(ti−1,ti]

∣∣MG,N
t −MG,N

ti−1

∣∣ > ε/3
)

≤
∑
i

P
(

sup
t∈(ti−1,ti]

∣∣MG,N
t −MG,N

ti−1

∣∣ > ε/3
)

≤ 36
ε2

∑
i

E
[∣∣MG,N

ti −MG,N
ti−1

∣∣2] (d)

Define NG,N
t by

NG,N
t = (MG,N

t )2 −N2
∫ t

0

(
(LNF 2)(s, ηNN2s)− F (s, ηNN2s)LNF (s, ηNN2s)

)
ds

By Theorem 1.32, (NG,N
t ) is a martingale. A straightforward computation shows that

(LNF 2)(s, η)− F (s, η)LNF (s, η) = N−2
∑
x

∑
|z|=1

η(x)(1− η(x+ z))
(
G((x+ z)/N)−G(x/N)

)2
Fix t, s ∈ [0, T ] with s < t.

E
[∣∣MG,N

t −MG,N
s

∣∣2] = E
[
(MG,N

t )2 − (MG,N
s )2

]
= E

[ ∫ t

s

∑
x

∑
|z|=1

ηNN2u(x)(1− ηNN2u(x+ z))
(
G((x+ z)/N)−G(x/N)

)2
du
]

≤ ‖G
′‖2

N2 E
[ ∫ t

s

∑
x

∑
|z|=1

ηNN2u(x)(1− ηNN2u(x+ z))du
]

≤ 2‖G
′‖2

N2 E
[ ∫ t

s

∑
x

ηNN2u(x)du
]
≤ 2‖G

′‖2

N
|t− s|

Applying the last inequality with s = ti−1 and t = ti, (d) becomes

P
(
wMG,N· (γ) > ε

)
≤ 72
Nε2
‖G′‖2

∑
i

|ti − ti−1|

= 72T
Nε2
‖G′‖2 −−−−→

N→∞
0

which proves that QN is relatively compact.

Second step: uniqueness of limit points. Now that we know that the sequence QN is
(weakly) relatively compact, it remains to characterise all limit points of QN . Let Q be a limit
point of QN . There exists a sequence (Ni) such that QNi ⇒ Q. We start by proving that Q
is concentrated on absolutely continuous measures with respect to the Lebesgue measure. Let
(gk)k≥1 be a dense family in C(T) and define

φk : D
(
[0, T ],M+(T)

)
−→ R

(πt)t 7−→ sup
t
|〈πt, gk〉|
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Notice that φk is continuous: let (µn) be a sequence in D
(
[0, T ],M+(T)

)
converging to µ in the

Skorokhod topology. There exists a sequence (λn) of strictly increasing continuous mappings of
[0, T ] onto itself such that ‖λn − id‖ → 0 and

sup
t
δ
(
µn ◦ λn(t), µ(t)

)
→ 0

Fix ε > 0, ∃n0, ∀n ≥ n0, ∀t, δ(µn ◦ λn(t), µ(t)) ≤ ε/2k. By definition of δ, we have

1
2k min

{
1,
∣∣〈µn ◦ λn(t), gk〉 − 〈µ(t), gk〉

∣∣} ≤ ε

2k

and ∣∣〈µn ◦ λn(t), gk〉 − 〈µ(t), gk〉
∣∣ ≤ ε

For n ≥ n0, ∣∣〈µn ◦ λn(t), gk〉
∣∣ ≤ ∣∣〈µn ◦ λn(t), gk〉 − 〈µ(t), gk〉

∣∣+
∣∣〈µ(t), gk〉

∣∣
≤ ε+ sup

t

∣∣〈µ(t), gk〉
∣∣

Taking the supremum over t ∈ [0, T ] in the last inequality, we have

sup
t

∣∣〈µn(t), gk〉
∣∣ = sup

t

∣∣〈µn ◦ λn(t), gk〉
∣∣ ≤ ε+ sup

t

∣∣〈µ(t), gk〉
∣∣

Similarly,
sup
t

∣∣〈µ(t), gk〉
∣∣ ≤ ε+ sup

t

∣∣〈µn(t), gk〉
∣∣

which proves that φk is continuous. By the continuous mapping theorem, QNiφ−1
k ⇒ Qφ−1

k .
Notice that

QNφ−1
k

[
0, N−1

∑
x

|gk(x/N)|
]

