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Abstract

Interacting particle systems is a recently developed field in the theory of Markov processes
with many applications: particle systems have been used to model phenomena ranging from
traffic behaviour to spread of infection and tumour growth. We introduce this field through
the study of the simple exclusion process. We will construct the generator of this process
and we will give a convergence result of the spatial particle density to the solution of the
heat equation.
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1 Markov chains

1.1 Discrete-time Markov chains

We start by reviewing the main results in the theory of discrete-time Markov chains.

Definition and basic properties

Let (2, F,P) be a probability space. Let I be a countable set, called the state-space. We say
that (A\;)ies is a measure on I if Vi € I, 0 < A; < oo. If in addition the total mass } ., A\; = 1,
then we call A a distribution. We say that a matrix P = (p;;); jer is a stochastic matrix if every
row (pij);er is a distribution.

Definition 1.1. Let (X, )nen be a sequence of I-valued random variables. Let \ be a distribution
on I and P be a stochastic matriz. We say that (X,,) is a Markov chain with initial distribution
A and transition matriz P (Markov(\, P) for short) if

(i) Xo has distribution A

(ii) for n € N, conditional on X,, =i, X, 11 is independent of X, ..., X, and has distribution
(pij)jer- More explicitly, for n € N and ig,...,in41 € I,

P(Xnt1 = int11Xo =P0,- -, X = in) = Dininis

Proposition 1.2. A random sequence (X, )nen s Markov(\, P) if and only if for all n € N,
i0se e sin €1,
P(Xo =0, -, Xn = in) = NigDigiy - - - Pin_yin

Definition 1.3. Let A be a measure on I and let P,Q be stochastic matrices. We define a new

measure AP on I by
(AP); = Aipij
iel

We also define a new (stochastic) matriz PQ by

(PQ)ij =D pikar;

kel

We define the n-th power of P by

o Prtl=prp

We write pl(-?) = (P"),; for the (i, j) entry in P™.
Proposition 1.4. Let (X,,)nen be Markov(\, P). Then, for alln,m € N,

(i) Pi(Xn = §) = P\ = P(Xpim = | X = i)



(ii) P(Xn = j) = (AP);

Theorem 1.5 (Markov property). Let (X, )nen be Markov(X, P), and let (Fp,)nen be the natural
filtration of (X,,). Then, conditional on X, = i, (Xmin)nen @8 Markov(d;, P) and is independent
of Fm. More explicitly, for A € F,, and B € P(I)®Y,

P((Xm+n)neN e B,A’Xm - z) - P((Xn)neN € B‘XO - z) x P(A| X, = )

Definition 1.6. Let (F,)nen be a filtration on (Q,F). A random variable T: Q — N U {oco}
is called a stopping time if {T < n} € F,,. The o-algebra Fr of events determined prior to the
stopping time T consists of those events A € F for which AN{T < n} € F, for everyn € N. If
(Xn)nen s a random sequence, we define Xp on {T < oo} by

XT(W) = XT(w) (w)

Theorem 1.7 (Strong Markov property). Let (X, )nen be Markov(A, P) and let T be a stopping
time for the natural filtration (Fp)nen of (Xn)nen. Then, conditional on T < oo and Xt = i,
(X74n)nen is Markou(d;, P) and is independent of Fr. More explicitly, for A € Fr and B €
P(I)®H,

P((Xr4n)nen € B, A|T < 00, X = i) = P((Xa)nen € B’Xo = i) x PAIT < o0, X7 =)

Class structure and recurrence

Definition 1.8. Ifi,j € I, we say that i leads to j and write i — j if P;(X,, = j for somen) > 0.
We say that i communicates with j and write i <+ j if both i — j and j — 1.

Proposition 1.9. For distinct states i,j € I the following are equivalent:

(i) i —j
(1) DigiyPiyis - - - Dir_1i,, > 0 for some states ig, i1, ... i, with ig =i and i, = j
(i) p;;” > 0 for some n
It can be verified that <+ is an equivalence relation on I, and thus partitions I into commu-
nicating classes. We say that a class C is closed if
(ieC, i—sj)=jeC
If there is only one class, we say that the chain (or the transition matrix P) is irreducible.

Definition 1.10. Let (X,,)nen be a Markov chain with transition matriz P. We say that a state
i € I is recurrent if
P;(X,, = i for infinitely many n) =1

We say that i is transient if
P;(X,, =i for infinitely many n) =0
We define N; the first passage time to state i by
N; =inf{n >1, X, =i}



Theorem 1.11. The following dichotomy holds:

(i) if Pi(N; < 00) = 1, then i is recurrent and ), . pz(;") = 00

(ii) if Py(N; < 00) < 1, then i is transient and ), _y P < o

%

In particular, every state is either recurrent or transient.

Proposition 1.12. Let C be a communicating class. Then either all states in C are recurrent
or all are transient.

Proposition 1.13. (i) Every recurrent class is closed
(ii) Ewery finite closed class is recurrent

Proposition 1.14. Let P be irreducible and recurrent. Then for all j € I we have P(N; <
o0) = 1.

Invariant distributions and positive recurrence

Definition 1.15. Let A be a measure on I and let P be a stochastic matriz. We say that \ is
invariant for P if AP = \.

Proposition 1.16. Let (X, )nen be Markov(\, P) and suppose that X\ is invariant for P. Then
(Ximtn)nen @8 also Markov(\, P).
For a fixed state k, consider for each ¢ the expected time spent in i betweet visits to k
Nj—1

o :]Ek[ > 1Xn:z}
n=0

Proposition 1.17. Let P be irreducible and recurrent. Then:

(i) v =1
(i) v* = (YF)ier satisfies y*P =~
(iii) 0 < v¥ < oo foralli €I

Theorem 1.18. Let P be irreducible and let A be an invariant measure for P with A\, = 1. Then
A >~k If in addition P is recurrent, then A = ~*. In particular, P has an invariant measure
which is unique up to scalar multiples.

Definition 1.19. Leti € I be a recurrent state. We say that i is positive recurrent if E;[N;] < oo.
Otherwise we say that i is null recurrent.

Theorem 1.20. Let P be irreducible. Then the following are equivalent:

(i) every state is positive recurrent



(ii) some state is positive recurrent

(iii) P has an invariant distribution

Moreover, when (iii) holds, the invariant distribution is unique and is given by

Convergence to equilibrium

(n)

Definition 1.21. We call a state i € I aperiodic if p;;’ > 0 for all sufficiently large n

It can be shown that 7 is aperiodic if and only if ged{n > 1, pg?)} = 1. It can also be shown
that if P is irreducible and has an aperiodic state i, then all states are aperiodic.

Theorem 1.22 (Convergence to equilibrium). Let P be irreducible and aperiodic. Let \ be any
distribution, and let (X,,)nen be Markov(\, P). Then, for all j € I,

) 1
P(Xn =) n—oo |;[N;]
In particular, for alli,j € I,
) 1
Y moee 5[N]

Ergodic theorem

Theorem 1.23 (Ergodic theorem). Let P be irreducible and let \ be any distribution. If (X,)nen
is Markov(\, P) then

1l 1
N 1y — —— as.
n,; M= s BN

Moreover, in the positive recurrent case, for any bounded function f: I — R we have

n—1

%Z f(Xx) —— [ fdr a.s.

n— o0
k=0 1

where 7 is the unique invariant distribution.

1.2 Continuous-time Markov chains

Definition and construction

Let (Q, F7,P) be a probability space, and let I be a countable set equipped with the discrete
topology. A continuous-time random process (X;);>o with values in I is a family of random
variables X;: @ — I. We say that (X;);>o is right-continuous if all paths are right-continuous,



that is for all w € Q, ¢ — X;(w) is right-continuous. By definition of the discrete topology on I,
every path of a right-continuous process must remain constant for a while in each new state. Asin
the discrete case, given a filtration (F;)¢>0 on (€2, F) we say that a random variable T': I — [0, 0]
is a stopping time if for t > 0, {T' < t} € F;. The o-algebra Fr of events determined prior to
the stopping time T' consists of those events A € F for which AN {T <t} € F; for every t > 0.
If (Xt)i>0 is a random process, we define X1 on {T' < oo} by

X7 (w) = X7(w)(w)

Now let (X;)¢>0 be a right-continuous process on I. We define the jump times Jy, J1,. .. of
(Xt)i>0 by
J =0
JnJrl - lnf{t > Jnu Xt 7é XJn}

Jp is a stopping time for (X;);>¢ for n € N. We define the holding times Sy, Sa,. .. by
g — {Jn —Jpo1 i Jho1 <00

00 otherwise

Note that right-continuity forces S,, > 0 for all n > 1. The explosion time ( is defined by
(=supdJ, = Z Sh
" n=1

The discrete-time process (&, )nen given by &, = X, is called the jump process of (X;)¢>o. This
is simply the sequence of values taken by (X¢):>0 up to explosion.

