Nombres de Bell

Julie Parreaux

2018-2019

Référence du développement : X-ENS algèbre 1 [1, p.14].

Leçons où on présente le développement : 190 (Dénombrement) ; 230 (Séries numériques) ; 243 (Série entière).

1 Introduction

Les nombres de Bell dénotent le nombre de partitions distinctes de l'ensemble $[\![1,n]\!]$ où de manière équivalente, le nombre de relations d'équivalence sur cet ensemble. On dénombre alors l'ensemble des partitions de cet ensemble d'entier. Ce nombre s'exprime à l'aide d'une série numérique (le résultat est sa somme). On utilise une série génératrice, définie par une série entière que nous évaluons en une valeur précise.

2 Dénombrer le nombre de partitions : nombre de Bell

Théorème. Soit $n \ge 0$. On note B_n le nombre de partitions distinctes de l'ensemble [1, n] (avec $B_0 = 1$). Alors

- 1. La série entière $\sum_{n=0}^{+\infty} \frac{B_n}{n!} z^n$ a un rayon de convergence R > 0 et sa somme f vérifie $\forall z \in]-R, R[, f(z) = e^{e^z-1}]$
- 2. Pour tout $k \in \mathbb{N}$, $B_k = \frac{1}{e} \left(\sum_{n=1}^{+\infty} \frac{n^k}{n!} \right)$.

Exemple: — $B_0 = 1$ car la seule partition de \emptyset est $\{\emptyset\}$.

- $B_1 = 1$ car la seule partition de $\{1\}$ est $\{1\}$.
- $B_2 = 2$ car les partitions de $\{1,2\}$ sont $\{\{\{1\},\{2\}\},\{\{1,2\}\}\}$

Schéma du développement —

Si on a le temps, on peut faire un ou deux exemples de calculs de B_n (pour n assez petit) après avoir énoncer le théorème.

- 1. Établir la relation de récurrence suivante $B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$.
 - (a) Calcul de $|E_k|$.
 - (b) Exprimer la récurrence.
- 2. Majorer B_n : raisonnement par récurrence.
- 3. Étude de la série entière.
 - (a) Calcul du rayon de convergence.
 - (b) Calcul de la somme
- 4. Expression de B_n .

Démonstration. Soit $n \geq 0$.

Étape 1 : établissons la relation de récurrence suivante $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$ Pour n=0 cette relation est vérifiée : $B_1 = 1$ et $\sum_{k=0}^{0} \binom{0}{k} B_0 = B_0 = 1$. Établissons cette relation de récurrence pour $n \in \mathbb{N}$. Notons E_k l'ensemble des partitions de [1, n+1] pour lesquelles la partie contenant (n+1) est de cardinal (k+1).

Étape a : calcul de $|E_k|$ Montrons que $|E_k| = \binom{n}{k} B_{n-k}$.

- Constituer la partie contenant (n+1) consiste en choisir k éléments dans [1, n] : $\binom{n}{k}$ choix.
- Réaliser les partitions des (n k) éléments restants : B_{n-k} choix (définition de B_i).

Étape b : exprimons la récurrence Soit $\{E_0, \dots, E_n\}$ une partition de [1, n + 1]. En effet :

- $\forall i \neq j$, $E_i \cap E_j = \emptyset$ car les parties contenant (n+1) sont de cardinal (i+1) ou (j+1) (qui sont distincts) : les partitions ne peuvent donc pas être les mêmes.
- E_0, \ldots, E_n décrivent l'ensemble des partitions de [1, n+1] car ils décrivent l'ensembles des partitions selon la taille de la partie contenant (n+1).

On a alors

```
\begin{array}{lll} B_{n+1} & = & \left| \cup_{k=0}^n E_k \right| & \text{(on compte le nombre de partition grâce à la partition des partitions)} \\ & = & \sum_{k=0}^n \left| E_k \right| & \text{(car ils forment une partition)} \\ & = & \sum_{k=0}^n \binom{n}{k} B_{n-k} & \text{(par le calcul précédent)} \\ & = & \sum_{j=0}^n \binom{n}{n-j} B_j & \text{(changement d'indice } j=n-k) \\ & = & \sum_{j=0}^n \binom{n}{j} B_j & \binom{n}{n-j} = \binom{n}{j} ) \end{array}
```

Étape 2 : majorons B_n Montrons par récurrence sur $n \in \mathbb{N}$ la propriété \mathcal{P}_n : " $B_n \le n!$. Initialisation Pour n = 0, par hypothèse, on a $B_0 = 1 \le 1 = 0!$. Hérédité Soit $n \in \mathbb{N}$ tel que $\forall k \le n \mathcal{P}_k$ soit vérifiée. On a alors

```
B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k \qquad \text{(Étape 1)}
\leq \sum_{j=0}^{n} \binom{n}{j} k! \qquad \text{(}(\mathcal{P}_k)\text{)}
= \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} k! \qquad \text{(définition de } \binom{n}{k}\text{)}
= n! \sum_{j=0}^{n} \frac{1}{(n-k)!k!} \qquad \text{(simplification)}
\leq n! \sum_{j=0}^{n} 1 \qquad \left(\frac{1}{(n-k)!k!} \leq 1\right)
= n! (n+1) \qquad \text{(manipulation de la somme)}
= (n+1)! \qquad \text{(manipulation de la factorielle)}
```

D'où \mathcal{P}_{n+1} .