= QN
(
π, sup

t
|〈πt, gk〉| ≤ N−1

∑
x

|gk(x/N)|
)

= P
(

sup
t
|〈πNN2t, gk〉| ≤ N−1

∑
x

|gk(x/N)|
)

= 1

since there is at most one particle per site. Since gk is continuous,

1
N

∑
x∈TN

|gk(x/N)| →
∫
T
|gk(u)|du

By lemma A.7, we have

Q
(
π, sup

t
|〈πt, gk〉| ≤

∫
T
|gk|
)

= Qφ−1
k

[
0,
∫
T
|gk|
]

= 1

for all k ≥ 1. Therefore

Q
(
π, ∀k ≥ 1, sup

t
|〈πt, gk〉| ≤

∫
T
|gk|
)

= 1

Using the density of (gk) in C(T),

Q
(
π, ∀G ∈ C(T), sup

t
|〈πt, G〉| ≤

∫
T
|G|
)

= 1
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But any measure µ on T satisfying

∀G ∈ C(T), |〈µ,G〉| ≤
∫
T
|G|

is absolutely continuous with respect to the Lebesgue measure. This proves thatQ is concentrated
on absolutely continuous trajectories with respect to the Lebesgue measure:

Q
(
π, ∀t, πt(du) = ρ(t, u)du

)
= 1

Moreover, Q is concentrated on trajectories that at time 0 are equal to ρ0(u)du. To see this, fix
G ∈ C(T) and ε > 0. By Portmanteau theorem,

Q

(
π ∈ D

(
[0, T ],M+(TN )

)
,
∣∣∣〈π0, G〉 − 〈ρ0, G〉

∣∣∣ > ε

)
≤ lim inf

i
QNi

(
π ∈ D

(
[0, T ],M+(TN )

)
,
∣∣∣〈π0, G〉 − 〈ρ0, G〉

∣∣∣ > ε

)
= lim inf

i
P
(∣∣∣〈πNi0 , G〉 − 〈ρ0, G〉

∣∣∣ > ε

)
= lim inf

i
µNiσ−1

(
π ∈M+(T),

∣∣∣〈π,G〉 − 〈ρ0, G〉
∣∣∣ > ε

)
= 0

Letting ε→ 0, we get

Q

(
π, 〈π0, G〉 = 〈ρ0, G〉

)
= 1

for all G ∈ C(T). Using the separability of C(T), this becomes

Q

(
π, ∀G ∈ C(T), 〈π0, G〉 = 〈ρ0, G〉

)
= 1

which proves the result. Finally, we prove that Q is concentrated on trajectories that are weak
solutions for the heat equation. Fix G : T→ R of class C3 and ε > 0. Apply Theorem 1.32 with
the Markov chain (ηNN2t) and the function

F : R+ × {0, 1}TN −→ R
(t, η) 7−→ 〈σ(η), G〉

Then the processes defined by

MG,N
t = 〈πNN2t, G〉 − 〈π0, G〉 −

∫ t

0
N2LNF (s, ηNN2s)ds

NG,N
t = (MG,N

t )2 −N2
∫ t

0

(
(LNF 2)(s, ηNN2s)− F (s, ηNN2s)LNF (s, ηNN2s)

)
ds

are both right-continuous martingales. In particular, by Doob’s maximal inequality,

P
(

sup
t

∣∣MG,N
t

∣∣ > ε

)
≤ 4
ε2
E
[
(MG,N

T )2
]
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But since (NG,N
t ) is a martingale, E[NG,N

T ] = E[NG,N
0 ] = 0 and

E
[
(MG,N

T )2
]

= N2E
∫ T

0

(
(LNF 2)(s, ηNN2s)− F (s, ηNN2s)LNF (s, ηNN2s)

)
ds

= E
∫ T

0

∑
x

∑
|z|=1

ηNN2s(x)(1− ηNN2s(x+ z))
(
G((x+ z)/N)−G(x/N)

)2
ds

≤ N−2 sup
u
|G′(u)|2 E

∫ T

0

∑
x

∑
|z|=1

ηNN2s(x)(1− ηNN2s(x+ z))ds

≤ 2TN−1 sup
u
|G′(u)|2 −−−−→

N→∞
0

So
lim
N

P
(

sup
t

∣∣MG,N
t

∣∣ > ε

)
= 0 (e)