We shall not consider what happens to a process after explosion. So it is convenient to
adjoin to I a new state, say oo, and require that X; = oo if ¢ > (. Any process satisfying
this requirement is called minimal. Note that a minimal process may be reconstructed from its
jumping (or holding) times and jump process

X, = £nifJn§t<Jn+l
E7 oo ift > ¢

Definition 1.24. We say that Q = (gij)ijer is a Q-matriz on I if it satisfies the following
conditions:

(i) 0 < —qi; < oo firalliel

(i1) q;; >0 for alli,j eI
(i) 3 ;cr 4 =0 for alli
We will sometimes find it convenient to write a; or a(i) as an alternative notation for —q;;. If
Q is a Q-matriz, we define the jump matriz II of Q by

ifa; >0, {ﬂ'ij =qj/a; ifj#i

ﬂii:O
Zfal*07 {7(.”:1

Then 11 is a stochastic matrix on I.



Now we can give the definition of a continuous-time Markov chain. Let (X;);>0 be a minimal
right-continuous process on I. We say that (X;);>0 is a Markov chain with initial distribution
A and generator matrix @ if its jump chain (&, )nen is a discrete-time Markov chain with initial
distribution A and transition matrix II and if conditional on (&,)nen, its holding times S,, are
independent and distributed according to an exponential law of parameter a(,). We say that
(Xt)i>0 is Markov(A, Q) for short.

Remark 1.25. Notice that the conditional distribution of (S1,S2,...,Sn) given (§k)ken depends
only on (&0,&1, ... ,&n—1) and therefore, conditional on (&o,&1,...,&n—1), S1,S9,...,Sy are still
independent exponential random variables of parameters a(&p),a(&1), ..., a(§n—1) respectively.

We can construct such a process as follows: let (£,)nen be discrete-time Markov(A, IT) and let

(Th)n>1 be independent exponential random variables of parameter 1, independent of (&,)nen-.
Set Sp, =T, /a(én—1), Jn =D p_y Sk and

X, — fnifJn§t<Jn+1
E7 \ooif t > ¢

Then (X;);>0 has the required properties. We now turn our attention to the explosion time ¢
of a Markov chain (X;);>¢ with Q-matrix ). We are interested in conditions that guarantee
(Xt)i>0 is non-explosive (i.e. ( = oo a.s.). We begin with a lemma:

Lemma 1.26. Let (S,)n>1 be a sequence of independent random variables with Sy, ~ E(Ay) and
0 < Ap <00 foralln.

(i) if Yoo 1A < 00, then Y2 1 S, < o0 a.s.

(ii) if Yoy = = 00, then 307, Sy = 00 a.s.

Proof. (i) Suppose >~ )\ < 00. Then, by monotone convergence
B> 5] -3 5 <
n=1 n=1 An

S0 > 07 1S, < ¢ as.

(ii) Suppose that Y >, )\ = oo. Then Y7 min(l,5+) = oo, and since log(l + z) >
min(1, 5-) for all z > 0, >0 log(l +1/X,) = co. So, by monotone convergence and
independence,

E[exp ( — 25}0] = loiE[exp(

= H (1+ %))_1 :exp(— Zlog(l—l—l/)\n)) =

So exp ( -3 Sn) =0and ) S5, =00 as.



Theorem 1.27. Let (Xy)i>0 be Markov(\, Q). Then (X;)i>o does not explode if any one of the
following conditions holds:

(1) sup;cra; < o0

(i) Xo =1, and i is recurrent for the jump chain.

Proof. Set T, = a(§y,-1)Sn. Then conditional on (&,)nen, (Tn)n>1 are independent exponential
random variables with parameter 1. The conditional distribution of (T},)n>1 given (£,)nen does
not depend on (§,,)nen, 50 (T),)n>1 are unconditionally independent exponential random variables
with parameter 1.

(i) Set a = sup,;c;a;. Then
[ee] (oo}
a¢ = ZaSn > ZTnzoo
n=1 n=1

a.s. using the previous lemma.

(ii) ¢ is recurrent for the jump chain, which means that (&,)nen visits ¢ infinitely often, at times
Ny, No, ..., says. Then

o0 oo oo
a;¢( = Z a; Sy > Z a;SN,,+1 = Z TN, +1 = 00
n=1

m=1 m=1

O

Remark 1.28. In particular, if I is finite or if the jump chain is irreducible and recurrent, then
(Xt)t>0 does not explode.

Strong Markov property

Theorem 1.29 (Strong Markov property). Let (X;)i>0 be a continuous-time Markov chain with
Q-matriz Q, and let T be a stopping time for the natural filtration (Fy)i>o0 of (Xi)i>0. Then,
conditional on T < oo and X1 =1, (Xiy7)i>0 s Markov(d;, Q) and is independent of Fr.

Transition function, Kolmogorov equations

In this paragraph, we will assume that a = sup;c; a; < oo and that for all s € I, a; > 0 so
that 7;; = 0. We introduce the matrices P(t) on I defined by

pij(t) = Pi(Xy = j)

the probability to be at site j at time ¢ for the Markov chain that starts from i. It follows from
the Markov property of the process that these matrices form a semigroup, i.e. that P(t 4 s) =
P(t)P(s) or more explicitly

pij(t+s) = Zpik(t)pkj(S)

kel



On the other hand, since we assumed that sup, a; < 0o, it follows from the previous identity that
the function t — P(t) is continuously differentiable. In fact, we have the following result.

Theorem 1.30. ¢ — P(t) satisfy the Chapman-Kolmogorov backward equations

{pij(O) = 0y

P () = 2 per aimin(pri(t) — pij(t))
which can be written in the more compact form

{P(O) = id
P'(t) = QP(t)

where Q 1is the Q-matriz of the Markov chain (X;)i>0. In particular,
P0)=Q
so that ast — 0, for alli,j €1,

Dij (t) = 5ij + qijt + O(t)

Proof. The proof relies on the following estimates. For all 7 # 7,

% + a;| < 2d%t (a)
t(t) | < a2t< + Z (n+2) ) (b)

Assuming these inequalities hold, and using the semigroup property of (P(t));>0, we have

pij(t+ h) 7pij(t) . (QP(t))l] _ Z (pik(h) . ai'frz'k)pkj(t) + (ZM +ai>pij(t)

h Py h h
Then
PR 0 gy | PR a1
ki
< Za h(mk + Zﬂ_(n+2 ) +2ad%h by (ED and (]E[)
k#i n>0

< (1 + exp(ah))a®h +2a°h — 0
h—0

so that p};(t) = (QP(t));;. By definition of P(t), it is clear that p;;(0) = d;; which proves
the theorem. It remains to prove inequalities @ and (]ED We start with @ To compute the
probability to be at ¢ at time ¢ for a Markov chain starting from ¢, we may decompose the event
{X; = i} according to the number of jumps before time ¢. Thus, since sup, a; < co, the chain is
non-explosive and

oo

(oo}
pii(t) =Pi(Xy = i) = Y Py(Xy =i, Jp <t < Jnj1) = Y Pil&n =i,Jn <t < Jus1)

n=0



The first two terms in the sum are
]P)l(fo =i,Jp <t< Jl) +]P)l(£1 =14,J1 <t< JQ) = ]P)Z(t < Jl) +0= exp(fait)
so that

pii(t) — 1

T

1 .
+ E;21[%(5" =i,y <t < Jni1)

< |01 - exp(-ait) ~ a;

1
< ta? + - D Pilln =iy Jn <t < Jnga)
n>2

by Taylor’s theorem. Now

Zpi(§7lzi7jngt<=]n+l = (U{Sn—l JIn <t<Jn+1})

n>2 n>2
<P;i(J2 <t) because (Jy,)p is increasing

=) Pi(S1+ 5 <tl§1 = k)Pi(&1 = k)
< Zpi(%& + %52 < t‘ﬁl = k)IP’i(& =k)

Conditional on &, = ¢ and & = k, S; and S5 are independent exponential random variables
with parameters a; and aj respectively. So Pi(%Sl + %Sy < t’gl = k) = P(Y < t) where
Y ~T(2,a). In particular,

i 1
Pi(a—sl + %, < t‘gl - k) < a2
a a 2
and finally

pii(t) — 1
t

-I-a,»

1
2 —
<a’t+ % kéﬂ P(Y < t)Pi(fl = k‘)

1
< a’t+ SP(Y <)< 2a*t

which proves @) We now turn to the estimate (bf). With the same decomposition of the event
{X; = i}, we have that for j # i

pm() P;(X¢ =j) = ZP &n=17,Jn <t < Jny1)

