
1

Offline Handwritten Recognition : Influence of
the Baseline information

Killian Barrere ∗ and Florent Bartoccioni∗ supervised by Bertrand Coüasnon†
∗ENS Rennes, Univ Rennes, France
†Univ Rennes, CNRS, IRISA, France

Abstract—Known as Handwritten Text Recognition (HTR), the task of transcribing handwritten inputs into a sequence of numerical
character is still an open problem. The offline variant of HTR, that is to say, making transcription from an image of a text, has been
extensively researched. Therefore, we provide an exhaustive survey of the evolution and progress in this field, introducing Hidden
Markov Models (HMM) as well as Neural Network (NN) approaches. It shows that NN architectures are more promising as they need
less human supervision than HMM only methods. From this survey we provide a NN architecture for HTR that should compete with the
state of the art performances. Finally, we discuss of the potential improvement the text baseline’s position could bring to the recognition
performance.

Index Terms—Deep Learning, Handwritten Text Recognition, Offline Text Recognition, Pre-Segmented lines.

F

1 INTRODUCTION

Even in our digital age there is still a non-negligible number
of documents that are handwritten. Storing handwritten
documents and searching through them efficiently are both
difficult tasks. We define Handwritten Text Recognition
(HTR) as the ability of transcribing into a sequence of nu-
merical character handwritten inputs from sources such as
paper documents, pictures, touch-screens and other devices.
Two variants of HTR exist, Online and Offline. For the former
the input is captured while the person is writing. For exam-
ple the movements of the pen tip is registered by a graphics
tablet. Meanwhile, for the later the input is a picture of the
entire text (the raw values of pixels). Online HTR is know
as being easier as more information is available such as
the velocity of the tip, the pressure applied and the points
drawn as a sequence through time. We narrow down the
scope of the project by only working on the offline variant
of HTR. Therefore, by simplicity and from this point, we
will refer Offline HTR as only HTR.

Like other subjects, HTR was struck by the Deep Learn-
ing wave. Before HTR used to work with Hidden Markov
Model (HMM) as an entire system, but with the new Deep
Learning methods, the gain in performance was important
[1]. Now, almost every HTR system uses Neural Networks.
Many teams now work on many parts of HTR Neural
Networks to slightly increase the performance.

But one thing that seems to be not so researched is the
influence of the baseline’s position. We think that adding
the knowledge of a line could help the Neural Network to
recognize letters (and texts at the end), especially those who
have to cross the standard character size such as a p, l, etc.

In this project, we will first try to build an architecture
that stick to state of the art results. Then we will try to eval-
uate the influence of the text baseline position. Especially,
we will have to check different ways to add the baseline’s

information to the architecture.
The first part of the paper consists of an historical

background of Text Recognition. HMM systems for text
recognition is discussed in section 2, while the section 3 ex-
plains why HMM are now replaced with Neural Networks
(NN). Then in section 4, some architectures used for HTR,
and their main components are described. Section 5 explains
some optimization that could be done to achieve better
results. Finally, section 6 will explain our choices regarding
the architecture that we will implement.

2 HIDDEN MARKOV MODEL FOR HANDWRITTEN
TEXT RECOGNITION

Hidden Markov Model (HMM) used to be the most com-
mon solution for HTR. Now almost each HMM pipeline
have been replaced by Neural Networks. But HMM are still
used for some part of the HTR pipeline (presented in section
4.2.1).

HMM are composed of multiple states. Each state can
be linked to another state thanks to transitions. The HMM
learns the probability of each transition according to some
examples. Once learned, the HMM is able to recognize texts.
It first computes the features for the inputs (the inputs are
the pixels the HMM is currently working), and then uses the
Viterbi’s algorithm [2] to select the most likely sequence. It
then returns the decided text.

But HMMs have some problems. First, each descriptor
are provided by hand. People choose what descriptor to use
based on their knowledge (Edge detection, number of black
pixels, etc). Another problem is the lack of relations with
the other characters (also called context). HMM have only
access to its last result. It is a problem mainly because a
HMM does not work on entire character, but on some pixels
of the character.

2

3 DEEP LEARNING

Recently, Deep learning methods has been introduced in
HTR pipeline to compensate for HMM’s drawbacks. In
this section we will introduce the deep learning tools used
for feature extraction in HTR. We introduce Convolutional
Neural Networks (CNN) (in section 3.2), which are able
to learn relevant features extractor instead fixed, as well
as Recurrent Neural Networks (RNN)(presented in section
3.3) that can access a larger context.