A similar computation to the one we made in the first step shows that

MG,N
t = 〈πNN2t, G〉 − 〈π0, G〉 − (1/2)

∫ t

0
〈πNN2s,∆NG〉ds

and we can rewrite (e) as

lim
N
QN
(
π, sup

t

∣∣∣〈πt, G〉 − 〈π0, G〉 − (1/2)
∫ t

0
〈πs,∆NG〉ds

∣∣∣ > ε

)
= lim

N
P
(

sup
t

∣∣∣〈πNN2t, G〉 − 〈π0, G〉 − (1/2)
∫ t

0
〈πNN2s,∆NG〉ds

∣∣∣ > ε

)
= 0 (f)

On the other hand, for π ∈ D
(
[0, T ],M+(T)

)
and t ∈ [0, T ],∣∣∣ ∫ t

0
〈πs,∆NG−∆G〉ds

∣∣∣ ≤ ∫ t

0
sup
u∈T

∣∣∆NG(u)−∆G(u)
∣∣ds

≤ T sup
u

∣∣∆NG(u)−∆G(u)
∣∣

≤ 1
3 TN

−1∥∥G(3)∥∥ −−−−→
N→∞

0

using Taylor’s theorem. In particular,

lim
N
QN
(
π, sup

t

∣∣∣(1/2)
∫ t

0
〈πs,∆G−∆NG〉ds

∣∣∣ > ε/2
)

= 0 (g)

Now, since the application

D
(
[0, T ],M+(T)

)
−→ R

(πt) 7−→ sup
t

∣∣∣〈πt, Gt〉 − 〈π0, G0〉 −
∫ t

0
〈πs, ∂sGs + (1/2)∆Gs〉ds

∣∣∣
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is continuous, {π, supt
∣∣〈πt, G〉 − 〈π0, G〉 − (1/2)

∫ t
0 〈πs,∆Gs〉ds

∣∣ > ε} is an open subset of
D
(
[0, T ],M+(T)

)
, and by Portmanteau theorem,

Q

(
π, sup

t

∣∣∣〈πt, G〉 − 〈π0, G〉 − (1/2)
∫ t

0
〈πs,∆G〉ds

∣∣∣ > ε

)
≤ lim inf

i
QNi

(
π, sup

t

∣∣∣〈πt, G〉 − 〈π0, G〉 − (1/2)
∫ t

0
〈πs,∆G〉ds

∣∣∣ > ε

)
≤ lim inf

i

{
QNi

(
π, sup

t

∣∣∣〈πt, G〉 − 〈π0, G〉 − (1/2)
∫ t

0
〈πs,∆NG〉ds

∣∣∣ > ε/2
)

+QNi
(
π, sup

t

∣∣∣(1/2)
∫ t

0
〈πs,∆G−∆NG〉ds

∣∣∣ > ε/2
)}

= 0

combining (f) and (g). We just proved that for all G ∈ C3(T),

Q

(
π, 〈πt, G〉 − 〈π0, G〉 − (1/2)

∫ t

0
〈πs,∆G〉ds = 0

)
= 1

By separability and density of C3(T) in C2(T), Q is concentrated on paths {πt, 0 ≤ t ≤ T} such
that for all G ∈ C2,

〈πt, G〉 − 〈π0, G〉 − (1/2)
∫ t

0
〈πs,∆G〉ds = 0 (h)

The previous results show that every limit point is concentrated on absolutely continuous tra-
jectories whose density is a weak solution in the sense of (h) for the heat equation and whose
density at time 0 is ρ0. However, in order to prove a uniqueness result of weak solutions for the
heat equation, we need to prove the above relation for time dependent functions G. The proof
is quite similar to the one we just gave, so we shall skip it. In conclusion, all limit points are
concentrated on absolutely continuous trajectories that are weak solutions of the heat equation
in the following sense

〈πt, Gt〉 − 〈π0, G0〉 −
∫ t

0
〈πs, ∂sGs + (1/2)∆G〉ds = 0 (i)

for all G : [0, T ]×T→ R of class C1,2, and whose density at time 0 is ρ0. It turns out that there
exists only one weak solution to equation (i) which therefore coincides with the strong solution.
For a proof of this result, we cite [8]. This means that every limit point is concentrated on the
solution of the heat equation. In other words, all converging subsequences of the sequence QN
converge to the same limit, which is the Dirac measure concentrated on the solution of the heat
equation Q∗.

