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Abstract

Deciding whether a C program terminates or not is an undecidable problem. Yet, the termi-
nation of some program can be proved by exhibiting a ranking function, i.e., a function from the
program states to a well-founded set, which strictly decreases at each program step. The subject of
my internship was the improvement an algorithm that proves the termination of C programs that
are abstracted as affine interpreted automata by a exhibiting multilinear affine ranking function.
My main objectives were to study this algorithm and then to study and implement an improved
version, which will fix the scalability issues of the first one. For now, the improved algorithm
works with automata which have only one node, but it should not be hard to adapt it to work
with any automaton. I implemented this algorithm, corrected several issues, and helped proving
its correctness and its termination.
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1 Introduction

As part of my studies as an undergraduate in computer science and telecommunications at the ENS
Cachan, Antenne de Bretagne, I have spent two months as an intern in the DART (Dynamic Adapta-
tivity and Real-Time) team, under the supervision of Laure Gonnord. The subject of this internship
was the improvement of a termination analysis algorithm. Deciding whether a C program terminates
or not is an undecidable problem. Yet, the termination of some program can be proved by exhibiting a
ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases
at each program step. In [1], the Compsys team has proposed a general algorithm for the computation
of linear ranking functions. However, this algorithm has scalability issues. My objectives were first to
study this algorithm and then to study and implement the improvement made by Laure Gonnord and
David Monniaux.

This report describes the work I have made during this internship, and is organized as follow. In
Section 2, we define the concepts and notations used in the rest of the report. Section 3 presents the
original algorithm proposed in [1]. Section 4 explains the improvements we made to this algorithm.
Section 5 develops the implementation choices I have made. Finally, Section 6 presents the results
obtained with the algorithm.

2 Definitions

In this section, we will define the concepts used in the rest of the report. After recalling the definition
of closed convex polyhedra, I will present the affine interpreted automata, an abstraction in which we
can transform the programs so that they can be easily analyzed, and then the ranking functions, which
will allow us to prove that the program represented by an automaton terminates.

We write matrices with capital letters (as A) and column vectors in boldface (as x). Sets are
represented with calligraphic letters such as W, K, etc.

2.1 Closed convex polyhedra

Definition 1 (Closed convex polyhedron). A set P is a closed convex polyhedron iff it is given as the
solutions of a system of non-strict inequalities, i.e. iff there exists a set of couples (vi, ci) such that
P = {x |

∧
i vi.x ≥ ci}.

If bounded, then this closed convex polyhedron is the convex hull of its vertices, but if unbounded
one has to include rays as generators:

P =

{(∑
i

αivi

)
+

(∑
i

βiri

)∣∣∣∣∣ αi ≥ 0, βi ≥ 0,
∑
i

αi = 1

}
(1)

In the following, the expressions “convex polyhedron” and “polyhedron” will refer to closed convex
polyhedra as defined above.

Example 1 (Closed convex polyhedra).
y

x

Figure 1 – Bounded polyhe-
dron

The polyhedron represented on Figure 1 can be de-
fined as the couples (x, y) solutions of the following
system : 

x+ 2y ≥ 2

−x+ y ≥ 0

x− 4y ≥ 0

It is also the convex hull of the vertices (0, 1), (2, 0)
and (4, 2).
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y

x

Figure 2 – Unbounded poly-
hedron

The polyhedron represented on Figure 1 can be de-
fined as the couples (x, y) solutions of the following
system : 

x+ 2y ≥ 2

−x+ y ≥ 0

2x− y ≥ −1

It can also be defined as in Equation (1) by
its vertices {(0, 1), (2, 0)} and its ray generators
{(1, 1), (1, 2)}. �

2.2 Affine Interpreted Automata

Definition 2 (Affine interpreted automaton). An affine interpreted automaton (K, n, kinit, T ) is de-
fined by:

• a finite set K of control points

• n rational variables represented by a vector x of size n

• an initial control point kinit ∈ K;

• a finite set T of 4-tuples (k, g, a, k′), called transitions, where k ∈ K (resp. k′ ∈ K) is the
source (resp. target) control point, g : Qn 7→ B = {true, false}, the guard, is a logical formula
(constructed with ∧, ∨ and non-strict affine inequalities), and a : Qn 7→ Qn, the action, assigns,
to each variable valuation x, a vector x ′ of size n (constructed with affine relations between x
and x ′)

Semantics The set of states is K ×Qn. Given a transition t = (k, g, a, k′) ∈ T , the guard g gives a
necessary condition on the variables x to traverse t, and the action a gives the value of the variables
after traversing t (x := a(x)).

A trace from (k0,x0) to (k,x) is a sequence of couples (k0,x0), (k1,x1), . . . , (kp,xp) such that
kp = k, xp = x and for each i, 0 ≤ i < p, there exists in T a transition (ki, gi, ai, ki+1) such that
gi(xi) = true and xi+1 = ai(xi). We denoteR the set of reachable states, i.e. the states (k,x) such that
there exists v ∈ Qn s.t. there exists a trace from (kinit,v) to (k,x), and Rk = {x ∈ Qn | (k,x) ∈ R}
the set of possible valuations x of the variables when the control is in k.

Example 2 (Affine interpreted automaton).

y = 0;
x = m;
while(x>=0 && y>=0){

if(indet()){
while(y <= m && indet())

y++;
x--;

}
y--;

}

start

lbl4

lbl5

stop lbl6

lbl10

x := m; y := 0

0 6 x ∧ 0 6 yx < 0 ∨ y < 0

true

true

y 6 m

y := y + 1

x := x − 1

y := y − 1

Figure 3 – Illustrating example
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Figure 3 gives an example of C code, and of the corresponding affine interpreted automaton. This
transformation can be done with the c2fsm tool [5]. The control points are the nodes of the automaton
(here, K = {start, lbl4, lbl5, lbl6, lbl10, stop}). A transition (k, g, a, k′) is represented by an arrow from
the node k to the node k′, labelled by

g

a
(g is omitted when g = true). Here, we can easily prove that

the variables are integers, thus the strict inequalities of the guard of the transition from lbl4 to stop
(x < 0 ∨ y < 0) are equivalent to non-strict inequalities (x ≤ −1 ∨ y ≤ −1). The variable vector is
x = (x, y,m). The indet function abstracts non-determinism or an intractable test. The outcome of
non-determinism is that, in the corresponding automaton, both transitions out of state lbl5 have a true
guard.

If m = 2, ((start, (0, 0)), (lbl4, (2, 0)), (lbl5, (2, 0)), (lbl6, (2, 0)), (lbl6, (2, 1))) is a trace. �

The computation of the set Rk being undecidable in the general case, it is possible to use an
over-approximation of this set, thanks to the notion of invariants.

Definition 3 (Invariants). An invariant on a control point k is a formula φk(x) that is true for all
reachable states (k,x). It is affine if it is the conjunction of a finite number of affine conditions on
program variables. The set Rk is then over-approximated by a polyhedron Pk.