3.1 Artificial Neural Network
Neural Networks (NN) try to mimic the way the human
brain works. A neuron is a simple unit combining input
from the data with a set of weights. These weights assign
significance to inputs for the task the algorithm is trying to
learn. (For example, which input is most helpful in classi-
fying data without error?). A neuron performs a weighted
sum of input on which is applied a non-linear activation
function. This activation function determines, according to
the weights, to what extent the input signal will progress
to the output, say, an act of classification. So, in essence, a
neuron is a mathematical operation of its input.

Multiple neurons can be stacked together into what
we call a layer. We will see in the following sections that
different types of layer useful to HTR, such as convolutional
and recurrent (section 3.2 and 3.3 exist. Deep Neural Net-
works (DNN) is the name we use for networks composed of
several layers where each layer’s output is simultaneously
the subsequent layer’s input.

In order for a NN to fulfill its task, we give the NN
some examples. The NN then processes the input through
its various neurons, this phase is called Forward Propaga-
tion. Then we get the output of the NN and compare the
output with the desired output. Based on the error, we
change the weights of the connections between neurons,
this is called Backpropagation. This whole process is called
training. DNN are difficult to train as the gradient of the
Backpropagation tends to vanish when passing troughs a lot
of layers, effectively preventing the weight from changing
its value. This issue is called the vanishing gradient. We
will explain this phenomenon and present different existing
solutions to overcome it in section 3.4 .

3.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are mostly used in
image features extraction as they capture local information
from the input.

An intuitive explanation of CNN is that it learns local
filters. Trough its convolutional layers, it learn to extract
features from every location in the input. Formally, we make
a convolution (exactly the mathematical operation) across
the input data, but instead of using a predefined matrix, we
learn this one as being the weights applied to the input data.
Convolution has the nice property of being translational
invariant. The output signal strength is not dependent on
where the features are located, but simply whether the
features are present.

Moreover, Various operations can be applied between
convolutional layers. For example, inputs from the convo-
lution layer can be “smoothened” to reduce the sensitivity

of the filters to noise and variations (subsampling). Subsam-
pling methods (for image signals) include reducing the size
of the image, or reducing the color contrast across red, green,
blue (RGB) channels.

They are several architectures in the field of CNNs that
have a name. The most common are LeNet [3], AlexNet [4],
VGG [5] and Inception [6] and are well known for images
classification task.

With all these characteristics, CNNs are of great help
regarding HTR [7] [8] and convolutional layers is often, if
not always, found in architecture used for HTR.

3.3 Recurrent Neural Networks
Feed-forwards Neural Networks (FNN), like CNNs, falls
short when working on sequential information. In FNN, we
assume that inputs are independents from outputs, hence
they can’t retain what they have already seen (compute).
However, if you want to predict the next element of a
sequence, you have to know the preceding elements. Re-
current Neural Networks (RNN) address this issue.

RNNs are called recurrent because the output is de-
pended of the previous computations, allowing information
to persist. You can think of it as a memory that stores
informations about previous computations.

In the figure 1, C is the repeating module (composition
of different layers, more to say in section 3.4.1), it is the
”memory” of this network. It captures information about
what happened in all the previous steps. At step t, it takes
an input xt and outputs a value ht based on the previous
memorizations.

xt

C

ht

Wi

Wh

Wr

Fig. 1: A single layer Recurrent Neural Network

In other words, a RNN is simply a sequence of the same
network, each of them passing informations to the next one.
It is more explanatory when we unfold the network as in
figure 2:

x0

C

h0

x1

C

h1

x2

C

h2

. . .

. . .

xt

C

ht

Wi

Wh

Wr

Wi

Wh

Wr

Wi

Wh

Wr

Wi

Wh

Fig. 2: A single layer Recurrent Neural Network unfolded

Once unfolded an RNN reveals its natural architecture
for sequences. As an RNN is recursively connected to its
previous state, it has informations of its entire history. This
architecture embed properties that make RNNs suitable for
sequence learning, such as robustness to input warping and
the ability to learn which context to use. Theoretically it
is able to memorize every past state. But in experiment, it

3

struggles a lot to memorize informations from a far previous
state. Long Short-Term Memory (introduced in section 3.4.1)
have been proposed as a solution to better memorize context
from a long time.