Third step: convergence in probability at fixed time. In general it is false that the
application from D

(
[0, T ],M+(T)

)
toM+(T) obtained by taking the value at time 0 < t < T of

the process is continuous (see Theorem B.7). Therefore to prove convergence at fixed time, we
will use the general form of the mapping theorem (see Theorem A.2). Fix 0 < t < T and denote
by pt the projection at time t. Let Dt be the set of discontinuities of pt. Adapting Theorem B.7 in
the case of a general complete separable metric space S instead of R (here we take S =M+(T)),
we have that Dt consists of those µ ∈ D

(
[0, T ],M+(T)

)
which are discontinuous at t. But we

know that the limiting probability measure of QN is Q∗, the dirac measure concentrated on the
solution of the heat equation. We also know that the solution of the heat equation is continuous
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and therefore it does not lie in Dt. In other words Dt has measure 0 with respect to Q∗, and by
the mapping theorem

QNp−1
t ⇒ Q∗p−1

t

Thus πNN2t converges in distribution to the deterministic measure ρ(t, u)du. Since convergence
in distribution to a deterministic variable implies convergence in probability, the theorem is
proved.
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A Weak convergence in metric spaces

Let (S, ρ) be a complete separable metric space, and denote by S the Borel σ-algebra. Let
Pn and P be probability measures on (S,S). We say that Pn converges weakly to P and write
Pn ⇒ P if for every bounded, continuous real function f on S,∫

S

fdPn −−−−→
n→∞

∫
S

fdP

Here is a simple condition for weak convergence:

Theorem A.1. A necessary and sufficient condition for Pn ⇒ P is that each subsequence (Pφ(n))
contain a further subsequence (Pφ◦ψ(n)) converging weakly to P

Proof. The necessity is easy. As for sufficiency, if Pn ; P , then
∫
S
fdPn 9

∫
S
fdP for some

bounded, continuous f . But then, for some positive ε and some subsequence (Pφ(n)),∣∣∣ ∫
S

fdPφ(n) −
∫
S

fdP
∣∣∣ > ε

for all n, and no further subsequence can converge weakly to P .

Let (S′, ρ′) be a metric space and let Pn and P be probability measures on (S,S). One can
easily check that if h is a continuous mapping from S to S′, then Pn ⇒ P implies Pnh−1 ⇒ Ph−1

where Ph−1 is the pushforward measure. However, the continuity assumption can be weakened.
Assume only that h : S → S′ is measurable with respect to the Borel σ-algebras on S and S′,
and let Dh be the set of its discontinuities.

Theorem A.2 (Mapping theorem). If Pn ⇒ P and P (Dh) = 0, then Pnh−1 ⇒ Ph−1.

The following notion of tightness plays a fundamental role in the theory of weak convergence.

Definition A.3. Let Π be a family of probability measures on (S,S). We say that Π is tight if

∀ε > 0, ∃K ⊂ S compact,∀P ∈ Π, P (K) > 1− ε

Theorem A.4. Each probability measure on (S,S) is tight.

Proof. Let P be a probability measure on (S,S), and fix ε > 0. Denote by (xn)n≥1 ⊂ S a dense
subset. For each k ≥ 1,

S =
∞⋃
n=1

B(xn, 1/k)

In particular, there exists Nk such that

P

( Nk⋃
n=1

B(xn, 1/k)
)
> 1− ε

2k
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Let K be the closure of
⋂
k≥1

⋃
n≤Nk B(xn, 1/k). Then

P (K) ≥ P
( ⋂
k≥1

⋃
n≤Nk

B(xn, 1/k)
)

= 1− P
( ⋃
k≥1

⋂
n≤Nk

B(xn, 1/k)c
)

≥ 1−
∑
k≥1

P

( ⋂
n≤Nk

B(xn, 1/k)c
)

> 1− ε

It remains to prove that K is compact. The set
⋂
k≥1

⋃
n≤Nk B(xn, 1/k) is precompact. So, by

the completeness hypothesis, its closure K is compact.

Let Π a family of probability measures on (S,S). We call Π (weakly) relatively compact if
every sequence of elements of Π contains a weakly convergent subsequence; that is if for every
sequence (Pn) in Π there exist a subsequence (Pφ(n)) and a probability measure Q on (S,S)
such that Pφ(n) ⇒ Q. The following theorem relates tightness of probability measures to relative
compactness.