Étape 3 : montrons que la série entière $\sum_{n=0}^{+\infty} \frac{B_n}{n!} z^n$ a un rayon de convergence R > 0 et sa somme f vérifie $\forall z \in]-R$, R[, $f(z) = e^{e^z-1}$

Étape a : calcul du rayon de convergence On a alors $\forall n \geq 0$ et $\forall z \in \mathbb{C}$, $\frac{B_n}{n!}z^n \leq |z|^n$ (car $\frac{B_n}{n!} \leq 1$). La série a alors un rayon de convergence $R \geq 1$. En particulier, $R \neq 0$.

Étape b : calcul de la somme Comme $R \neq 0$, pour tout $z \in]-R$, R[, on peut écrire

$$f(z) = \sum_{n=0}^{+\infty} \frac{B_n}{n!} z^n$$
 (Définition de f)
= $1 + \sum_{n=0}^{+\infty} \frac{B_{n+1}}{(n+1)!} z^{n+1}$ (On sort le premier terme de la somme)

On peut alors dérivé terme à terme cette série entière :

$$f'(z) = \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} {n \choose k} B_k \right) z^n$$
 (Dérivation $(B_{n+1} \text{ est une constante})$ et expression de B_{n+1})
$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{B_k}{k(n-k)!} \right) z^n$$
 (par définition du binome et en simplifiant l'expression obtenue)

On reconnaît le produit de Cauchy entre les séries $\sum \frac{B_n}{n!} z^n$ et $\sum \frac{z^n}{n!}$ (de rayon de convergence $+\infty$ et de somme e^z) qui ont toutes les deux un rayon de convergence supérieur ou égal à R. Donc $\forall z \in]-R$, R[, $f'(z) = f(z)e^z$. On en déduit qu'il existe $C \in \mathbb{R}$ tel que, pour tout $z \in]-R$, R[, $f(z) = Ce^{e^z}$.

Comme $f(0) = B_0 = 1$, on en déduit que $C = \frac{1}{e}$ (car $Ce^{e^z} = Ce = 1$ si z = 0). On conclut que pour tout $z \in]-R$, R[, $f(z) = \frac{1}{e}e^{e^z} = e^{e^z-1}$.

Étape 4 : montrons que pour tout $k \in \mathbb{N}$, $B_k = \frac{1}{e} \left(\sum_{n=1}^{+\infty} \frac{n^k}{n!} \right)$

— La série entière définissant la fonction exponentielle ayant un rayon de convergence infini, on a $\forall z \in \mathbb{C}$,

$$e^{e^z} = \sum_{n=0}^{+\infty} \frac{e^{nz}}{n!}$$
 (série entière de e^z)
 $= \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^{+\infty} \frac{(nz)^k}{k!} \right)$ (série entière de e^{nz})

— Pour tout $k, n \in \mathbb{N}$, on note $u_{n,k} = \frac{(nz)^k}{n!k!}$. Montrons que $(u_{n,k})_{n,k}$ est sommable. Pour tout $n \in \mathbb{N}$,

$$\begin{array}{lcl} \sum_{k=0}^{+\infty} \left| u_{n,k} \right| & = & \sum_{k=0}^{+\infty} \frac{|nz|^k}{n!k!} & \text{(Définition de } u_{n,k} \text{ et propriété du module)} \\ & = & \frac{e^{|nz|}}{n!} & \text{(série entière de } e^{nz}) \end{array}$$

On obtient le terme général d'une série convergeant vers $e^{e^{|z|}}$. La double somme est donc bien sommable.

— On peut donc sommer cette famille dans l'ordre que l'on souhaite (cas particulier de Fubini). Pour tout $z \in]-R$, R[, on a :

$$\begin{array}{lll} f(z) & = & \frac{1}{\ell} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} u_{n,k} \right) & \text{(D\'efinition de } f) \\ & = & \frac{1}{\ell} \sum_{k=0}^{\infty} \left(\sum_{n=0}^{\infty} u_{n,k} \right) & \text{(Interversion des sommes)} \\ & = & \frac{1}{\ell} \sum_{k=0}^{\infty} \left(\sum_{n=0}^{\infty} \frac{n^k}{n!} \right) \frac{z^k}{k!} & \text{(D\'efinition de } u_{n,k} \text{ et sortir les termes ne d\'ependant pas de } n) \end{array}$$

— Par unicité du développement en série entière de f sur]-R, R[, on en déduit que pour tout $k \ge 0$, $B_k = \frac{1}{e} \left(\sum_{n=1}^{+\infty} \frac{n^k}{n!} \right)$.

Remarque. On vient de montrer qu'en réalité la rayon de convergence de f est ∞ .

Références

[1] S.Nicolas S. Francinou, H. Gianella. Oraux X-ENS, Algèbre 1. Cassini.