3.4 Vanishing gradient problem

A problem caused by the use of Deep Learning architec-
tures is often faced during backpropagation. The process of
backpropagation consists in updating the network’s weights
according to the error. More formally we have

∆Wi =
∂E

∂Wi

Using the chain rule, it translate into

∆Wi =
∂E

∂output

∂output

∂hiddenn
· · · ∂hidden1

∂Wi

Recall that each neuron in hidden layers usually use sigmoid
activation and its derivative outputs values between 0 and
1/4. Hence, we are multiplying numerous values which are
between 0 and 1. The error propagated will become small
very fast. Because of this, the first layers are the slowest
to train. And since the latter layers, especially the output,
is functionally dependent on the earlier layers, inaccurate
early layers will cause the latter layers to simply build
on this inaccuracy, corrupting the entire neural net. This
phenomenon is called the Vanishing gradient Problem. The
following sections proposes existing solutions to solve this
problem.

3.4.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) [9] is a solution to RNN
(introduced in section 3.3) that are facing the Vanishing
Gradient Problem. It consists of several memory cells. Each
cell has an input, an output and a forget gate. It can remem-
ber previous states like a RNN. The forget gate is used to
tell the cell to lose some knowledge. The results show that
LSTM can store informations for a longer time than RNN.
LSTM have increased the RNN’s performances and are now
used almost in every architecture (like Bi-Directional LSTM
presented in section 4.1.1). It is also more robust to the
Vanishing Gradient Problem. Some new alternatives exist
like Gated Recurrent Unit (GRU) [10] or Gated Memory
Unit (GMU) [11]. They provide an access to even longer
term dependency, giving better results. While GRUs may
be used, GMUs are just recent and struggle to have better
results than LSTMs.

The activation layer controls how the signal flows from
one layer to the next, emulating how neurons are fired
in our brain. Output signals which are strongly associated
with past references would activate more neurons, enabling
signals to be propagated more efficiently for identification.

3.4.2 Rectified Linear Unit

The vanishing gradient is a problem for the training of neu-
ral networks. Standard activation functions limit the back-
propagation of the gradient. It is explained by the bounds
of the activation functions. Sigmoid function returns a result
between 0 and 1. Rectified Linear Unit (ReLU) solves this

problem and shows some improvements to the Vanishing
gradient problem.

ReLU(x) = max(0, x)

For negative numbers, the derivate is equal to 0 while
for positive numbers, it is equal to 1. Thanks to the derivate
value, NNs that use ReLU are less affected by the Vanishing
Gradient Problem. Through Backpropagation, the values to
change still have a derivate equal to 1. A problem with this
function is that its derivate has no value at x = 0.

4 PIPELINE

In this section we will discuss of the full pipeline. We
will talk about how the basic Deep Learning tools (section
3) have been extended to handle the feature extraction in
the HTR task. An example of an architecture using Multi-
Dimensional LSTM (MDLSTM), CNN, Dropout and Con-
nectionist temporal classification (CTC) (respectively section
4.1.2, 3.2, 5.2 and 4.2.3) is showed in figure 3. However the
feature extraction is only a component of a complete recog-
nition system, which typically also include an optical model,
and a language model. Both of them will be formalized and
explained in section 4.2.

Fig. 3: Architecture designed for feature extraction in HTR
(source: [12]). Full size image with additional information is
available in figure 6.

4.1 Feature Extraction
Feature extraction is the process of transposing the data
from its original space into a feature space used for clas-
sification. As explained in section 3.3 RNNs are a natural
tool for sequence processing. To make use of all the in-
formation available in the input, it has been extended to
handle two directions (in section 4.1.1). It has been further
extended on multiple dimensions and direction by Alex
Graves with multi-directional Multiple-Dimensional RNN
[13] (MDRNN) which we are describing in section 4.1.2.

4.1.1 Bidirectional Long Short-Term Memory
When classifying a word in an image of handwritten text, it
helps to look at the characters at the end and the beginning
of the word. Even if a RNN can retains past information
it does not take advantage of this contextual information.
Bidirectional RNN [14] (BRNN) is an effective solution to
this problem. In a BRNN, two separate recurrent net takes
the input respectively in forward and backward direction
and are connected to the same output layer (see figure 4).