There are several ways to compute invariants. We will use abstract interpretation techniques, as
proposed by Cousot and Halbwachs in their seminal paper [4], with the help of the Aspic tool ([5],
http://laure.gonnord.org/aspic/).

Example 3 (Invariant). The formula φlbl4(x) = x ≥ −1 ∧ y ≥ −1 ∧ x ≤ m ∧ y ≤ m is an invariant on
the control point lbl4 of the automaton of Figure 3. �

2.3 Ranking functions

Let � be the lexicographic order on vectors of Qm, and for each transition t = (k, g, a, k′) ∈ T

Qt = {(x,x ′) | x ∈ Pk and g(x) = true and x ′ = a(x)}

and
∆t(ρ,x,x

′) = ρ(k,x)− ρ(k′,x ′)

Definition 4 (Ranking function). An affine weak ranking function of dimension m is a function
ρ : K × Qn → Qm, affine in the second parameter (the variables), positive on all Pk, whose values
decrease lexicographically at each transition t = (k, g, a, k′) :

x ∈ Pk ⇒ ρ(k,x) ≥ 0 (component-wise) (2)

(x,x ′) ∈ Qt ⇒ ∆t(ρ,x,x
′) � 0 (3)

We say that a weak ranking function ρ satisfies (x,x ′) ∈ Qt iff ∆t(ρ,x,x
′) � 0.

A strict ranking function is a weak ranking function ρ that satisfies all (x,x ′) ∈ Qt, i.e. a function
such that :

(x,x ′) ∈ Qt ⇒ ∆t(ρ,x,x
′) � 0 (4)

Example 4 (Ranking function).

init

k1

t1 :
x := 2N
y := 2N

t3 :
x > N ∧ x 6 y − 1

x := y − 1
y := x

t2 :
x > N

x := x− 1

Figure 4 – Monodimensional example

The function ρ defined below is a strict rank-
ing function for the example of Figure 4 :{

ρ(init,x) = 2N + 3

ρ(k1,x) = 2 + x+ y − 2N

Indeed, on the state k1, x + y decreases
strictly and is initially equal to 4N , thus
ρ(k1, x) decreases strictly from 2N + 2 <
2N + 3. �

3/23
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For the first algorithm, the interpreted automata are integer interpreted automata, and we will try
to compute a ranking function ρ : K × Zn 7→ Nm. (Nm,�) being a well founded set, the existence of
a strict ranking function ensures that there is no infinite trace, i.e. that the corresponding program
terminates. However, I had to prove this result in the general case for the improved algorithm.

Proposition 1. For a given automaton, if there exists a strict ranking function ρ, then there is no
infinite trace (i.e. the corresponding program terminates).

Proof. Let us suppose there exists a strict ranking function ρ : (k,x) 7→ Lkx − ck and that there is
an infinite trace (ki,xi)i∈N. (ρ(ki,xi)) is a positive and strictly decreasing sequence and thus it has a
limit `.

The set T being finite, there exists a transition t = (k, g, a, k′) ∈ T that is traversed an infinite
number of times, i.e. there exists a subsequence (kϕ(i),xϕ(i)) of (ki,xi) such that for all i ∈ N

kϕ(i) = k

kϕ(i)+1 = k′

(xϕ(i),xϕ(i)+1) ∈ Qt

As Qt is an intersection of closed convex polyhedra, it is a closed convex polyhedron. Let us define

St = Qt ∩ {(x,x ′) | ρ(k,x) � ` ∧ ρ(k,x ′) � `}

Since ρ(k,x) � ` is equivalent to a disjunction of conjunctions of linear inequalities, St is a finite
union of closed convex polyhedra St,p, 1 ≤ p ≤ m. Let (vj,p) and (rj,p) be their generators as defined
in Equation (1) :

St,p =


∑

j

αjvj,p

+

∑
j

βjrj,p

∣∣∣∣∣∣ αj ≥ 0, βj ≥ 0,
∑
j

αj = 1


For all i ∈ N, (xϕ(i),xϕ(i)+1) ∈ St, thus we can express (xϕ(i),xϕ(i)+1) as a linear combination of

the generators of a certain St,pi :

(xϕ(i),xϕ(i)+1) =
∑
j

αi,jvj,pi +
∑
j

βi,jrj,pi with αi,j ≥ 0, βi,j ≥ 0 and
∑
j

αi,j = 1

Let (yi,y
′
i) =

∑
j αi,jvj,pi (see Figure 5). (yi,y

′
i) ∈ Qt

which is a closed set, and (yi,y
′
i) is a bounded sequence

(because ||(yi,y ′i)|| ≤ maxp(
∑

j ||vj,p||). Thus there exists a
subsequence (yψ(i),y

′
ψ(i)) of (yi,y

′
i) that has a limit (y,y′) ∈

Qt.

Moreover, let us denote, for all j and p, (v1j,p,v
2
j,p) = vj,p

and (r1j,p, r
2
j,p) = rj,p. Then we can notice that necessar-

ily, for all j, p and a ∈ {1, 2}, Lkraj,p � 0 (if Lkraj,p ≺ 0,
ρ(k, βraj,p) −→

β→∞
−∞, which is in contradiction with the fact

that ρ is positive on Pk). Thus

v1

v2(yi,y
′
i)

(xϕ(i),xϕ(i)+1)

r2

r1

β 1
r 1

β 2
r 2

Figure 5 – Construction of (yi,y
′
i)

ρ(k,xϕ(i)) =
∑
j

αi,j(Lkv
1
j,p) +

∑
j

βi,j(Lkr
1
j,p)− c �

∑
j

αi,j(Lkv
1
j,p)− c = ρ(k,yi)

Finally, ρ(k,xϕ(ψ(i))) � ρ(k,yψ(i)) � ` and, likewise, ρ(k,xϕ(ψ(i))+1) � ρ(k,y ′ψ(i)) � `. The
squeeze theorem gives, with the limits when i → ∞, ρ(k,y) = ` = ρ(k,y ′), which is in contradiction
with the fact that (y,y′) ∈ Qt. Thus, there is no infinite trace.

4/23



Lucas Seguinot Improvement of a termination analysis algorithm

Definition 5. A ranking function is said monodimensional if its dimension m is 1. Else it is said
multidimensional.

Example 5 (Monodimensional). The function ρ of Example 4 is a monodimensional ranking function.
�

Example 6 (Multidimensional).

init

k1 k2

t1 :
i := N

t2 :
i > 1
j := N

t3 :
j > 1

j := j − 1

t4 :
j = 0

i := i− 1

Figure 6 – Multidimensional example

The function ρ defined below is a multi-
dimensional ranking for the example of
Figure 6 on the left:

ρ(init, x) = (2N + 1, 0)
ρ(k1, x) = (2i, 0)
ρ(k2, x) = (2i− 1, j)

�

3 A first algorithm to compute affine ranking functions

In order to find a multidimensional affine ranking function ρ, Alias et al. [1] proposed a greedy algorithm
which, at each iteration, computes (via linear programming) a weak ranking function σ that maximizes
the number of transitions that strictly makes σ decrease. It then adds σ as a component of ρ and
continue on the other transitions. The algorithm terminates when all transitions are satisfied by
ρ or when there are no monodimensional weak affine ranking function that satisfies the remaining
transitions.