=Pi(&1 =4, /1 St<Jo)+ Y Pi(&y =j,Jn <t < Jnja)

n=2
and then
i (T 1 . 1 )
p]T() a;mi;| < ’EPi(fl =7,J1 <t < Jo) —aymi;| + n Zpi(fn =7, Jn <t < Jpt1)

n>2



Now for any n > 1, conditional on (£, ...,&,), Snt+1 is an exponential random variable with
parameter a(,). In particular, conditional on Fj, , S,41 is an exponential random variable with
parameter a(&,), and

Pi(Jus1 > U1Fs,) = PilSusr > t = JulFs,) = exp (= al€a)(t = )
We use this for n = 1 to get the equality
]P)z(gl = j, J<t< Jg) =E; ]lé'lzj]ljlgt exp ( — aj(t — Jl))]

and we can compute the last expression and then bound the term

1
Z]Pl(fl = j7 Jl <t< JQ) — Q;Tj

from above using Taylor’s theorem. Similarly, since &, and J, are F; -measurable, we have

Pi(n = JiJn S < Jns1) = Ei[Le, L, <iBilLu, 050175, ]

= Ei[Teumilu,<eexp (= a(a)(t = ) |
< Pl(fn =7, Jn < t)
= Pi(J < tln = )m)
As before, we want to bound P;(J, < ¢|¢, = j) writing J, = S1 + ...+ S, and using the
conditional distribution of (St,...,S,) given (o, ..., &n—1)-
= Y PiSi+...+ Sn <AL 6 = §)Pi(ALlE =)
z:jlw‘wjnfl

< Y P(Y <OPi(ALlG = )
Z:j1,u.,jn—1
(at)”

=P(Y <t) <~

where Y ~ I'(n,a) and A, = {&; = j1,...,&—1 = jn—1}. Combining everything, we get (b). O

Remark 1.31. In a similar way, we can show that t — P(t) satisfy the Chapman-Kolmogorov
forward equations

P'(t) = P(t)Q

Theorem 1.32. Let (X:); be a continuous-time Markov chain with generator L and let (Fi):
be its natural filtration. Let F': Ry x I — R be a bounded function which is smooth in the first
coordinate uniformly over the second: for each i € I, F(-,i) is twice continuously differentiable
and there exists a constant C such that for j = 1,2,

d'F
sup | 757 (

€]

s,i)‘gC

10



Define the real processes M} and NE by
t
MFE = F(t, X;) — F(0,Xo) — / (0s + L)F (s, X,)ds
0
t
NF = (MF)? —/ (LFQ(S,XS) - 2F(5,XS)LF(3,XS))ds
0

Then (M}); and (NF); are (F;):- martingales.

Class structure and recurrence

From now on, we consider only Markov chains that are minimal (i.e. those that die after
explosion). Then the class structure is simply the discrete-time class structure of the jump chain

(gn)nGI\L
Definition 1.33. We say that i leads to j and write 1 — j if

P;(X; = j for somet >0) >0
We say that i communicates with j and write i < j if both i — j and j — 1.
The notions of communicating class, closed class and irreducibility are inherited from the
jump chain.

Proposition 1.34. For distinct states i,j € I the following are equivalent:

(i) i—j
(ii) © — j for the jump chain
(78) Gigiy Qiyia - - - Qi,_14, > 0 for some states ig,41,...,0, with ig =1 and i, = j
(tv) pij(t) >0 for allt >0
(v) pi;j(t) >0 for somet >0
Proof. Implications (iv) = (v) = (i) = (i¢) are clear.
(#4) = (i41) By Proposition 1.9, there are states ig,1,...,4, with ig = ¢ and i,, = j such
that Tigit Tivio « -« Wip_1ipn = 0, which implies (ZZZ)
(#3) = (iv) If ¢;; > 0, then

= (1 — exp(—a;t))m;j exp(—a;t) >0

for all ¢ > 0, so if (#i7) holds, then
Pij(t) 2 pigir (t/n) .. pi, i, (t/0) >0

for all t > 0, and (iv) holds.

11



Definition 1.35. We say that a state i € I is recurrent if
P; ({t >0, Xy =1} is unbounded) =1
We say that i is transient if
P; ({t >0, Xy =i} is unbounded) =0
We define T; the first passage time of (X;)i>o to state i by
Ty = inf{t > J1, X, =i}

We also denote by N; the first passage time of (§,)nen to state i.

Note that if (X;);>0 can explode starting from 4, then ¢ is certainly not recurrent.
Theorem 1.36. (i) ifi is recurrent for the jump chain ({,)nen then i is recurrent for (Xi)i>o
(i) if i is transient for the jump chain, then i is transient for (Xi)i>o0
(iii) every state is either recurrent or transient
(iv) recurrence and transience are class properties
Proof. (i) Suppose i is recurrent for (&, )nen. If Xo = @ then (X;);>o does not explode and
Jp — oo. Also X; = &, = i infinitely often, so {¢ > 0, X; = i} is unbounded, with
probability 1.
(ii) Suppose i is transient for (&, )nen. If Xo = 4, then
N=sup{neN, § =i} <o

so {t > 0, X; = i} is bounded by Jy;1 which is finite, with probability 1, because
(&n, n < N) cannot include an absorbing state.

O
Theorem 1.37. The following dichotomy hold:
(i) if (ai = 0) or (ai >0 and P;(T; < 00) = 1), then i is recurrent and fooo pii(t)dt = 00
(ii) if a; > 0 and P;(T; < 00) < 1, then i is transient and fooo pii(t)dt < oo
Proof. If a; = 0, then (X;);>0 cannot leave i, so i is recurrent, p;(¢t) = 1 for all ¢, and

fooo pii(t)dt = co. Suppose then that a; > 0. Then

12



so i is recurrent if and only if P;(T; < oo) = 1 by Theorem 1.36 and the corresponding result for
the jump chain. We shall now show that

* 1L _(n)
Dii t)dt = — Tii
/0 Wir=>

so that i is recurrent if and only if [;° p;i(t)dt = oo, again using the corresponding result for the
jump chain. To establish the equality, we use Fubini’s theorem

00 oo oo
0 0 0

n+1

¢ ©  rJ
:]EZ-/ Lx,—dt :EiZ/ T¢, —idt
0 n=0"Jn

=Ei ) Surile,=i= Y EilSniilén = iIPi(6n = 1)
n=0

n=0

L~ ()
=T
* n=0

O

Finally, we show that recurrence and transience are determined by any discrete-time sampling
of (Xt)t20~

Proposition 1.38. Let h > 0 be given and set Z, = Xpp,.

(1) if i is recurrent for (Xi)i>0, then i is recurrent for (Z,)nen

(i1) if i is transient for (X;)i>o0, then i is transient for (Z,)nen

Proof. To prove (i) we use for nh <t < (n+ 1)h the estimate
pii((n+ 1)h) > exp(—a;h)p;i(t)
Then by monotone convergence,
/ pii(t)dt < hexp(a;h) Zpii(nh)
0 n=1
and (7) follows by Theorem 1.11. To prove the estimate above, write
pii((n+ 1) = pi;(t)pji((n+ 1)h —t)
Jjel
> pii(t)pii ((n 4+ 1)h — t)
combined with the following inequality
pii((n+ 1k —t) = Pi(X(np1yp—t = 1)
>Pi(J1 > (n+1)h—1t)
Z Pl(Jl > h) = exp(faih)

(i) is clear. O
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Invariant distribution and positive recurrence

Definition 1.39. Let A be a measure on I. We say that X\ is invariant for the Q-matriz Q if
AQ =0.

Proposition 1.40. Let Q be a Q-matriz with jump matriz I1 and let X\ be a measure on I. The
following are equivalent:
(i) X is invariant for Q

(i) pIl = p (i.e. p is invariant for the stochastic matriz I1) where p; = a;\;

Proof. We have a;(m;; — 0;5) = gi; for all i,5 € I so

(n(l ~Id)), = D pilmi = 0i) =Y Migi; = (AQ);

icl i€l

O

This means that we can use the existence and uniqueness results for invariant measures
established in the discrete-time case.

Theorem 1.41. Suppose that Q) is irreducible and recurrent. Then QQ has an invariant measure
A which is unique up to scalar multiples.

Definition 1.42. Let i € I be a recurrent state. If a; = 0 or if a; > 0 and E;[T;] < co then we
say i is positive recurrent. Otherwise we say that i is null recurrent.

As in the discrete-time case, positive recurrence is tied up with the existence of an invariant
distribution.