As BRNN is based on the standard RNN it also suffers
from the vanishing gradient. To address this issue BRNN
has been extended to Bidirectional LSTM (BLSTM). BLSTM
has been successfully applied to speech [15] [16] and text
[17] [18] [19] recognition

4

x3

C

C

h3

x4

C

C

h4

x5

C

C

h5

. . .

. . .

. . .

. . .

Wif

Whf

WrfWrf

Wif

Whf

Wrf

Wif

Whf

Wrf

Wib

Whb

Wrb Wrb

Wib

Whb

Wrb

Wib

Whb

Wrb

Fig. 4: A BRNN unfolded

4.1.2 Multi-Dimensional Recurrent Neural Networks

Because of the one unidimensional nature of standards
RNNs (section 3.3), they are poorly suited to multidimen-
sional data such as images. Therefore, the data must be
preprocessed to one dimension, for example by presenting
one vertical line of an image at a time to the network. Alex
Graves proposed the Multi-Dimensional Recurrent Neural
Networks (MDRNN) [13] as an efficient way of building
multidimensional context into RNNs.

The idea behind MDRNNs is to replace the single
recurrent connection found in standard RNNs (C in figure 1)
with as many recurrent connections as there are dimensions
in the data. Hence, at each point in the data sequence, the
hidden layer of the network receives information from one
step back along all dimensions.

For the same reasons as discussed in section 4.1.1, we
might want to have access to the surrounding context in all
directions. BRNNs can be extended to n-dimensional data
by using 2n separate hidden layers. The 2 dimensional case
is illustrated in figure 5a .

(a) (b)

Fig. 5: (a) Axes used by the 4 hidden layers in a multi-
directional MDRNN. The arrows inside the rectangle indi-
cate the direction of propagation during the forward pass.
(b) Context available at (i,j) to a multi-directional MDRNN
(source: [13])

The MDRNN have several advantages that others NN
architectures don’t have. For example, CNN must have a
hand specified kernel size which means they do not scale
well to large images. Moreover, with CNNs, tasks such as
handwritten digits recognition require a presegmentation
into individual characters [20]. MDRNN, on the other hand,
scale naturally in input size and dimensionality.

Multi-dimensional HMMs have also been proposed for
multi-dimensional tasks. However, the time required to run
the Viterbi’s algorithm [2], and thereby calculate the optimal
state sequences, grows exponentially with the number of
data points. Likewise, the number of transition probabilities,

and hence the required memory, grows exponentially with
the data dimensionality. Hence, this method is not able to
exploit the full multi-dimensional structure of the data.

MDRNN address these issues [13], and its variant using
LSTMs, the MDLSTM [13], showed great results on HTR [1]
[12] [21]

4.2 Decoding

In this section, we focus on the transformation of feature
vectors (the output of the NN) into text. We first need to
formalize the task of recognition. Given an input x (a feature
vector), we want to find the sentence s∗ that maximize the
conditional probability:

s∗ = arg max
s∈S

P (s|x)

As P (x) is fixed, by Bayes rule the maximization can be
reduced to:

s∗ = arg max
s∈S

P (x|s)P (s)

In this section we present state of the art methods to
estimate these probabilities.

4.2.1 Optical Model

The term P (x|s) describes the probability of feature vector
x that can be produced from sentences: this is known as
the optical model (similarly as the acoustic model in speech
recognition), and is often a HMM (which gives the so called
hybrid-HMM).

Hybrid Hidden Markov Model (Hybrid HMM), use
both a Neural Network and a HMM. The Neural Network
can be a basic NN or a more complex network like MDL-
STMs (see section 4.1.2). The NN is used to estimate the
probabilities of the HMM’s transitions. Hybrid HMM are
faster than HMM as a full pipeline, and the number of
parameters is lower [22].

4.2.2 Language Model

A complete system for large vocabulary handwriting text
recognition includes a lexicon and a Language model (LM),
which greatly decrease the error rate by inducing lexical
constraints and rescoring the hypotheses produced by the
optical model.

The aim of the LM is to provide a density estimation
P (s) over all possible sentences. Hence, we could distin-
guish two sentences that are similar visually. In particular,
we want the model to satisfy P (s1) > P (s2) where s1 is the
correct sentence and s2 the erroneous one.

To estimate this probability, n-grams are often used. n-
grams are defined as a succession of n characters. LM can
use NN to improve some parts of the LM. These LMs
are specifically called Neural Network - Language Model
(NNLM). They learn a vocabulary given some example
words. They are focusing on the probabilistic transition
between characters, syllabus or n-grams. They are useful
because of the difficulty of the task [23] [24].