Here, we suppose that the automata are integer interpreted automata, i.e. that the variable are in
Z and we compute a ranking function ρ : K × Zn → Nm.

In the following, I will present the algorithms relying on LP-programming, as well as some examples,
and the main drawbacks in terms of scalability.

This section is a summary of [2]. The examples have been directly copied from it.

3.1 Computing a monodimensional ranking function

We will rely on the affine form of the Farkas Lemma [7].

Lemma 1 (Farkas lemma, affine form). An affine form φ : Rn → R with φ(~x) = c.x+c0 is nonnegative
everywhere in a non-empty polyhedron {x | Ax+ a ≥ 0} iff:

∃λ ∈ (R+)n, λ0 ∈ R+ such that φ(x) ≡ λ.(Ax+ a) + λ0

The notation ≡ is a formal equality, which means that x can be eliminated and coefficients identified.
In other words:

∃λ ∈ (R+)n, λ0 ∈ R+ such that c = λ.A and c0 = λ.a+ λ0

As the computed ranking functions have integer values, we can notice that a transition t is satisfied
by a monodimensional weak ranking function σ if and only if

(x,x ′) ∈ Qt ⇒ ∆t(σ,x,x
′) ≥ 1 (5)

Thus, to compute a weak ranking function σ that maximizes the number of transitions of T (where
T ⊂ T are the transitions unsatisfied by ρ), we can maximize

∑
t∈T εt, such that

(x,x ′) ∈ Qt ⇒ ∆t(σ,x,x
′) ≥ εt with 0 ≤ εt ≤ 1. (6)

5/23
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With Pk = {x | Pkx + pk ≥ 0} and Qt = {y = (x,x ′) | Qty + qt ≥ 0}, we can prove (using the
Farkas lemma) that the inequalities (2) and (6) are respectively equivalent to (7) and (8) :

∃λk ∈ (R+)n, λ0k ∈ R+ s.t. σ(k,x) = λk.(Pkx+ pk) + λ0k (7)

∃µt ∈ (R+)n, µ0t ∈ R+ s.t. ∆t(σ,x,x
′)− εt = µt.(Qty + qt) + µ0t (8)

Finally, by substituting (7) in (8), we obtain that “(2) and (6) for as many εt as possible” is
equivalent to a set of linear inequalities. Thus, the computation of a monodimensional affine weak
ranking function is done by solving a linear programming instance.
Example 7.
Aspic provides the following invariants for
the automaton of Example 4 (the initial val-
ues are denoted by N0, x0 and y0) :

Pinit = {1 ≤ N0 = N, y = y0, x = x0}
Pk1 = {x ≤ 2N, y ≤ 2N,N ≤ y,

N − 1 ≤ x, 1 ≤ N = N0}
Pend = {x < N, y ≤ 2N,N ≤ y,

N − 1 ≤ x, 1 ≤ N = N0}

init

k1

t1 :
x := 2N
y := 2N

t3 :
x > N ∧ x 6 y − 1

x := y − 1
y := x

t2 :
x > N

x := x− 1

Figure 7 – Monodimensional example

For i ≥ 1 and k ∈ K, we denote λik the ith coordinate of λk, same for µ. Also, x stands for the
vector (x, x0, y, y0, N,N0). The subsystem (7) is obtained by applying Farkas lemma to Pinit, Pk1 and
Pend (here, with no simplification):

ρ(init,x) = λ0init + λ1init(N − 1) + λ2init(N0 − 1) + λ3init(N0 −N) + λ4init(N −N0)

+ λ5init(y0 − y) + λ6init(y − y0) + λ7init(x0 − x) + λ8init(x− x0)
with λiinit ≥ 0 for all i ∈ [0, 8]

(7i)

ρ(k1,x) = λ0k1 + λ1k1(2N − x) + λ2k1(2N − y) + λ3k1(N − 1) + λ4k1(y −N)

+ λ5k1(x−N − 1) + λ6k1(N0 −N) + λ7k1(N −N0)

with λik1 ≥ 0 for all i ∈ [0, 7]

(7ii)

ρ(end,x) = λ0end + λ1end(N − x) + λ2end(2N − y) + λ3end(N − 1) + λ4end(y −N)

+ λ5end(x−N − 1) + λ6end(N0 −N) + λ7end(N −N0)

with λiend ≥ 0 for all i ∈ [0, 7]

(7iii)

To get the subsystem (8), we first compute Qt (here in logical form) :

• Qt1 = x ∈ Pinit ∧ x′ = 2N ∧ y′ = 2N ∧N ′ = N

• Qt2 = x ∈ Pk1 ∧N ≤ x ∧ x′ = x− 1 ∧ y′ = y ∧N ′ = N

• Qt3 = x ∈ Pk1 ∧N ≤ x ∧ x < y ∧ x′ = y − 1 ∧ y′ = x ∧N ′ = N

And, finally, we obtain:

ρ(init,x)− ρ(k1,x
′)− εt1 = µ0t1 + µ1t1(N0 − 1) + µ2t1(N −N0) + µ3t1(N0 −N) + . . .

+ µ7t1(x′ − 2N) + µ8t1(2N − x′) + µ9t1(y′ − 2N)

+ µ10t1 (2N − y′) + . . . with µit1 ≥ 0 for all i

(8i)

ρ(k1,x)− ρ(k1,x
′)− εt2 = . . . (8ii)

ρ(k1,x)− ρ(k1,x
′)− εt3 = . . . (8iii)

In the expressions coming from (8), we replace the expressions involving ρ by the values obtained
in (7). We obtain a conjunction of conditions involving the different λk and µk. The solver finally
produces:

6/23
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• ρ(init,x) = 2N0 + 3

• ρ(k1,x) = 2 + x+ y − 2N

• ρ(end,x) = 0

which means that the loop terminates in at most 2N0 + 3 steps (including at most 2N0 + 1 iterations
of the while loop). The quantity i = 2 + x+ y − 2N , which is automatically extracted, can be viewed
as a kind of counter for the while loop. �

As shown in the example above, the value of the ranking function at the control point kinit gives
an upper bound of the number of transitions taken, i.e. an upper bound of the worst case complexity
of the algorithm. The ranking function being affine and monodimensional, only the termination of
programs of linear complexity can be proven.

In order to prove the termination of more complex programs with affine ranking functions, we need
to find multidimensional ranking functions.