Theorem 1.43. Let Q be an irreducible Q-matriz. Then the following are equivalent:

(i) every state is positive recurrent
(i) some state is positive recurrent

(i) @ is non-explosive and has an invariant distribution \

Moreover, when (iii) holds, we have for alli € I

1

A=
a; ;[T

Proof. Let us exclude the trivial case I = {i}. Then irreducibility forces a; > 0 for all ¢ € I. It
is obvious that (i) implies (ii). Define u‘ = (M;)jeI by

) TiNC
[L;v = Ez/ ]lXt:jdt
0

14



By monotone convergence,

> ph =Ei[T; A (]
jerI

By Fubini’s theorem, and using the identity T; = Jn;,,

[e'e) T;
py =B Z/O Ix, =Ly, <t<t,p, dt
n=0

N;—1 00

=K, Z/ Le, =1y, <t<, ,dt
n=0 0
oo

= Ei Z Sn+1ﬂ£,L:j,n<Ni
n=0

oo
= Z Ei [Sn+1|§n = j]Ez []lin=j,n<N,i]
n=0
1 o0
= —E; ) le,—jn<n,
ij n=0

1 N;—1 ")’Z"
=—E; ) lg=j=->
CLj ng() G,j

Now suppose that (i7) holds, then 7 is certainly recurrent, so the jump chain is recurrent, and @
is non-explosive. We know that Il =+ by Proposition 1.17, so p*@Q = 0 by Proposition 1.40.
But 4’ has finite total mass

jel
s0 we obtain an invariant distribution A by setting \; = u’ /E;[Tj]

On the other hand, suppose (iii) holds. Denote by A an invariant distribution for Q. Fix
i € I and set v; = 322,
Theorem 1.18. So

then v; = 1 and vIT = v by Proposition 1.40, so v; > 7} for all j € I by

BT =Y i =30

jeI jer

SZ%:ZA)@\ji:Mlai<oo

jel 1 jerI

S0 1 is positive recurrent. Since @ is irreducible, it is recurrent, hence IT is recurrent. By Theorem
1.18, v; = 7} and the preceding inequality becomes E;[T;] = 1/(\ia;). O

Theorem 1.44. Let Q) be irreducible and recurrent, and let A be a measure. Let s > 0 be given.
The following are equivalent:

(i) AQ =0
(ii) AP(s) = X

15



Proof. Since @ is recurrent, it is non-explosive, and P(s) is recurrent by Proposition 1.38. Hence
any A satisfying (7) or (i¢) is unique up to scalar multiples. From the proof of Theorem 1.43, if
we fix ¢ € I and set

T;
pj = Ez‘/ Ly,=;dt
0
then u@ = 0. Thus to prove the equivalence, it suffices to show that uP(s) = u. By the strong

Markov property at Tj,
Ti+s s
]El/ ]lxt:jdt = El/ ]lXt:jdt
T; 0

Hence, by using Fubini’s theorem,
s+T;
My = E,/ 1Xt:jdt
OOS

- / Pi(Xope = jot < T)dt
0

= / D Pi(Xawr = j,t < Ti| Xy = k)Py(X, = k)
0

kel

= / Z:IP’(Xs = j|Xo = k)P (t < T;| X = k)P;(X¢ = k) by the Markov property at ¢
0

kel
= / > pkj(s)Pit < Th, Xy = k)
O ker
T;
=> <Ez/ ]IXt_kdt)pkj(S) = pij(s)
kel 0 kel

O

Corollary 1.45. Let Q be an irreducible non-explosive Q-matriz having an invariant distribution
A If (X))o is Markov(\, Q) then so is (Xsqt¢)i>0 for any s > 0.

Theorem 1.46. Let Q be a Q-matrixz and A be a measure on I. Suppose that sup, a; < oo and
a; >0 for all i. Then the following are equivalent:

(1) \Q =0
(i) AP(t) = A for every t > 0

Convergence to equilibrium

We now investigate the limiting behaviour of p;;(t) as ¢t — co. The situation is simpler than
in the discrete-case as there is no longer any possibility of periodicity.

Theorem 1.47 (Convergence to equilibrium). Let Q be an irreducible, non-explosive Q-matriz
having an invariant distribution . Suppose (Xi)i>o ts Markov(p, Q) where p is any distribution
on I. Then for all j € I, we have

P(Xi=j) —= A
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Proof. Let (X¢)i>0 and (Y;)>0 be independent copies of the chain, with Xy ~ g and Yy ~ 7, and
define 7y = o(X,,Ys, s < t). Set W, = (X,,Y:), then (W,;);>0 is an irreducible, non-explosive
Markov chain on I x I with initial distribution

P(WO = (Zaj)) = HiTj

and Q-matrix
Q(i.j), (k1) = Oikqjt + 051Gk
Denote by 7 the distribution on I x I defined by 7(; ;) = m;m;. Then, using the invariance of
for @,
(TQ) (k1) = Z (mimj0ingji + 01qik) = Zﬁkﬂj%‘z + Zﬂiﬂl%‘k =0
ijel jeI il

So 7 is an invariant distribution for @ In particular, @ is recurrent and, using Proposition 1.14,

we have
P(X; =Y; =i for somet>0)=1

where 7 € I is fixed. Now set

T=inf{t >0, X; =Y; =i}
7 _ X fort <r
T\ Y fort > T

7 Y, fort <t
t X, fort>r

Wi = (2, Z))

Then 7 is an (Fi)t>o-stopping time a.s. finite, and (X,,Y;) = (4,4). By the strong Markov
property applied to (W;)i>o at time 7, (X¢i7, Yiyr)i>0 is Markov(d(; ), @) and is independent
of F.. By the same argument, (Yi1r, Xit+r)i>0 is Markov(6(i’i),@) and is independent of F.
So (W{)>0 is Markov with the same initial distribution as (W;);>o and the same Q-matrix. In
particular, (Z;)i>0 ~ (X¢)i>0 is Markov(y, Q).

IP(X: = j) — ;| = |P(Z: = ) — P(Y; = j)|

t —
t<T Xt—j) P(t <7,Y; = j)|
ﬂxt—g Ty,—5)]]|

—
t—o00

|P(
=P

|E[
P(r

I\/ |/\

O

Theorem 1.48. Let QQ be an irreducible Q-matriz and let p be any distribution. Suppose that
(Xt)i>0 is Markov(p, Q). Then, for all j € I,

1

P(X; = j) — ———r
We=0)ms a; ;[T
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Ergodic theorem

Theorem 1.49 (Ergodic theorem). Let Q be irreducible and let p be any distribution. Suppose
(Xt)i>0 is Markov(p, Q). Then, fori eI,

! / s s L
- _;ds —— a.s.
tJo T oo’ ailEs[T]

Moreover, in the positive recurrent case, for any bounded function f: I — R we have

1/Otf(Xs)dsK>/fd)\ a.s.

where X\ is the unique invariant distribution.

2 Simple exclusion process

2.1 Definition and basic properties

For a positive integer N, denote by Ty = Z/NZ the torus with N points and let T4, = (T ).
The points of T4 are called sites and are denoted by the letters x, y and z. An interacting particle
system is a continuous-time Markov chain (7;); with state space NTw describing the collective
behaviour of stochastically interacting "particles' evolving in T4,. Elements of the state space NT#
are called configurations and are denoted by the letters n, £ and . For n € NT% and z € ']I“}V, we
think of n(x) € N as the number of particles at site 2 for configuration n. The simplest example of
an interaction particle system is the independent random walks: particles evolve as independent
continuous-time random walks on the torus. A more sophisticated interacting particle system
and the one we will study is the simple exclusion process: instead of just superposing independent
random walks, we add a constraint allowing at most one particle per site. The state space is
therefore {0, I}T?V. The particles move on T4 according to the following rules:

e a particle at z € T% waits an exponential time with parameter 1, independently of other
particles
e at the end of that time, it chooses a neighbouring site y with uniform probability
e if y is vacant, it goes to y, otherwise it stays at x.
Thus an exclusion interaction is superimposed on otherwise independent continuous-time random

walks. We are only interested in the nearest-neighbour simple exclusion process, which means
that particles only jump to adjacent sites. The generator of this process is

Lafm) =Y Y @d) " @)1 —n(z+2)) (f(r"") = f(n))

wET‘Ii\, [z]=1

for f: {0, l}T?lV — R and 5 € {0, I}T%, where n®**# is the configuration obtained from 7 by
letting a particle jump from = to  + z when this is possible. More explicitly, if n(z) = 1 and
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n(x 4+ z) = 0, then
n(y) ify ¢ {z,z+ 2}
y) = nx) -1 ify=ux
nx+z2)+1 ify=xz+=2

Otherwise, n®**# = 5. Here is a heuristic argument: we know that the generator may be written
as
Ly f(n) =Y Mnp(n.a)(f(i) — f(n))
7i

Assume that the process is starting from configuration 7. Notice that all accessible states are of
the form 7%**# since only one particle can move at a time. For a particle at a site z, denote by
7(n,x) the exponential clock with parameter A(n,z) = 1 associated to the configuration. Now
the clock of the system is 7(n) = min {7(n,z), & € T% such that n(z) = 1}, which is to say that
the configuration changes exactly when one particle moves. Then 7(n) is an exponential random
variable with parameter A(n) =3>_, , ,1_1 A(n,2) = ZieT% n(x). Now

p(n, ™) = B(r(n,2) = 7(n),z = &+ 2) = P(7(n,2) = 7(n))B(¢ = x + 2|7(n, x) = 7(n))

where {z Lor 4+ z} is the event “A particle at site 2 in configuration n moves to site x + 2”.
By a simple computation, P(7(n,z) = 7(n)) = A(n,x)/A(n) = 1/A(n). On the other hand,

P(x Dz zr(n,x) = 7(n)) = (2d)"*n(z)1,/=1. Thus the generator becomes
Lyfm) = Y @d) @) (fr"**) = f(n))
zeTY, |2|=1

T, T+2z

which coincides with the generator given earlier since 7 =n when n(z + 2) = 1.