5

4.2.3 Connectionist Temporal Classification
RNNs require pre-segmented training data and post-
processing to transform their outputs into label sequences.
Therefore their applicability has so far been limited. To
address this issue, Connectionist Temporal Classification
(CTC) [25] has been introduced by Alex Graves and al,
and directly estimate P (s|x). CTC is a cost function for
NN which enables it to learn a mapping between sequences
of unequal lengths. Specifically, we assume that the output
sequence is shorter than the input. To compensate for differ-
ence in length, a blank label is added to the output labels.
Moreover it allows classification without segmentation as it
aligns each label prediction with the corresponding part of
the sequence. CTC showed better results [25] [1] than HMM
as it provide probabilistic estimation of the output sequence
(characters and blanks) regarding the sequence of inputs.

In [26] and [27], the authors have also extended their
CTC with RNN transducer method, where a LM is added in
conjunction with the CTC leading to a jointly trained optical
and LM.

5 TRAINING & OPTIMIZATION PROCESS

It is known that NN are difficult to train [28]. In this section
we discuss about techniques and optimizations to train NN.

5.1 training RNN
The feedforward Backpropagation algorithm cannot be di-
rectly transferred to RNNs because the standard backprop-
agation pass assumes the connections between units are
cycle-free. The solution of the Backpropagation Trough Time
approach is to unfold the recurrent network in time (as
shown in figure 2), by stacking identical copies of the
RNN, and redirecting connections within the network to
obtain connections between subsequent copies. This gives
a feedforward network, on which we can execute the back-
propagation algorithm.

An efficient training framework for recurrent neural
networks is critical to reach competitive results [29]. One
simple optimization for the training of RNN is to initialize
the weight of the network to random values [30]. When
initialized this way, the RNN converges faster.

5.2 Dropout
The Dropout [12] selects some neurons in the network
randomly during each epoch, and disable them. The outputs
of these neurons are null, and they have no impact on
forward propagation and Backpropagation. The resulting
trained NN is less impacted by over-fitting. Recently, some
researchers were working on a possible alternative called
DropFilter [31]. DropFilter shows goods results. First the
error rate is lowest thanks to their use, and the number of
parameters is lower. But it is only true for some specific
models. For others NN the training seems to be a problem.

5.3 Curriculum Learning
Generally, NN are trained with random examples at a given
epoch. Curriculum Learning [32] mimics school teaching.
Rather than training with random examples, the neural net-
work is trained with simple examples firstly. The difficulty
of the given examples increases during the draining.

5.4 Transfer Learning

In addition to Curriculum Learning, training a model al-
ready trained on other data or languages shows good re-
sults. The process is called Transfer Learning. It starts with a
NN and its trained weight, and the NN is slightly modified.
Only some weights can be targeted for instance. It usually
converges faster than a full training.

5.5 Database augmentation

The number of examples in a dataset is a key to have good
performances. Because it can be hard to get an important
number of examples in a dataset, the dataset is increased
with some operations. The examples in the dataset are
cropped, mirrored, rotated, etc. Then the dataset is bigger,
and it got better results, more generality power.

6 CONCLUSION

Recently, the performance of offline HTR has been improved
greatly [33] by leveraging deep learning technologies such
as RNNs (section 3.3) and CNNs (section 3.2). Deep BLSTM
(e.g., [34], [19], [35]) and MDLSTM (e.g., [36], [37], [1], [12]
[21]) seem to be the state of the art. Results such as word
error rate and character error rate respectively below 10%
and 5% are now reachable on evaluation sets such as RIMES
[38].

But despite these astonishing results HTR is still an
open problem. Recently, the necessity of MDLSTM for HTR
was debated [39]. On the other hand, advances in the deep
learning field such as Deep Residual Network [40] might
open new ways for improving the state of the art.

Deep BLSTM an MDLSTM trained by using a CTC
objective function will learn both local character image de-
pendency for character modeling and long-range contextual
dependency for implicit language modeling. Hence, we will
firstly work on these type of architectures as they are well
suited for the HTR task.

For the decoding part, Hybrid HMM (section 4.2.1) and
NNLM (section 4.2.2) show a significant improvement. They
lower the error rate and seem to be better for the training
process. We will use one of the two models, and eventually
test the influence of changing to the other.