3.2 Multidimensional algorithm

To compute a mutidimensional ranking function, Alias et al. [1] apply a greedy algorithm which
maximizes the number of transitions satisfied by each dimensions of the ranking function :

Algorithm 1 Multidimensional algorithm
1: i = 0; T = T ; . Initialize T to the set of all transitions
2: while T is not empty do
3: Find a monodimensional affine function σ and values εt such that all inequalities (2) and (6)

are satisfied and as many εt as possible are equal to 1; . This means maximizing
∑

t∈T εt
4: Let ρi = σ ; i = i+ 1; . σ defines the i-th component of ρ
5: If no transition t with εt = 1, return false . No multidimensional affine ranking.
6: Remove from T all transitions t such that εt = 1; . The transitions have level i
7: end while;
8: d = i; return true; . There is a d-dimensional ranking

Example 8.

Consider the automaton of Example 6
with the N ≥ 0 in control point init.
Aspic finds the following invariants :

Pinit = {0 ≤ N = N0, j = j0, i = i0}
Pk1 = {0 ≤ N = N0, 0 ≤ i ≤ N}
Pk2 = {0 ≤ N = N0, 1 ≤ i ≤ N,

0 ≤ j ≤ N}

init

k1 k2

t1 :
i := N

t2 :
i > 1
j := N

t3 :
j > 1

j := j − 1

t4 :
j = 0

i := i− 1

Figure 8 – Multidimensional example

Solving the system while maximizing εt1 + εt2 + εt3 + εt4 leads to εt1 = εt2 = εt4 = 1 and εt3 = 0.
The corresponding function (first dimension of the ranking) is

ρ(init, x)[0] = 2N + 1
ρ(k1, x)[0] = 2i
ρ(k2, x)[0] = 2i− 1

We keep the transition t3 for the next dimension, and we get εt3 = 1 with ρ(k2, x)[1] = j. The
complete ranking function is thus 

ρ(init, x) = 2N + 1
ρ(k1, x) = 2i
ρ(k2, x) = (2i− 1, j)
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Note that, for init and k1 , the ranking is only one-dimensional. If a globally 2D ranking function
is desired, it can be extended arbitrarily, for example as

ρ(init, x) = (2N + 1, 0)
ρ(k1, x) = (2i, 0)
ρ(k2, x) = (2i− 1, j)

�

Some benchmarks can be found at http://compsys-tools.ens-lyon.fr/wtc/index.html.
Yet, as the underlying LP instances consider the integer interpreted automaton globally, there is a

challenging scaling issue. This algorithm cannot prove the termination of an iterative implementation
of the mergesort. Some work has been done in [3] to enhance the scalability of the algorithm on C
programs with while loops, by ignoring the statements that don’t have an impact on the loop condition,
and by proving the termination of each loop separately when it is possible. However, in order to have a
significant improvement of the scalability, we have to modify the algorithm so that it does not consider
the whole automaton.

4 A proposition for improvement

In order to improve the scalability of this algorithm, Laure Gonnord and David Monniaux proposed
in an unpublished work to solve the LP instances incrementally by using SMT (satisfiability modulo
theories)-queries for selecting “pertinent” constraints to be added to the current system-to-solve. I will
first present some theoretical results, then a non-terminating algorithm to compute monodimensional
ranking functions, a corrected version, and finally an algorithm to compute multidimensional ranking
functions.

The proposed algorithm was almost working. I had to make a few corrections and adapt its
termination and correctness proofs to the corrections I have made.

4.1 Notations and propositions

This part is a summary of a larger research report which has not been published yet.

The algorithm presented in this section uses the same approach as the previous one : it greedily
computes a strict multidimensional ranking function by adding monodimensional ranking functions as
new dimensions until the ranking is strict. We will here give a few properties on monodimensional
ranking functions which will enable us to improve the algorithm.

From now on, we consider an affine interpreted automaton ({k}, n, k, T ) with only one control
point.
Remark 1. This hypothesis simplifies the problem without loss of generality, in so far as the algorithm
can be adapted to work with any automaton as in [6].

We denote I = Pk an invariant of the control point and τ the transition relation, with

τ =
⋃

(k,g,a,k)∈T

{(x,x ′) | g(x) = true ∧ x ′ = a(x)}

We will also use the following notations :

• If σ is an affine monodimensional weak ranking function, σ(x) = l.x− c

• I = {x,
∧m
i=1 li.x ≥ ci} and LI = {li, i ∈ [1,m]}

Example 9 (Generators for polyhedral invariants). Let us consider the following automaton :

k0 t1 :
x > 1 ∧ y > x+ 1

y := y − xt2 :
x > y + 1 ∧ y > 1

x := x− y

Figure 9
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The associated transition relation is :

τ =
{

(x, y, x′, y′),
(
x ≥ 1 ∧ y ≥ x+ 1 ∧ x′ = x ∧ y′ = y − x

)
∨
(
x ≥ y + 1 ∧ y ≥ 1 ∧ x′ = x− y ∧ y′ = y

)}
An invariant generator gives the following inductive invariant for I :

I = {0 ≤ x, 0 ≤ y}

From these invariants we compute the lis :

l1 =

(
1
0

)
, l2 =

(
0
1

)
�

Proposition 2. σ is a monodimensional weak ranking function iff

∀x,x′ x ∈ I ∧ (x,x′) ∈ τ =⇒ l.(x− x′) ≥ 0 (9)

and

∃λ1 ≥ 0, . . . , λm ≥ 0, l =
m∑
i=1

λili (10)

Condition 10 means that we look for ranking function that is a linear combination of the invariants.

Proof. We can first notice that τ ∩ I × Q =
⋃
t∈T Qt, thus σ : Qn → Q is a monodimensional weak

ranking function iff

∀x,x′ , x ∈ I ∧ (x,x′) ∈ τ =⇒ σ(x) ≥ σ(x′) (11)
∀x ∈ I , σ(x) ≥ 0 (12)

Condition 9 is then obtained by rewriting condition 11 using linearity.
Secondly, the Farkas Lemma applied on the polyhedron I where inequality scheme 12 holds, gives :

∃λ1 ≥ 0, . . . , λm ≥ 0, l =

m∑
i=1

λili ∧ C ≤
m∑
i=1

λici

Once the condition l =
∑m

i=1 λili is met then an appropriate choice of C can always be made, thus
condition 10.

Let PI,τ = {x − x′ | x ∈ I ∧ (x,x′) ∈ τ} be the set of all reachable 1-step differences. Let us
reexamine the condition that l.p ≥ 0 for all p ∈ PI,τ . Remark that this condition is left unchanged if
we replace PI,τ by its convex hull. Because I and τ are (finite unions of) convex closed polyhedra, so is
PI,τ , and thus its convex hull PH is a closed convex polyhedron. Thanks to Equation 1, we can deduce
that there is a finite set V = {v1, . . . ,vm} of generators of PI,τ such that Condition 9 is equivalent to
∀1 ≤ i ≤ m, l.vi ≥ 0.

As we did for the previous algorithm, we are interested by monodimensional weak ranking functions
σ which are “as strict as possible”, i.e. that satisfy l.v > 0 for as many v ∈ V as possible. Let
πV(l) = {v ∈ V | v.l > 0}; πV measures the distance to the ideal. We would like l of maximal |πV(l)|.
Proposition 3. Given V = (v1, . . .vk) a set of vectors and l a vector, πV(l) is maximal with respect
to cardinality if and only if it is maximal with respect to inclusion, i.e.