For a € [0,1], we denote by v, = v2 the Bernoulli product measure of parameter @ on
{0, 1}11“;@. More explicitly, under v,, the events {n, n(x) = 1} are independent for x € T% and

va({n, n(x) =1}) = a =1 —va({n, n(z) = 0})
In particular, for any configuration 7,
va({n}) = X (1 = )V A
where A\(n) = > n(x) is the number of particles.

Theorem 2.1. The Bernoulli measures {v,, a € [0,1]} are invariant for the simple exclusion
process.

Proof. Let @ be the @Q-matrix of the Markov chain. Fix a configuration 7.

vaQ(n) = Zua(mQ(ﬁ,n)

=D D w™T)M ) + va(m)Q(n, )

IGT?\; |z]=1
n(z)=1n(z+2)=0

where the second equality makes use of the fact that only one particle can move at a time and it
can only jump to adjacent sites. On the one hand, as seen earlier, v, (1) only depends on 7 through

19



the total number of particles A(n). In particular, v, (n™*"*) = v, (n) since both configurations
have the same number of particles. On the other hand, if n(z) = 1 and n(z + z) = 0, then

Q™™ 2, ) = (2d) '™ T (z + 2)(1 — ™" (2))
=(2d)" = Q(n,n""*?)

So
Q@) =vam( Y Y Q)+ Q) =0
xGTd [z]=1
n(z)=1n(z+2)=0
using the zero-sum property of a (Q-matrix, which concludes the proof. O

2.2 Hydrodynamic equation for simple exclusion process

A hydrodynamic equation describes the macroscopic behaviour of a system when microscopic
interactions occur between the particles. In this section we prove the hydrodynamic behaviour
of nearest neighbour symmetric simple exclusion processes and show that the hydrodynamic
equation is the heat equation. Let (n)¥)¢>0 be the symmetric simple exclusion process on T4,.
(1Y )i>0 is a random element taking values in D([0, c0), {0, 1}11'5{,)' In order to work in a fixed
space as IV increases, we consider the empirical measure associated to the particle system defined
by

1
N N
T = Nd Z M ()04 /N
zeT%,
We shall prove that 7{¥ converges, in a way to be specified later, to a measure absolutely con-
tinuous with respect to the Lebesgue measure and satisfying the heat equation in a weak sense.

We briefly present the strategy of the proof. Fix T' > 0. The time trajectory of the empirical
measure (7} )o<;<7 is a random element taking values in D([0,7], M (T?)) where T? is the
d-dimensional torus and M, (T9) is the set of positive measures on T¢ with mass bounded by 1.
Fix a profile pp: T¢ — [0, 1] and denote by (") x a sequence of probability measures on {0, 1}%
associated to pg in a sense to be specified later. Define

o: {0,1}T% —s M+(Td)

n— de j{: x/N

LETd

Now let QN be the probability measure on D([O,T],M+(Td)) corresponding to the process
(N )o<t<T speeded up by N? and starting from p~o~1. In other words, Q" is the distribution
of the process (7} )o<t<r with initial distribution u¥o~!. Our goal is to prove that, for each
fixed time ¢, the empirical measure /¥ converges in probability to p(t,u)du where p(t,u) is the

solution of the heat equation with initial condition pg.

We shall proceed in two steps. We first prove that the process (ﬂ,{v Jo<i<T converges in distri-
bution to the deterministic path (p(¢, u)du)o<i<7 and then argue that convergence in distribution
to a deterministic weakly continuous trajectory implies convergence in probability at any fixed
time 0 <t < T'. To prove the first step, it suffices to show the weak convergence of the sequence
of probability measures (QV) to the Dirac measure concentrated on the solution of the heat
equation.
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Weak convergence in D ([0, 7], M4 (T%))

We work on M (T9), the set of positive measures on T¢ with mass bounded by 1 endowed
with the weak topology. Denote by C(T¢) the space of continuous functions on T?¢ with values in
R. Since T¢ is compact, C(T?) endowed with the topology of uniform convergence is a separable
Banach space and by the Riesz-Markov theorem, its (topological) dual space is M(T4%), the
space of signed measures on T¢. By Banach-Alaoglu theorem, the unit ball of M(T9) is weakly
(sequentially) compact. The dual norm on M(T¢) being the total variation norm, M. (T¢) is
a subset of the unit ball of M(T9). Furthermore, M, (T%) is weakly (sequentially) closed in
M(T9). Hence, M (T?) is weakly (sequentially) compact.

We may define a metric § on M (T%) by introducing a dense countable family (gx)s>1 in
C(T%) and by setting
8, v) = > 5 min {1, (e, 90) = (v, )|}
k=1
where (11,9) = [ragdp for p € M4 (T?) and g € C(T?). It can be shown that the above

metric induces the weak topology on M (T4). Then (M. (T%),) is a compact metric space. In
particular, it is separable and complete.

We now turn our attention to the space D([0,T], M4 (T%)). Since M, (T?) is a compact
metric space, we have the following characterisation of relative compactness for sequences of
probability measures on D([0, T], M4 (T%)) (cf. Appendix B).

Theorem 2.2. Let (PN) be a sequence of probability measures on D([0,T], M4(T9)). The
sequence is relatively compact if and only if

. : N / _
Ve > 0, ilin lim sup PV (p, w;,(7) > €) =0

N—oc0

To prove relative compactness of a sequence (Q) of probability measures on D ([0, T], M4 (Td)) ,
the condition stated above is often difficult to verify. Instead, the following corollary states that
it is enough to check relative compactness for the sequences of probability measures obtained by
projecting (Q™V) onto a dense countable subset of C(T9).

Corollary 2.3. Let (QV) be a sequence of probability measures on D([O,T],M+(Td)) and let
{gr, k > 1} be a dense family of C(T?). (QN) is relatively compact if and only if for every k > 1,
the sequence (QNTlgl) of probability measures on D([O,T],R) is relatively compact, where

Ty: D([0,T], M4 (T%) — D([0,T],R)
()t — (<Mt,gk>)t
Proof. For the necessity, we show that T}, is continuous. Let (u™) be a sequence in D ([0, T], M (T%))

converging to u in the Skorokhod topology. There exists a sequence (A,) of strictly increasing
continuous mappings of [0, T] onto itself such that ||\, —id|| — 0 and

sup & ("™ o A (t), pu(t)) = 0
t
In particular,

supmin {1, (1" 0 Au(t),gi) — {(0). 99| | < 2" sup (" © Ma(t). (1)) 0
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so that sup, | (1™ o A (t), gr) — (u(t), gx)| — 0 which proves that (u",gx) — (u,gx) in the Sko-
rokhod topology, so that T} is continuous and the result follows from the continuous mapping
theorem. For the sufficiency, fix € > 0 and 3 > 0. Choose k. such that 2% <. Fix v > 0 and
a partition {¢;} such that min; |¢; — t;—1]| > 7. For all i and all t;_1 < s <t < t;, we have

6(u(t). p(s)) = >~ 2 min {1, |(u(t), gu) = (u(s). 90)| |

M= 10

IN

274 (u(t). ge) — (), 90| + 5

x>
—

€

IN

_ €
2 kwm,gk)[ti—lvti) + 5

ES
Il
-

So

ke
_ €
wy, [tifla ti) = sup 5(:“’(t>7 :U’(S)) < Z 2 kw(,u,gk> [tifla ti) +3

ti_1<s<t<t; k=1 2

Now, taking the maximum over ¢ and then the infimum over all y-sparse sets {¢;}, we have
ke .
—k
wh () <Y 2wl g0 (1) + 5
k=1