Theorem A.5 (Prokhorov’s theorem). A family Π of probability measures on (S,S) is tight if
and only if it is relatively compact.

Although the converse puts things in perspective, the direct half is what is essential to the
applications. The following corollary is useful for proving weak convergence.

Corollary A.6. If (Pn) is tight, and if each subsequence that converges weakly at all in fact
converges weakly to P , then the entire sequence converges weakly to P .

We conclude this section with a useful lemma.

Lemma A.7. Let (Pn) be a sequence of probability measures on R that converges weakly to P ,
and let (tn) ∈ RN

+ be a sequence converging to t ≥ 0. Suppose that Pn([0, tn]) = 1 for all n. Then

P ([0, t]) = 1

Proof. Fix ε > 0. There exists n0 ∈ N such that tn ≤ t+ ε for n ≥ n0. Now

P ([0, t+ ε]) ≥ lim sup
n

Pn([0, t+ ε])

≥ lim sup
n

Pn([0, tn]) = 1

using Portmanteau theorem and the monotonicity of probability measures. So for all ε > 0,
P ([0, t+ ε]) = 1. Now taking ε = 1/k and letting k →∞, we have P ([0, t]) = 1 by continuity of
P from above.
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B The space D

Let C = C[0, 1] be the space of continuous real functions, and let D = D[0, 1] be the space
of real functions x on [0, 1] that are right-continuous and have left-hand limits (cadlag). With
very little change, the theory can be extended to functions on [0, 1] taking values in separable
and complete metric spaces other than R. For simplicity reasons, we develop the theory only in
the case of R and along the way we indicate the changes needed when working with a complete
separable metric space (S, ρ) with Borel σ-algebra S.

One can show that a function x ∈ D has at most countably many discontinuities, that it is
bounded and Borel measurable. For x ∈ D and T ⊂ [0, 1], put

wx(T ) = w(x, T ) = sup
s,t∈T

|x(s)− x(t)|

The modulus of continuity of x is defined by

wx(δ) = w(x, δ) = sup
|s−t|≤δ

|x(s)− x(t)|

for δ ∈ (0, 1]. It can also be written as

wx(δ) = sup
0≤t≤1−δ

wx[t, t+ δ]

Call a set {ti} δ-sparse if it satisfies 0 = t0 < t1 < · · · < tv = 1 and mini(ti − ti−1) > δ. Now
define a modified modulus of continuity more suitable for the space D by

w′x(δ) = w′(x, δ) = inf
{ti}

max
i
wx[ti−1, ti)

for δ ∈ (0, 1), where the infimum extends over all δ-sparse sets. These definitions make sense
even if x does not lie in D, but one can show that w′x(δ)→ 0 when δ → 0 if and only if x ∈ D.
Similarly, wx(δ)→ 0 when δ → 0 if and only if x ∈ C.

The Skorokhod topology

Two functions x and y are near one another in the uniform topology used for C if the graph
of x(t) can be carried onto the graph of y(t) by a uniformly small perturbation of the ordinates,
with the abscissas kept fixed. In D, we want to allow also a uniformly small deformation of the
time scale. This means that a small time change does not modify too much the proximity of two
functions. The Skorokhod topology embodies this idea.

Let Λ denote the class of strictly increasing, continuous mappings of [0, 1] onto itself. Notice
that if λ ∈ Λ, then λ(0) = 0 and λ(1) = 1. Define a distance d on D by setting

d(x, y) = inf
λ∈Λ

min{‖λ− id‖, ‖x− y ◦ λ‖}

for x, y ∈ D, where id is the identity map on [0, 1]. In this definition, λ represents the uniformly
small deformation of the time scale.
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A sequence xn in D converges to x in the Skorokhod topology if and only if there exists
a sequence λn in Λ such that ‖λn − id‖ → 0 and ‖xn ◦ λn − x‖ → 0. In particular, uniform
convergence implies convergence in the Skorokhod topology. On the other hand, since

|xn(t)− x(t)| ≤ |xn(t)− x ◦ λn(t)|+ |x ◦ λn(t)− x(t)|

convergence in the Skorokhod topology implies that xn(t) → x(t) holds for continuity points t
of x. Moreover, if x is continuous on [0, 1], then convergence in the Skorokhod topology implies
uniform convergence. Therefore, the Skorokhod topology restricted to C coincides with the
uniform topology.