∀l′, |πV(l′)| ≤ |πV(l)| ⇔ ∀l′, πV(l′) ⊆ πV(l)

Proof. It is obvious that ∀l′, πV(l′) ⊆ πV(l) ⇒ ∀l′, |πV(l′)| ≤ |πV(l)|. Let us now prove the other
implication.

Let l be a vector such that ∀l′, |πV(l′)| ≤ |πV(l)| and l′ a vector. Let us suppose that πV(l′) 6⊆ πV(l).
Then πV(l′)\πV(l) is not empty. Since πV(l) ∪ πV(l′) ⊆ πV(l + l′), |πV(l + l′)| ≥ |πV(l) ∪ πV(l′)| =
|πV(l′)|+ |πV(l′)\πV(l)| > |πV(l′)|, which is absurd. Thus, ∀l′, |πV(l′)| ≤ |πV(l)|.
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4.2 First monodimensional algorithm

Definition 6. Given V = (v1, . . .vk) and L = (l1, . . . lm), we denote by LP (V,L) the following Linear
Programming instance where λi and δi are the unknowns:

Maximize
∑

i δi s.t.
λ1, . . . , λm ≥ 0
0 ≤ δj ≤ 1 for all 1 ≤ j ≤ N∑m

i=1 λi(vj .li) ≥ δj for all 1 ≤ j ≤ N

(13)

In the following, we denote as λ (resp. δ) the vector with λi (resp. δi) components.

Proposition 4. Let V = (v1, . . .vk) and L = (l1, . . . lm). Then :

• LP (V,L) is always feasible.

• LP (V,L) gives λis such that l =
∑m

i=1 λili is a weak ranking function of maximal πV .

Proof. Let us start by noticing that (λ, δ) = (0,0) is a solution of the inequalities, and
∑

i δi ≤ N , thus
the set {

∑
i δi s.t. (λ, δ) is a solution of the above inequalities} has a least upper bound. Moreover, in

the optimal result of LP (V,L), each δj is either 0 or 1 : if 0 < δj < 1, then by scaling up l by a factor
1/δj we obtain a solution l′ with δ′j = 1. Therefore, the least upper bound is a maximum. It ensues
that LP (V,L) is always feasible.

δi = 1 iff vi ∈ πV(l), thus |πV(l)| =
∑

i δi. It implies that |πV(l)| is maximal

The difficulty is that computing this set V may be expensive. Obviously, we could compute a
disjunctive normal form (DNF) for I ∧ τ , each disjunct denoting a convex polyhedron, compute their
generators (x, x′) and collect all resulting x−x′; yet computing the DNF has exponential cost and the
full DNF may be unnecessary.

Let us propose instead an incremental algorithm (somewhat wrong, but it will be corrected later):
the idea is to incrementally augment a set C with elements of PH that negate the fact that the current
l could be a strict ranking function. As soon as such an element (x,x′) is found (by an SMT-query),
the set C is used to compute a new ranking-function candidate. The algorithm is described in Alg.2.

Algorithm 2 Initial Algorithm
Require: I the invariant polyhedra and τ the transition function
Ensure: When it terminates, returns l =

∑m
i=1 λili a weak ranking function of maximal π and a

boolean which is true iff l is a strict ranking function
1: C ← ∅
2: λ← 0
3: l← 0
4: finished← false
5: while not(finished) and

(
I ∧ τ ∧ (x− x′).l ≤ 0 satisfiable

)
do

6: (x,x′)← a model for the above SMT test
7: C ← C ∪ {x− x′}
8: (λ, δ)← LP (C,LI)
9: if λ = 0 then

10: finished← true
11: else
12: l←

∑m
i=1 λili

13: end if
14: end while
15: Return (l,

∧
i δi = 1).

Proof of correctness [Monniaux/Seguinot]. It is easy to see that, if this algorithm terminates, then l
is a weak ranking function (possibly null). When the algorithm terminates, either finished is true,
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or I ∧ τ ∧ (x − x′).l ≤ 0 is not satisfiable. In the first case, proposition 4 shows that l = 0 is a
weak ranking function of maximal πC , which means that 0 is the only weak ranking function on C.
Therefore it is a ranking function of maximal πV , because C ⊆ V. In the second case, let l′ be a weak
ranking function of maximal πC . Then property 3 gives πC(l) ⊆ πC(l′). If u ∈ πC(l′)\πC(l), then either
u ∈ C, which means that πC(l) is not maximal on C which is a contradiction, or u /∈ C and u · l ≤ 0,
so I ∧ τ ∧ (x − x′).l ≤ 0 is satisfiable, which is absurd too. It ensues that πC(l′) ⊂ πC(l), i.e. l is of
maximal πC .

Moreover, if finished is true, then λ = 0 which implies δ = 0, thus
∧
i δi = 0, which is coherent

with the fact that l is not strict. Else, l is strict iff πV(l) = V i.e. iff
∧
i δi = 1.

Example 10. On Example 9, we already computed the generators li for I. These vectors are given as
input to Algorithm 2, as well as the transition function :

τ =
{

(x, y, x′, y′),
(
x ≥ 1 ∧ y ≥ x+ 1 ∧ x′ = x ∧ y′ = y − x

)
∨
(
x ≥ y + 1 ∧ y ≥ 1 ∧ x′ = x− y ∧ y′ = y

)}
Recall that we are looking for l as a linear combination of the lis.

• Step 1. beginning with l = 0, we SMT-solve the constraint I ∧ τ ∧ 0 ≤ 0. We are given a first

model x = 1, x′ = 1, y = 2, y′ = 1, thus C ← {c1} where c1 =

(
0
1

)
. Then, an LP-solver is given

the following LP problem : 
Maximize δ1 s.t.
λ1, λ2 ≥ 0
0 ≤ δ1 ≤ 1
λ2 ≥ δ1

(The last contraint comes from the scalar products of c1 with all li.). The solver gives λ1 = 0

and λ2 = 1, . Then l = l2 =

(
0
1

)
.

• Step 2. The new SMT-constraint is now I ∧ τ ∧
(
x′ − x
y − y′

)
·
(

0
1

)
≤ 0. The solver gives us the

model x = 2, x′ = 1, y = 1, y′ = 1, thus C ← {c1, c2} where c2 =

(
1
0

)
. The new LP instance is

thus now : 
Maximize δ1 + δ2 s.t.
λ1, λ2 ≥ 0
0 ≤ δ1, δ2 ≤ 1
λ2 ≥ δ1
λ1 ≥ δ2

whose optimal is λ1 = λ2 = 1 with δ1 = δ2 = 1 Then l = l1 + l2 =

(
1
1

)
.

• Step 3. The SMT-constraint is now I ∧τ ∧x′−x+y′−y ≤ 0, and the SMT solver gives UNSAT.