By assumption, there exists 7y such that for all k < k., v <9 and N > 1,

QY (1 W gy () > €/2) < 27"

Therefore, for all v <~y and N > 1,

ke ke
QY (1 302 My () > €/2) < QY (1 {1 0]y () > €/2})
k=1 k=1
ke
<> QY (1 Wiy () > €/2) <8
k=1
Finally
ke
QY (1 w() > €) < QY (e Do 27wl () > ¢/2) < B
k=1

The hydrodynamic equation

Definition 2.4. Let pg: T¢ — [0,1] be an initial density profile. We say that a sequence (u¥) of

probability measures on {0, 1}T51V is associated to pg if for every continuous function G: T — R
and for every € > 0, we have

lim p (77, ’N*d Z G(z/N)n(x) — /Td G(u)po(u)du’ > e) =0

N—oc0 /
zeTg,
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or equivalently

N—oc0

lim pNo™ (7r€/\/l+(Td), <7r,G><po,G>’>e> -0

Theorem 2.5. Let py: T¢ — [0,1] be an initial density profile and let (u™) be a sequence of
probability measures associated to py. Let (nN); be the simple exclusion process on T4, with
initial distribution pNo~1 and let m) be the empirical measures associated to the configuration
nN. Then, for every t > 0, the sequence (ﬂ]]\\;gt)N converges in probability to the absolutely
continuous measure p(t,u)du where p(t,u) is the unique solution to the heat equation with initial
condition pg
Oip(t,u) = (2d) "t Ap(t,u), t >0, u € T
{p(07u) = po(u), ue T

Proof. For the sake of simplicity we will prove the theorem for d = 1, the proof being valid
in higher dimensions. We start by fixing a time 7" > 0 and letting Q~ be the probability
measure on D ([0, T], M4 (T)) corresponding to the Markov process (7X.,, t € [0,T]) with initial
distribution o ~!. To prove that the sequence Q¥ is weakly convergent, we shall show that it
is relatively compact and that all converging subsequences converge to the same limit which is
the Dirac measure (denoted hereafter by Q*) concentrated on the solution of the heat equation

(cf. Corollary |A.6).

First step: relative compactness. Denote by C?(T) the space of twice continuously
differentiable functions on T. C2(T) is separable and dense in C(T) for the uniform topology.
Applying Corollary 2.3. it suffices to check that for every G € C%(T) the sequence QVNT;" i
relatively compact where

Te: D([0,T), M4 (T)) — D([0,T],R)
() — (e, G)),
Fix a function G € C*(T). Notice that QNTg1 is the distribution of the process (71'%275, G), te
[0,7]) which takes values in D([0,T],R). We shall therefore apply Theorem For the first
condition,
QNTG_l(x, lz]| > a) QN (77, sup|<7rt,G>| > a)
]P)(SUPKT"N?U G)| > a)

Since the total mass of the emplrlcal measure 7y, is bounded by 1, [(7X.,, G)| < ||G|| and it
follows that lim,_,« limsupy Q¥ T (x, ||z| > a) = 0. It remains to prove the second condition,
or, as we shall do, the one of Remark @ Notice that

QTG (w, wa(y) > €) = Plwiey, y(7) > )

So we shall prove that
lim limsup ]P’(w<7r o) > =0 (a)

a—o0 N

Now applying Theorem with the Markov chain (7]%2 ;) whose generator is N 2Ly and the
function

F:R, x{0,1}™ — R
(t,m) — (o (n) 1277 G(z/N)
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we have the identity:
t
(oo ) = (,G) + [ N?LF (s, e )ds + MO (b)
0

where (M) is a martingale. But for sites z, z and configuration 7 such that n(z) = 1 and
n(x+z)=0,

F(s,n™" %) = F(s,n) = N7' Y (n"""*(y) = n(y))Gly/N) = N"{G((z + 2)/N) = G(z/N)}

So by a change of variables and a summation by parts

LnF(s,n) Zz: |Z1 —n(z + 2)){G((x +2)/N) — G(z/N)}
;221 n(z + 2)(1 = n(@){G((x + 2)/N) - G(z/N)}
= (4n)™ Z |Zl (n(x) = n(@ +2)){G((z + 2)/N) = G(z/N) }
= (4N)‘1§x:|§_:1 {G((x + 2)/N) + G((x — 2)/N) — 2G(z/N)}

= (2N?) 1277 JANG(z/N) = (2N?)" o (n), ANG)

where AyG(z/N) = N?{G((z + 1)/N) + G((z — 1)/N) — 2G(z/N)} is the discrete Laplacian.
The identity (]ED becomes

(N §) = (.G + (1/2) [ (e, AnGhds + ME™ ©

Now to prove @, it suffices to prove the same condition for each of the terms of the identity .
The initial term (7{¥, G) does not contribute in this respect. For the second term, the condition
follows from the estimate

t
| [, anGds| < 9lAx G <2167

for all ¥ > 0 and |t — s| < 7. The second inequality is a consequence of Taylor’s theorem. As for
the third term, we first recall Doob’s maximal inequality for a right-continuous, square-integrable
martingale (M;):

P( sup [My— M| > €) < 11@[ sup, [M; - M| < ;%IE“M;)—MQH

t€la,b] €2 t€la

Now we fix v > 0 and we choose a 7-sparse set {t;}. Notice that for any pair t,s € [0,T]
satisfying |t — s| < ~, either both ¢, s lie in the same interval (¢;—1,¢;] or they lie in adjacent
intervals. Notice also that identity (]EI) clearly shows (MtG ’N) is right-continuous, so we can apply
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Doob’s inequality. We have

P(’LUM‘G,N(’Y) >€) = P(|tsu|2 | MY — MEN| > e)
“sl<

< ]P’(sup sup |MtGN - Mgiﬂ > e/3)
i te(ti—1,t)

<Z ( s MS’N—M&IY|>6/3>

ti—1,ti)

36 G.N G,N |2
672 E|:|Mt1 - Mti—l | } (d)
Define NtG’N by

¢
NEN = EN = N? [ (L F) (o) = Flssnen) L F (s, e, )

0
By Theorem (NFNY is a martingale. A straightforward computation shows that

(LnF2)(s,n) = F(s, )L F(s,m) = N2> 3~ n@)(1 = n(a + 2)) (G((@ + 2)/N) = G(x/N))’

T |z|=1

Fix t,s € [0,T] with s < ¢.

E[| M5 - MEN|] = E[(ufN) - <MG7N>2}

— g / S 3 @)1~ (o +2) (G + 2)/N) ~ Gla/N)) du

S Tz [2=1
7112
HG ” /ZZHNQ z)(1 —n¥a, (x+z))du}
T |zl=1

G/ 2 |G/|2

Applying the last inequality with s =¢; 1 and t = ;, @ becomes

72
P(wy o (y) > €) < WHG/HQZ [ti — tia

72T
= vall¢l? =20
—00

which proves that Q¥ is relatively compact.

Second step: uniqueness of limit points. Now that we know that the sequence Q¥ is
(weakly) relatively compact, it remains to characterise all limit points of QY. Let @Q be a limit
point of QV. There exists a sequence (N;) such that Qi = @Q. We start by proving that Q
is concentrated on absolutely continuous measures with respect to the Lebesgue measure. Let
(g9x)k>1 be a dense family in C(T) and define

¢r: D([0,T], M4(T)) — R
(me)e — sgp|<7rt,gk>|
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Notice that ¢ is continuous: let (i) be a sequence in D([O, T], M+(T)) converging to p in the
Skorokhod topology. There exists a sequence (\,,) of strictly increasing continuous mappings of
[0, T onto itself such that ||\, —id|| — 0 and

sgp5(u” o An(t), u(t)) =0
Fix € > 0, 3ng, Yn > ng, Vt, 5(u™ o A\ (1), u(t)) < €/2%. By definition of §, we have

€

2% min {1, |<Mn o Au(t), gr) — </i(t)a9k>’} < ok

and
(1™ 0 An(t), gi) — (u(t), gi)| < €

For n > ng,

(1™ 0 An(®), gr)] < [(" 0 An(t), gi) = (u(t), gi) | + [ (1a(2), gn) |
< 6+Slip|<ﬂ(t)7gk>|

Taking the supremum over ¢ € [0, 7] in the last inequality, we have
sup (™ (1), gx)| = sup | (1™ 0 An(t), gr)| < €+ sup |(ua(t), gr)|

Similarly,
sup [(u(t), gr)] < e+ sup ("™ (t), 91|

which proves that ¢ is continuous. By the continuous mapping theorem, QNing,:l = ng,;l.
Notice that