One can show thatD is separable under the metric d, but not complete (Consider the sequence
xn = 1[0,2−n)). We can overcome this issue by defining another metric d◦ that is equivalent to d
(meaning they induce the same topology) but under which D is complete. Start by setting

‖λ‖◦ = sup
s<t

∣∣∣ log λt− λs
t− s

∣∣∣
for λ ∈ Λ. Now for x, y ∈ D, let

d◦(x, y) = inf
λ∈Λ

min{‖λ‖◦, ‖x− y ◦ λ‖}

It can be shown that this defines a metric on D. Moreover, we have the following theorems.

Theorem B.1. The metrics d and d◦ are (topologically) equivalent.

Theorem B.2. The space D is separable under d and d◦ and is complete under d◦.

We now turn our attention to the characterisation of compact sets in D. Using the modulus
w′x(δ) we can prove an analogue of the Arzelà-Ascoli theorem:

Theorem B.3. Let A ⊂ D. Then A is relatively compact in the Skorokhod topology if and only
if the following conditions hold:

sup
x∈A
‖x‖ <∞

lim
δ→0

sup
x∈A

w′x(δ) = 0

Remark B.4. For the general space S, write supt ρ(x(t), y(t)) in place of ‖x − y‖ in all the
definitions and arguments. The first condition in the above theorem should be replaced by the
assumption that {x(t), x ∈ A, t ∈ [0, 1]} has compact closure in S. The rest needs no change.

Weak convergence in D

Theorem B.5. The sequence (Pn) is tight if and only if the following conditions hold:

lim
a→∞

lim sup
n

Pn
(
x, ‖x‖ ≥ a

)
= 0 (1)

∀ε > 0, lim
δ→0

lim sup
n

Pn
(
x, w′x(δ) ≥ ε

)
= 0 (2)
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Remark B.6. We have the following inequality

w′x(δ) ≤ wx(2δ)

for δ < 1/2. Consequently, if instead of condition (B.6) of the previous theorem, we prove:

∀ε > 0, lim
δ→0

lim sup
n

Pn
(
x, wx(δ) ≥ ε

)
= 0 (3)

then (Pn) is tight.

Finally we take a look at the projections from D to Rk which will be useful in the proof of
the hydrodynamic limit. For 0 ≤ t1 < · · · < tk ≤ 1 define the natural projection pt1···tk as usual:

pt1···tk : D −→ Rk

x 7−→
(
x(t1), . . . , x(tk)

)
Since each function in Λ fixes 0 and 1, p0 and p1 are continuous in the Skorokhod topology.

Suppose that 0 < t < 1. If points xn converge to x in the Skorokhod topology and x is continuous
at t, then as mentioned earlier xn(t)→ x(t). Suppose, on the other hand, that x is discontinuous
at t. If λn is the element of Λ that carries t to t − 1/n and is linear on [0, t] and [t, 1] and if
xn(s) = x◦λn(s), then xn converges to x in the Skorokhod topology but xn(t) does not converge
to x(t). Therefore, for 0 < t < 1, pt is continuous at x if and only if x is continuous at t.

We must prove that pt1···tk is measurable with respect to the Borel σ-algebra D. We need
consider only a single time point t since a mapping into Rk is measurable if each component
mapping is, and we may assume t < 1. Let

hε(x) = ε−1
∫ t+ε

t

x(s)ds

If xn → x in the Skorokhod topology, then xn(s)→ x(s) for continuity points s of x as mentioned
earlier. But we know that x has at most countably many discontinuities. Therefore xn(s)→ x(s)
holds for points s outside a set of Lebesgue measure 0. Since on the other hand, the xn are
uniformly bounded, we have

hε(xn) −−−−→
n→∞

hε(x)

using Lebesgue’s dominated convergence theorem. Thus hε is continuous in the Skorokhod
topology. By right-continuity, hm−1(x) → x(t) = pt(x) for each x ∈ D as m → ∞. Therefore
each pt is measurable. In summary, we have the following theorem:

Theorem B.7. (i) The projections p0 and p1 are continuous.

(ii) For 0 < t < 1, pt is continuous at x if and only if x is continuous at t.

(iii) Each pt is measurable D/R, and each pt1···tk is measurable D/Rk.
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