• The function returns (l =

(
1
1

)
, true).

To compute the final ranking function σ = l · x − c = x + y − c, we have to compute a suitable c.
Combining the I constraints using the last λis give the constraint x+ y ≥ 0, thus σ = x+ y is a strict
ranking function for (τ, I). �

Unfortunately, this simple algorithm suffers from two problems (noted by D.Monniaux and L.
Gonnord in their report) which may prevent its termination.
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Non finiteness of the smt models First, termination is guaranteed only if the models provided by
the SMT tests come from a finite set (then the number of iterations is bounded by the cardinal of that
set). Depending on the implementation of the SMT-solver, it may be the case that all models (x,x′)
would be vertices constructed by intersection of the linear atomic constraints in I∧τ , of which there are
finitely (exponentially) many; but this will also produce vertices that do not lie on the boundary of the
convex hull PH, resulting in unoptimally tight constraints. A perhaps better option is to impose that
the model for the SMT-test should minimize (x−x′) · l, which advocates for the use of state-of-the-art
“optimization modulo theory” tools, like OptiMathSAT [8].

If inf(x − x′) · l = −∞, i.e. if PH has a ray generator r such that r · l < 0, the SMT-solver used
(OptiMathSAT [8]), returns a model which satisfies (x − x′) · l = −K, where K is a “big” constant.
I saw that this prevents the algorithm from terminating, since the problem I ∧ τ ∧ (x − x′).l ≤ 0 is
always satisfiable (u+ βr, with β ≥ −u·l

r·l , is a model).

Example 11.

k0 t1 :
i > 0 ∧ j > 1
j := j − 1

t2 :
i > 0 ∧ j 6 0
i := i− 1
j := N

Figure 10 – Non-terminating example

For example, the algorithm won’t terminate on the automaton of Example 11. Indeed, on the
transition t2, j − j′ ≤ −N , and there is no constraint on N . Thus, if we denote x = (i, j,N) the
variable vector, r = (0,−1, 0) is a ray generator of PH. We can see that as long as l · r < 0, the SMT
solver can return an infinite number of models as I ∧ τ ∧ (x− x′).l ≤ 0 is always satisfiable. �

Non termination due to weak ranking functions Second, even if the first issue is fixed, the
above algorithm terminates only if there is a strict ranking function (l.v > 0 for all v ∈ V). Indeed,
termination is ensured by the algorithm never choosing twice the same (x,x′), which is the case if
there exists a (weak) ranking function such that l.(x − x′) > 0. But what if the SMT-solver picks
(x,x′) such that all weak ranking functions l satisfy l.(x− x′) = 0? In this case, the algorithm may
not terminate, always picking the same (x,x′).

4.3 Corrected monodimensional algorithm

Non termination due to weak ranking functions We can notice that the set {u | u · l =
0 ∀ ranking function l} is a linear subspace of Qn. To prevent elements from this subspace to be
returned by the SMT-solver, we maintain a free family {B1, . . . ,Bd} ⊆ Qn (initially empty), such that
we search for solutions l such that Bi.l = 0 for all 1 ≤ i ≤ d. Every time a new model (x,x′) is found,
a vector u = x−x′ is added to C, and a new optimal solution (l, δ) is computed, we check whether δu
is 0 or 1. If it is 0, which means that all weak ranking functions will satisfy l.u = 0, thus u is added
to B. We then add the constraint u /∈ Span(B) to the SMT-test. The computation of this constraint
can be implemented as either:

1. Complete B into a basis (B,B′) of Qn, then

u /∈ Span(B)⇔ u =
∑
vi∈B

βivi +
∑
vi∈B′

γivi ∧
∧
i

γi 6= 0

2. Compute a basis (wj) of the orthogonal of the vector space generated by B, then

u /∈ Span(B)⇔
∨
i

u ·wi 6= 0
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I have implemented it with the first method, by maintaining the matrix representing the basis B in
row echelon form (which can be obtained by computing the Gauss-Jordan elimination of the matrix).
This is done with Algorithm 3.

Algorithm 3 AvoidSpace
Require: u and B
B′ ← ∅
i← 1
j ← 2
while j ≤ m do

if Bi[j] 6= 0 then
B′ ← B′ ∪ {ei}

else
i← i+ 1

end if
j ← j + 1

end while
for i = j → n do
B′ ← B′ ∪ {ei}

end for
Return u =

∑
vi∈B βivi +

∑
vi∈B′ γivi ∧

∧
i γi 6= 0

Non finiteness of the smt models In the light of Example 11, I suggested that adding the con-
straints l · r ≥ 0 for all ray generator r of PH seems to correct the first issue (we will prove later
that it does). As we have seen before, computing the generators of PH may be expensive. Instead, we
maintain a set R of rays which are generators of the polyhedron PH, and we define the LP (C,LI ,R)
instance as : 

Maximize
∑

i δi s.t.
λ1, . . . , λm ≥ 0
0 ≤ δj ≤ 1 for all 1 ≤ j ≤ N∑m

i=1 λi(vj .li) ≥ δj for all 1 ≤ j ≤ N∑m
i=1 λi(r.li) ≥ 0 for all r ∈ R

(14)

Proposition 4 is still true, since
∑m

i=1 λi(r.li) ≥ 0 for all r ∈ R is a necessary condition for l to be
a weak ranking function.

We then add the ray generators r incrementally, when the SMT-solver returns a model of the form
u = · · · + βr. When a model is of this form, u · l = −K. We can ensure that there is actually an
unbounded component by checking if u · l = −(K + 1) is satisfiable. We then compute r and add it
to R. This is implemented as follow :

Algorithm 4 UnboundedRay

Require: u, l and r
if u · l = −K then

Generalize the model u with a conjunction of equalities P constructed with the saturated in-
equalities of I ∧ τ ∧ u · l ≤ 0

if P ∧AvoidSpace(u,B) ∧ u · l = −(K + 1) is satisfiable then
u′ ← a model for u in the above SMT test
r ← (u′ − u)
Return true

end if
end if
Return false

These remarks and solutions lead to the following algorithm :
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Algorithm 5 Modified (terminating) Algorithm Monodimensional

Require: I and τ
C ← ∅
B ← ∅
R ← ∅
finished ← false
r ← 0
while ¬finished and I ∧ τ ∧u = x−x′ ∧AvoidSpace(u,B) satisfiable (in the unknowns u,x,x′)
with minimization for u · l ≤ 0 do
u← a model for u in the above SMT test
C ← C ∪ {u}
if UnboundedRay(u, l, r) then . u = · · ·+ βr, with r a ray generator of PH
R ← R∪ {r}

end if
(λ, δ)← LP (C,LI ,R)
if λ = 0 then

finished ← true
else
l←

∑m
i=1 λili

if δu = 0 then
B ← B ∪ {u}

end if
end if

end while
Return (l,

∧
i δi = 1 ∧ (I ∧ τ ∧ x = x ′) unsatisfiable)

Adding “(I ∧ τ ∧ x = x ′) unsatisfiable” is necessary in the case where there is a vector x such
that (x,x) ∈ τ . Indeed, the constraint AvoidSpace(u,B) prevents the SMT-solver to return the model
(x,x). Thus, if B = ∅ at the end, the algorithm would return (l, true) instead of (l, false).