Q¥o (0.8 low(a/N)I| = @Y (. sup (e gu)] < N7 D awe/N))
T x
= P((sup | (rap. 90| < N1 Y low(a/N)]) = 1
since there is at most one particle per site. Since gj is continuous,

¥ 2 b/l = [ lactu)ida

z€T N

By lemma[Al7] we have

Q(r. swl(m.o)l < [ lanl) = Qo [0. [ 1] =1

for all £ > 1. Therefore
Q(r. v = 1, swp(m90) < [ lonl) =1
T
Using the density of (gx) in C(T),

Q(m. vG e c(m), sup (7. G| S/T|G|) —1
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But any measure p on T satisfying

VG € C(T), |(u.C)| S/T'G'

is absolutely continuous with respect to the Lebesgue measure. This proves that @) is concentrated
on absolutely continuous trajectories with respect to the Lebesgue measure:

Q(ﬂ', vt, m(du) = p(t,u)du) =1

Moreover, @ is concentrated on trajectories that at time 0 are equal to pg(u)du. To see this, fix
G € C(T) and € > 0. By Portmanteau theorem,

Q(w € D((0,T), My (Ty),

(70, — (9o, ) > €]

< liminf Q" (ﬂ' € D([0,T], M1 (Tx)),

(70.G) — {90, G)| > )

_ limiianP<‘<7rév"7G> — (po, G>( > e)

= liminf Vo™t (7r e M4 (T), |(m,G) — <p07G>’ > 6) =0

Letting € — 0, we get
Qr (10.6) = (m.6)) =1

for all G € C(T). Using the separability of C(T), this becomes

Q(m VG € C(T), {mo,C) = <p0,G>) —1

which proves the result. Finally, we prove that @) is concentrated on trajectories that are weak
solutions for the heat equation. Fix G: T — R of class C? and € > 0. Apply Theorem with
the Markov chain (nY:,) and the function

F:Ry x{0,1}"v —R
(t,n) — {o(n),G)

Then the processes defined by

t
MEN = (10, G) = (m0,G) = [ N*LF(s, 1, )ds
0

t
NN = (N2 - N2 / ((EnF2) (s m8e,) = Fls, e ) En P (s, 1f,) ) ds

are both right-continuous martingales. In particular, by Doob’s maximal inequality,

G,N 4 G.N\2
]P’(sgp]Mt {>e) < é—QE{(MT ) }
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But since (NZ) is a martingale, E[Ng’N] = E[NSN] =0 and

B[] = 38 | (B F)5.1e0) — Flss o) s, 1))

T
= ]E/O 303 e @) (1 = iz + 2) (Gl(@ + 2)/N) = G(x/N)) ds

T |z|=1

<N G@PE [ 30 Y i (o)1 = 1, o+ )

xT ‘z‘:l

<2TN 'sup |G'(u)|> —— 0

N —oc0

So
lim}P’<sup|MtG’N’ > e) =0
N t

A similar computation to the one we made in the first step shows that
t
MtG’N = (124, G) — (70, G) — (1/2)/ (N2, ANG)ds
0

and we can rewrite @ as
t
lim Q" (m sup‘<m,c> (1o, G — (1/2)/ <7rS,ANG>ds) > e)
t 0

t
:1%11P<sup‘<ﬂx2t,G> — (70, G) — (1/2)/ (77%287ANG>d5’ > e> =0
t 0

On the other hand, for 7 € D([0,T], M4(T)) and ¢ € [0, 7],

t t
‘/ (wS,ANGfAGMs’ g/ sup |AnG(u) — AG(u)|ds
0 0

ucT
< T sup |ANG(u) — AG(u)|

< S TNY|GO| —— 0

N—o00

W =

using Taylor’s theorem. In particular,

t
lim QY (m sup ‘(1/2) / (1, AG — ANG>ds‘ > e/2> =0
t 0
Now, since the application

D([O,T],M+(T)) —R

() — sup [tm2, Gy — (o, G - /0 (10, 0sCs + (1/2)AG,)ds
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is continuous, {m, sup, |(m,G) — (m,G) — (1/2) fg<7T5,AGS>dS‘ > ¢} is an open subset of
D([0,T], M4(T)), and by Portmanteau theorem,
> e)

t
< lim inf Q™ (77, sup ‘(m,G) —{mo, G) — (1/2)/ <7T5,AG>dS’ > e)
% t 0

Q<7r, sup ]m, G) — (m0,G) — (1/2) /Otm, AG)ds

glimiinf{QNi (ﬂ, sup | (70, G) — (0, G) — (1/2) /Ot<7rs,ANG>ds‘ > €/2>

+QN (77, sup ‘(1/2) /Otm,AG - ANG>ds) > e/2>} —0

combining @ and . We just proved that for all G € C3(T),

Q(w, (70, G — (0, G) — (1/2) /0t<7rs,AG>ds:O) —1

By separability and density of C3(T) in C?(T), Q is concentrated on paths {m;, 0 <t < T} such
that for all G € C?,

(70.G) = (m0.G) = (1/2) [ (m, AG)s = 0 (1)

The previous results show that every limit point is concentrated on absolutely continuous tra-
jectories whose density is a weak solution in the sense of for the heat equation and whose
density at time 0 is pg. However, in order to prove a uniqueness result of weak solutions for the
heat equation, we need to prove the above relation for time dependent functions G. The proof
is quite similar to the one we just gave, so we shall skip it. In conclusion, all limit points are
concentrated on absolutely continuous trajectories that are weak solutions of the heat equation
in the following sense

(7, Gty — (m0, Go) — /0 (7s,0sGs + (1/2)AG)ds =0 (1)

for all G: [0, T] x T — R of class C1'?, and whose density at time 0 is pg. It turns out that there
exists only one weak solution to equation ([if) which therefore coincides with the strong solution.
For a proof of this result, we cite [8]. This means that every limit point is concentrated on the
solution of the heat equation. In other words, all converging subsequences of the sequence Q™
converge to the same limit, which is the Dirac measure concentrated on the solution of the heat
equation Q*.

Third step: convergence in probability at fixed time. In general it is false that the
application from D([0,T], M4 (T)) to M (T) obtained by taking the value at time 0 < ¢ < T of
the process is continuous (see Theorem [B.7]). Therefore to prove convergence at fixed time, we
will use the general form of the mapping theorem (see Theorem . Fix 0 < t < T and denote
by p; the projection at time ¢. Let D; be the set of discontinuities of p;. Adapting Theorem[B.7)in
the case of a general complete separable metric space S instead of R (here we take S = M, (T)),
we have that Dy consists of those € D([0,T], M (T)) which are discontinuous at t. But we
know that the limiting probability measure of @V is Q*, the dirac measure concentrated on the
solution of the heat equation. We also know that the solution of the heat equation is continuous
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and therefore it does not lie in D;. In other words D; has measure 0 with respect to Q*, and by
the mapping theorem

N, —1 *, —1
Q7p; = Q'
Thus w%z , converges in distribution to the deterministic measure p(t,u)du. Since convergence

in distribution to a deterministic variable implies convergence in probability, the theorem is
proved. O
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A Weak convergence in metric spaces

Let (S, p) be a complete separable metric space, and denote by S the Borel o-algebra. Let
P, and P be probability measures on (5,S). We say that P, converges weakly to P and write
P,, = P if for every bounded, continuous real function f on 5,

/ fdp, —— | fap
S S

n—oo

Here is a simple condition for weak convergence:

Theorem A.1. A necessary and sufficient condition for P,, = P is that each subsequence (Pyy))
contain a further subsequence (Pyoy(n)) converging weakly to P

Proof. The necessity is easy. As for sufficiency, if P, # P, then [g fdP, - [4 fdP for some
bounded, continuous f. But then, for some positive € and some subsequence (Py(n)),

‘ / FdPyy — / fdP‘ > e
S S

for all n, and no further subsequence can converge weakly to P. O

Let (S’,p’) be a metric space and let P, and P be probability measures on (9,S). One can
easily check that if h is a continuous mapping from S to S, then P, = P implies P,h~! = Ph~!
where Ph~! is the pushforward measure. However, the continuity assumption can be weakened.
Assume only that h: S — S’ is measurable with respect to the Borel o-algebras on S and 5/,
and let D;, be the set of its discontinuities.

Theorem A.2 (Mapping theorem). If P, = P and P(Dy) =0, then P,h~! = Ph~1.

The following notion of tightness plays a fundamental role in the theory of weak convergence.

Definition A.3. Let II be a family of probability measures on (S,S). We say that 11 is tight if
Ve >0, 3K C S compact,VP €I, P(K) > 1—¢

Theorem A.4. Each probability measure on (S,S) is tight.