In addition to just recognize handwritten text, we also
want to study if the addition of the text baseline’s position
have a positive effect on the NN. We could easily have
this information thanks to systems of the competition on
Baseline Detection [41]. Adding text baseline’s position to
the network’s available informations could eventually lead
to a faster convergence, and a better accuracy to recognize
the text. Some articles ([36] [32] [42]) already discuss about
the impact of pre-segmented lines, and it seems to have
good results. But the subject is not so studied. That is why
we want to test the impact of pre-segmented lines. We think
that it will be important to test how to add this information
to the network. It can be given through network inputs as
some numbers, by modifying the text images, or by adding
it in deeper layers of the network.

6

REFERENCES

[1] Alex Graves and Juergen Schmidhuber. Offline handwriting
recognition with multidimensional recurrent neural networks. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems 21, pages 545–
552. Curran Associates, Inc., 2009.

[2] A. Viterbi. Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Transactions on Infor-
mation Theory, 13(2):260–269, April 1967.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, Nov 1998.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc., 2012.

[5] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556,
2014.

[6] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for
computer vision. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[7] D. Suryani, P. Doetsch, and H. Ney. On the benefits of con-
volutional neural network combinations in offline handwriting
recognition. In 2016 15th International Conference on Frontiers in
Handwriting Recognition (ICFHR), pages 193–198, Oct 2016.

[8] Yi-Chao Wu, Fei Yin, and Cheng-Lin Liu. Improving handwritten
chinese text recognition using neural network language models
and convolutional neural network shape models. Pattern Recogni-
tion, 65:251–264, 2017.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-
ory. Neural Comput., 9(8):1735–1780, November 1997.

[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[11] Sun Li, Su Tonghua, and Yu Shengjie, Zhou Lijun. Gmu: A novel
rnn neuron and its application to handwriting recognition. In 2017
14th International Conference on Document Analysis and Recognition
(ICDAR), 2017.

[12] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. Dropout
improves recurrent neural networks for handwriting recognition.
In 2014 14th International Conference on Frontiers in Handwriting
Recognition, pages 285–290, Sept 2014.

[13] Alex Graves, Santiago Fernández, and Jürgen Schmidhu-
ber. Multi-dimensional recurrent neural networks. CoRR,
abs/0705.2011, 2007.

[14] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural
networks. IEEE Transactions on Signal Processing, 45(11):2673–2681,
Nov 1997.

[15] A. Graves, N. Jaitly, and A. r. Mohamed. Hybrid speech recog-
nition with deep bidirectional lstm. In 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding, pages 273–278,
Dec 2013.

[16] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke.
The Microsoft 2017 Conversational Speech Recognition System.
ArXiv e-prints, August 2017.

[17] A. Ray, S. Rajeswar, and S. Chaudhury. Text recognition using
deep blstm networks. In 2015 Eighth International Conference on
Advances in Pattern Recognition (ICAPR), pages 1–6, Jan 2015.

[18] Marcus Liwicki, Alex Graves, Horst Bunke, and Jürgen Schmid-
huber. A novel approach to on-line handwriting recognition
based on bidirectional long short-term memory networks. In In
Proceedings of the 9th International Conference on Document Analysis
and Recognition, ICDAR 2007, 2007.

[19] V. Frinken and S. Uchida. Deep blstm neural networks for
unconstrained continuous handwritten text recognition. In 2015
13th International Conference on Document Analysis and Recognition
(ICDAR), pages 911–915, Aug 2015.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, Nov 1998.

[21] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, M. F. Benzeghiba,
and C. Kermorvant. The a2ia arabic handwritten text recognition
system at the open hart2013 evaluation. In 2014 11th IAPR

International Workshop on Document Analysis Systems, pages 161–
165, April 2014.

[22] Morgan Nelson and Boulard Hervé. An introduction to hybrid
hmm/connectionist continuous speech recognition.

[23] F. Zamora-Martı́nez, V. Frinken, S. España-Boquera, M.J. Castro-
Bleda, A. Fischer, and H. Bunke. Neural network language models
for off-line handwriting recognition. Pattern Recognition, 47(4):1642
– 1652, 2014.

[24] V. Frinken, F. Zamora-Martı́nez, S. España-Boquera, M. J. Castro-
Bleda, A. Fischer, and H. Bunke. Long-short term memory neural
networks language modeling for handwriting recognition. In
Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012), pages 701–704, Nov 2012.