Proof (termination of Algorithm 5) [Monniaux/Seguinot]. The number of vectors in B can only in-
crease or stay the same, and it is bounded by n, thus B is stationary. Once it is stationary, so is the
SMT formula (save for the optimization constraint u · l ≤ 0).

We argue that when B is stationary, then once δi = 1 at one iteration, then it stays so at all future
iterations. Suppose the opposite: we had a system C of constraints (that is,

∧
i ci · l ≥ 0) such that

δi0 = 1 at the preceding iteration, and we are adding a new constraint C ′ (c′ ·l ≥ 0). If LP(C∪{C ′},LI)
yields δi0 = 0 for some i0, this means, by Farkas’ lemma, that −ci0 can be expressed as a combination
of the other constraints in C and of C ′, otherwise said there exist nonnegative λi, λ′ such that

− ci0 =
∑
i 6=i0

λici + λ′c′ (15)

If λ′ = 0, then C (without C ′) already implies ci0 · l ≤ 0 and thus δi0 is already null at the preceding
iteration; contradiction. Therefore, there exists a nonnegative µi such that −c′ =

∑
i µici, otherwise

said any solution of C satisfies c′ · l ≤ 0; then this means, in our algorithm, that δu = 0, and thus B is
updated; but we have assumed B is stationary so this cannot occur.

Once B is stationary, all vectors u in C either belong to the vector space spanned by B (case δu = 0),
either satisfy δu = 1. All l obtained thus verify u · l > 0 for all u in C but not in the span of B. A u
that was already given as solution by the SMT solver cannot be given again.

Let us now prove that if vi (resp. ri) are the vertices (resp. ray) generators of PH, and v =
∑

i αivi,
the SMT solver cannot return an infinite number of vertices of the form v +

∑
i βiri. Indeed, if the

SMT solve returns v+
∑

i βiri with at least one of the βi > 0, then one of the ray generators ri0 (with
βi0 > 0) will be added to R. If it returns u = v +

∑
i β
′
iri after that, then β

′
i0

= 0 (or else u · l is not
minimal). Thus, only |{ri}|+ 1 vectors of the form v +

∑
i βiri can be returned by the SMT solver.
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Since we have assumed that the solutions of the form
∑

i αivi returned by the SMT solver belong
to a finite set, and for each of these solutions, only a finite number of solutions with an unbounded
component can be returned, the SMT solver yields solution belonging to a finite set of vertices and the
termination ensues.

Lemma 2. Let l be the weak ranking function produced by the algorithm and l′ be another weak ranking
function. Then, for all (x,x ′) ∈ I ∧ τ , if l′ · (x− x ′) > 0 then l · (x− x ′) > 0.

Proof. x − x ′ can be expressed as a linear combination of a subset of generators of PH: x − x ′ =∑
v∈V ′ αvv with

∑
v∈V ′ αv = 1 and for all v ∈ V ′, αv > 0, where V ′ ⊆ V. Thus l ·(x−x ′) =

∑
v αvl ·v

(similarly for l′). Thus if l · (x− x ′) = 0, then for all v ∈ V ′, l · v = 0. Since l has maximal πV(l), it
follows that l′ · v = 0 for any v ∈ V ′. But then l′ · (x− x ′) = 0. We thus have proved the contrapose
of the result.

4.4 Multidimensional algorithm

Like in Algorithm 1, we incrementally apply the monodimensional algorithm to complete a multidi-
mensional ranking function until it is strict.

Algorithm 6 Multidimensional Algorithm Multidimensional
Require: I and τ
ρ← ∅
failed ← false
repeat

(l, strict)←Monodimensional
(
I, τ ∧

∧
l∈ρ(x− x ′) · l = 0

)
if ¬strict then

if l is in the span of ρ then
failed ← true

else
ρ← ρ ∪ {l}

end if
end if

until strict ∨ failed
return if failed then “None” else ρ

This algorithm terminates in at most n iterations because ρ is a free family of strictly increasing
size in Qn.

Lemma 3. Let ρ be the multidimensional weak ranking function produced by the algorithm and ρ′ be
another multidimensional weak ranking function. Then, for all (x,x ′) ∈ I ∧ τ , if ρ′(x) � ρ′(x ′) then
ρ(x) � ρ(x ′).

Proof. Let us assume that for some (x,x ′) ∈ τ ∧ I we have ρ′(x) � ρ′(x ′) but ρ(x) = ρ(x ′). Then,
there must be a least i such that ρ′i · (x − x ′) > 0; and for j < i, ρ′j · (x − x ′) = 0. Without
loss of generality, we choose such a couple (x0,x

′
0) ∈ τ ∧ I of least i. Thus, for all (x,x ′), if

∀j < i ρj · (x− x ′) = 0 then ∀j < i ρ′j · (x− x ′) = 0; since otherwise it would mean that there would
be a j < i such that ρ′j · (x−x ′) > 0 and ρj · (x−x ′) = 0, which would contradict the minimality of i.

It follows that over {(x,x ′) | (x,x ′) ∈ I ∧ τ ∧
∧
j<i ρj · (x − x ′) = 0}, ρ′i is also a weak ranking

function; but so is ρi. By lemma 2, for all (x,x ′) in this set, if ρ′i · (x−x ′) > 0 then ρi · (x−x ′) > 0.
This is true in particular for (x0,x

′
0), which leads to contradiction.

5 Implementation choices

In this section, I will describe the implementation and the different choices I had to make during this
internship. I will first explain which programming language I chose an why I chose it. I will then
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present the input format used to describe the automata, followed by the different libraries and tools
used. Finally, I will detail the implementation of the three algorithms, and the output format.

5.1 Choice of implementation language

I had the choice between OCaml and C++. I chose the OCaml language because I am more familiar
with it and because there already exists OCaml libraries for most of the functionalities I needed.

5.2 Input format

Integer interpreted automaton description language I could have used the FAST language
(http://www.lsv.ens-cachan.fr/Software/fast/), which is used for verification and invariant com-
putation, and was used in the implementation of the algorithm 1. Instead, I chose the NTS language
(http://nts.imag.fr/index.php/Main_Page), whose representation is more adapted to the new al-
gorithm (with FAST, each transition is labelled by its guard and its action, whereas with NTS, it is
labelled by the formula I ∧ τ). It also provides an OCaml API.

Pre-processing These interpreted automata are obtained by preprocessing a C code. The c2fsm
tool translates a C program into an interpreted automaton in the FAST language. For now, there is
no such tool to obtain automata in the NTS language, thus the algorithm only proves termination
of NTS interpreted automata. However, David Monniaux is currently working on a tool base on
llvm (http://llvm.org) which will do this, llvm2nts, and will enable the algorithm to prove the
termination of C programs.