Proof. Let P be a probability measure on (5,S), and fix ¢ > 0. Denote by (z,)n,>1 C S a dense
subset. For each k > 1,

S = G B(xn, 1/k)

n=1

In particular, there exists Vi such that

P(QB(%J/@) >1—2ik

31



Let K be the closure of (5, U,<n, B(n,1/k). Then

(m U B xn,l/k>

k>1n< Ny
—1-2(U N Bloy/my)
k>1n<Nj
>1—ZP< N B(xn,l/k)c)
k>1 n<Ny
>1—¢€

It remains to prove that K is compact. The set (5, U, <y, B(%n,1/k) is precompact. So, by
the completeness hypothesis, its closure K is compact. O

Let II a family of probability measures on (S,S). We call II (weakly) relatively compact if
every sequence of elements of I contains a weakly convergent subsequence; that is if for every
sequence (P,) in II there exist a subsequence (Py(,)) and a probability measure @ on (S,S)
such that Py,) = Q. The following theorem relates tightness of probability measures to relative
compactness.

Theorem A.5 (Prokhorov’s theorem). A family II of probability measures on (S,S) is tight if
and only if it is relatively compact.

Although the converse puts things in perspective, the direct half is what is essential to the
applications. The following corollary is useful for proving weak convergence.
Corollary A.6. If (P,) is tight, and if each subsequence that converges weakly at all in fact
converges weakly to P, then the entire sequence converges weakly to P.

We conclude this section with a useful lemma.

Lemma A.7. Let (P,) be a sequence of probability measures on R that converges weakly to P,
and let (t,) € le_ be a sequence converging to t > 0. Suppose that P, ([0,t,]) =1 for alln. Then

P([0,t]) =

Proof. Fix € > 0. There exists ng € N such that ¢, <t + ¢ for n > ng. Now
P([0,t + €]) > limsup P, ([0, ¢ + €])

> limsup P, ([0,¢,]) =1

using Portmanteau theorem and the monotonicity of probability measures. So for all € > 0,
P(]0,t +€]) = 1. Now taking € = 1/k and letting k¥ — oo, we have P([0,t]) = 1 by continuity of
P from above. O
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B The space D

Let C = C[0, 1] be the space of continuous real functions, and let D = D|0, 1] be the space
of real functions x on [0,1] that are right-continuous and have left-hand limits (cadlag). With
very little change, the theory can be extended to functions on [0,1] taking values in separable
and complete metric spaces other than R. For simplicity reasons, we develop the theory only in
the case of R and along the way we indicate the changes needed when working with a complete
separable metric space (5, p) with Borel o-algebra S.

One can show that a function x € D has at most countably many discontinuities, that it is
bounded and Borel measurable. For z € D and T' C [0, 1], put

we(T) = w(z,T) = SSBEpT |x(s) — z(t)]

The modulus of continuity of x is defined by

we(6) = w(w0) = sup |es) = w(t)

for 6 € (0,1]. It can also be written as

we(6) =  sup  wy[t,t+ J]
0<t<1-35

Call a set {t;} d-sparse if it satisfies 0 = t9 < t; < -+ < t, = 1 and min;(¢t; — t;—1) > 0. Now
define a modified modulus of continuity more suitable for the space D by

wh(6) = w'(x,8) = %nf} max wy[ti_1,t;)
t; 2
for 6 € (0,1), where the infimum extends over all d-sparse sets. These definitions make sense
even if x does not lie in D, but one can show that w),(6) — 0 when § — 0 if and only if € D.
Similarly, w,(6) — 0 when § — 0 if and only if z € C.

The Skorokhod topology

Two functions x and y are near one another in the uniform topology used for C' if the graph
of z(t) can be carried onto the graph of y(¢) by a uniformly small perturbation of the ordinates,
with the abscissas kept fixed. In D, we want to allow also a uniformly small deformation of the
time scale. This means that a small time change does not modify too much the proximity of two
functions. The Skorokhod topology embodies this idea.

Let A denote the class of strictly increasing, continuous mappings of [0, 1] onto itself. Notice
that if A € A, then A\(0) =0 and A(1) = 1. Define a distance d on D by setting

d(z,y) = inf min{[|A —id||, o —y o All}

for x,y € D, where id is the identity map on [0, 1]. In this definition, A represents the uniformly
small deformation of the time scale.
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A sequence x, in D converges to x in the Skorokhod topology if and only if there exists
a sequence A, in A such that ||\, —id|| — 0 and ||z, o A, — z|| — 0. In particular, uniform
convergence implies convergence in the Skorokhod topology. On the other hand, since

|20 (8) = 2(8)] < [2n(t) — 2 0 An(B)] + |2 0 An(t) — 2(1)]

convergence in the Skorokhod topology implies that x,(t) — x(¢) holds for continuity points ¢
of z. Moreover, if x is continuous on [0, 1], then convergence in the Skorokhod topology implies
uniform convergence. Therefore, the Skorokhod topology restricted to C coincides with the
uniform topology.

One can show that D is separable under the metric d, but not complete (Consider the sequence
x, = 1pg3-ny). We can overcome this issue by defining another metric d° that is equivalent to d
(meaning they induce the same topology) but under which D is complete. Start by setting

A — As
t—s

A1 = sup [log
s<t
for A € A. Now for z,y € D, let

&°(w,) = it min{ X%, o = y o A}

It can be shown that this defines a metric on D. Moreover, we have the following theorems.
Theorem B.1. The metrics d and d° are (topologically) equivalent.

Theorem B.2. The space D is separable under d and d° and is complete under d°.

We now turn our attention to the characterisation of compact sets in D. Using the modulus

' (8) we can prove an analogue of the Arzela-Ascoli theorem:

Wy,

Theorem B.3. Let A C D. Then A is relatively compact in the Skorokhod topology if and only
if the following conditions hold:

sup [lal] < o
z€A

lim sup w,(6) =0
6=04cA

Remark B.4. For the general space S, write sup, p(z(t),y(t)) in place of ||z — y|| in all the
definitions and arguments. The first condition in the above theorem should be replaced by the
assumption that {x(t), x € A, t € [0,1]} has compact closure in S. The rest needs no change.

Weak convergence in D

Theorem B.5. The sequence (P,,) is tight if and only if the following conditions hold:

- <) —
ahﬂn;Q hmnsuan(:c, ||| > a) 0 (1)

Ve > 0, gin%)limsup Py (z, w,(0) >€)=0 (2)
- n
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Remark B.6. We have the following inequality
w!(8) < wy(26)
for 6 < 1/2. Consequently, if instead of condition of the previous theorem, we prove:

Ve > 0, lim limsup P, (z, wy(5) >€) =0 (3)
5—0 n
then (Py) is tight.

Finally we take a look at the projections from D to R* which will be useful in the proof of

the hydrodynamic limit. For 0 <t; < --- <ty <1 define the natural projection py, ...+, as usual:

Dyt - D — Rk
z— (z(t1),...,z(tx))

Since each function in A fixes 0 and 1, pg and p; are continuous in the Skorokhod topology.
Suppose that 0 < t < 1. If points x,, converge to x in the Skorokhod topology and x is continuous
at ¢, then as mentioned earlier x, (t) — x(t). Suppose, on the other hand, that x is discontinuous
at t. If A, is the element of A that carries t to t — 1/n and is linear on [0,¢] and [¢,1] and if
Zn(s) = xo A, (s), then z,, converges to z in the Skorokhod topology but x,,(t) does not converge
to z(t). Therefore, for 0 < ¢ < 1, p; is continuous at z if and only if x is continuous at ¢.

We must prove that py,...;, is measurable with respect to the Borel o-algebra D. We need
consider only a single time point ¢ since a mapping into R* is measurable if each component
mapping is, and we may assume t < 1. Let

he(z) =€ ? /tH_E x(s)ds

If 2, — x in the Skorokhod topology, then x,,(s) — x(s) for continuity points s of z as mentioned
earlier. But we know that x has at most countably many discontinuities. Therefore x,,(s) — x(s)
holds for points s outside a set of Lebesgue measure 0. Since on the other hand, the x,, are
uniformly bounded, we have
he(2n) —— he(x)
n—oo

using Lebesgue’s dominated convergence theorem. Thus he is continuous in the Skorokhod
topology. By right-continuity, h,,-1(x) — x(t) = p:(z) for each © € D as m — oo. Therefore
each p; is measurable. In summary, we have the following theorem:

Theorem B.7. (i) The projections pg and p1 are continuous.
(i) For 0 <t <1, p; is continuous at x if and only if x is continuous at t.

(iii) Each p; is measurable D/R, and each py,.., is measurable D/RF.
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