[25] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber. Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks. In
Proceedings of the 23rd international conference on Machine learning,
pages 369–376. ACM, 2006.

[26] A. Graves, A. r. Mohamed, and G. Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 6645–
6649, May 2013.

[27] Alex Graves. Sequence transduction with recurrent neural net-
works. CoRR, abs/1211.3711, 2012.

[28] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Yee Whye Teh and
Mike Titterington, editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, volume 9 of Pro-
ceedings of Machine Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[29] P. Doetsch, M. Kozielski, and H. Ney. Fast and robust training
of recurrent neural networks for offline handwriting recognition.
In 2014 14th International Conference on Frontiers in Handwriting
Recognition, pages 279–284, Sept 2014.

[30] Hans-Georg Zimmermann, Christoph Tietz, and Ralph Groth-
mann. Forecasting with recurrent neural networks: 12 tricks. In
Neural Networks: Tricks of the Trade, pages 687–707. Springer, 2012.

[31] Kang Woo-Young, Park Kyung-Wha, and Zhang Byoung-Tak.
Extremely sparse deep learning using inception modules with
dropfilters. In 2017 14th International Conference on Document
Analysis and Recognition (ICDAR), 2017.

[32] J. Louradour and C. Kermorvant. Curriculum learning for hand-
written text line recognition. In 2014 11th IAPR International
Workshop on Document Analysis Systems, pages 56–60, April 2014.

[33] J. A. Sánchez, V. Romero, A. H. Toselli, and E. Vidal. Icfhr2016
competition on handwritten text recognition on the read dataset.
In 2016 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR), pages 630–635, Oct 2016.

[34] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber. A novel connectionist system for unconstrained
handwriting recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(5):855–868, May 2009.

[35] Q. Liu, L. Wang, and Q. Huo. A study on effects of implicit
and explicit language model information for dblstm-ctc based
handwriting recognition. In 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), pages 461–465, Aug
2015.

[36] B. Moysset, T. Bluche, M. Knibbe, M. F. Benzeghiba, R. Messina,
J. Louradour, and C. Kermorvant. The a2ia multi-lingual text
recognition system at the second maurdor evaluation. In 2014
14th International Conference on Frontiers in Handwriting Recognition,
pages 297–302, Sept 2014.

[37] P. Voigtlaender, P. Doetsch, and H. Ney. Handwriting recognition
with large multidimensional long short-term memory recurrent
neural networks. In 2016 15th International Conference on Frontiers
in Handwriting Recognition (ICFHR), pages 228–233, Oct 2016.

[38] Emmanuèle Grosicki, Matthieu Carre, Jean-Marie Brodin, and
Edouard Geoffrois. RIMES evaluation campaign for handwritten
mail processing. In ICFHR 2008 : 11th International Conference on
Frontiers in Handwriting Recognition, pages 1 – 6, Montreal, Canada,
August 2008. Concordia University.

[39] Joan Puigcerver. Are multidimensional recurrent layers really
necessary for handwritten text recognition? 2017.

[40] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, June 2016.

7

[41] Diem Markus, Kleber Florian, Fiel Stefan, Gatos Basilis, and Tobias
Grüning. Icdar 2017 competition on baseline detection in archival
documents. 2017.

[42] T. Bluche, B. Moysset, and C. Kermorvant. Automatic line segmen-
tation and ground-truth alignment of handwritten documents.
In 2014 14th International Conference on Frontiers in Handwriting
Recognition, pages 667–672, Sept 2014.

APPENDIX

8

Fig. 6: architecture designed for feature extraction in HTR (source: [12])

	Introduction
	Hidden Markov Model for Handwritten Text Recognition
	Deep learning
	Artificial Neural Network
	Convolutional Neural Networks
	Recurrent Neural Networks
	Vanishing gradient problem
	Long Short-Term Memory
	Rectified Linear Unit

	Pipeline
	Feature Extraction
	Bidirectional Long Short-Term Memory
	Multi-Dimensional Recurrent Neural Networks

	Decoding
	Optical Model
	Language Model
	Connectionist Temporal Classification

	Training & Optimization process
	training RNN
	Dropout
	Curriculum Learning
	Transfer Learning
	Database augmentation

	Conclusion
	References
	Appendix