Input format restrictions For now, the algorithm only works for automata with one node. It
should however not be hard to adapt it to any automaton, in a similar way as in [6].

5.3 Choices of libraries

Arbitrary precision arithmetic Even if there is an arbitrary precision arithmetic module in OCaml
(Num), I used Zarith (http://forge.ocamlcore.org/projects/zarith), which gives better perfor-
mances.

Smt-solvers I first used the Z3 SMT-solver (http://z3.codeplex.com/) which is open-source and
provides an OCaml API. However, the API being outdated, I had to use the SMTLIB interface. As
SMTLIB is a textual standard, I had to parse the output of the solver to obtain the results of the
SMT-tests. I then reused this parser with OptiMathSat ([8]) to make SMT-tests with a minimization.

Linear programming solver There are several linear programming solvers which provide an OCaml
API, but here we work in arbitrary precision arithmetic. None of the solvers I found could work with
arbitrary precision numbers, so I used Pip (http://www.piplib.org/) as an external tool, and parsed
its output.

5.4 Implementation of the first monodimensional algorithm

I will here give some details about the implementation the first monodimensional Algorithm 2 (which
doesn’t always terminate).

The data structures I used are :

• Arrays of rationals for the column vectors : λ, δ, l, li,x,x ′

• Lists of arrays for the set C

• Trees for the formulas I and τ

16/23

http://www.lsv.ens- cachan.fr/Software/fast/
http://nts.imag.fr/index.php/Main_Page
http://llvm.org
http://forge.ocamlcore.org/projects/zarith
http://z3.codeplex.com/
http://www.piplib.org/


Lucas Seguinot Improvement of a termination analysis algorithm

To represent I, I used both the formula, and an array of couples (li, ci). The first one is used for
the SMT tests, whereas the second one is used in the LP tests and the computation of l.

The tree type used to represent the formulas is defined as :

(**
Type representing an arithmetic expression

*)
type expression =
| Cst of Q.t
| ProgramVar of bool * int (* Variable used in the program :

(false,i) = "x_i", (true,i) = "x’_i" *)
| OtherVar of string (* Other variables (cost, ...) *)
| Neg of expression
| Add of expression * expression
...

(**
Type representing a formula

*)
type relation =
| Eq of expression * expression
| Neq of expression * expression
...
| And of relation * relation
| Or of relation * relation
| Not of relation
| True
| False

I implemented two functions that make the interface with the LP and SMT solvers, which are called
within the OCaml main program with :

• Lp.lp c inv lambda delta

• Smtsolver.check_sat prob (x,x’)

The Lp.lp function first generates an instance of the LP (C,LI) problem. The generation of the
SMT-test instance prob is done before calling Smtsolver.check_sat. These two functions then write
the problems in the format of the solver (PIP or SMTLIB), call it, parse the output, and write the
results to the last arguments (lambda and delta or (x,x’)). Smtsolver.check_sat also returns a
boolean which is true iff the problem is satisfiable.

x = [1; 2; ]
y = [1; 1; ]
x - y = [0; 1; ]
lambda = [0; 1; ]
delta = [1; ]
l = [0; 1; ]
------
x = [2; 1; ]
y = [1; 1; ]
x - y = [1; 0; ]
lambda = [1; 1; ]
delta = [1; 1; ]
l = [1; 1; ]
------
l = [1; 1; ], true

(a) Example 10 (gcd)

x = [0; 0; 0; ]
y = [-1; 0; 0; ]
x - y = [1; 0; 0; ]
lambda = [1; 0; 0; 0; ]
delta = [1; ]
l = [1; 0; 0; ]
------
x = [0; 1; 1; ]
y = [0; 0; 1; ]
x - y = [0; 1; 0; ]
lambda = [1; 1; 0; 0; ]
delta = [1; 1; ]
l = [1; 1; 0; ]
------
x = [0; 0; 1; ]
y = [-1; 1; 1; ]
x - y = [1; -1; 0; ]
lambda = [2; 1; 0; 0; ]
delta = [1; 1; 1; ]
l = [2; 1; 0; ]
------

x = [0; 0; 2; ]
y = [-1; 2; 2; ]
x - y = [1; -2; 0; ]
lambda = [3; 1; 0; 0; ]
delta = [1; 1; 1; 1; ]
l = [3; 1; 0; ]
------
x = [0; 0; 3; ]
y = [-1; 3; 3; ]
x - y = [1; -3; 0; ]
lambda = [4; 1; 0; 0; ]
delta = [1; 1; 1; 1; 1; ]
l = [4; 1; 0; ]
------
x = [0; 0; 4; ]
y = [-1; 4; 4; ]
x - y = [1; -4; 0; ]
lambda = [5; 1; 0; 0; ]
delta = [1; 1; 1; 1; 1; 1; ]
l = [5; 1; 0; ]
------
...

(b) Non-terminating example (cousot9)

Figure 11 – Output (in verbose mode)

Figure 11 presents two examples of output that the program can return in verbose mode. For each
iteration, the values of the vectors x, y (x ′), x - y (x− x ′), λ, δ and l are given. The iterations are

17/23



Lucas Seguinot Improvement of a termination analysis algorithm

separated by ------. In (a), the last line is the value returned by the algorithm. More details on the
cousot9 example can be found in appendix A.A.

5.5 Implementation of the second monodimensional algorithm

AvoidSpace To represent a subspace of Qn, I used an upper triangular matrix B of size n×n, such
that all the non-null lines ({Bi | Bi,i 6= 0}) of the matrix form a basis of the subspace. To add a
vector in this basis while keeping the matrix’s properties, we add this vector in a null line, we compute
the Gauss-Jordan elimination of the matrix, and we reorganize the lines to make the matrix upper
triangular (the implementation was optimized, but the result is equivalent). To implement AvoidSpace,
we then need to compute a basis of the complementary of the subspace. All we have to do is complete
the basis by adding the vector ei to the complementary basis if Bi,i = 0 (where ei is the i-th vector of
the canonical basis). For example, if

B =


1 2 0 3
0 0 0 0
0 0 1 1
0 0 0 0


Then {(0, 1, 0, 0), (0, 0, 0, 1)} is a complementary basis of B.

We did not have any performance problems, and the matrix B being sparse, we think that their
won’t be any. However, if it turns out that this algorithm is not scalable, it is possible to improve it,
for example by trying the second method proposed in 4.3, or by using a linear algebra library.

UnboundedRay The computation of ray generators is implemented with Algorithm 4. In order to
generalize a model (x, y) with a conjunction of equalities P constructed with the saturated inequalities
of I∧τ ∧u ·l ≤ 0, we traverse the tree representing the formula I∧τ ∧u ·l ≤ 0 (which is composed only
of ∧, ∨, ≤, ≥ and =). If the formula is A ∧ B, we return A′ ∧ B′ (where A′ is the generalized model
extracted from A). If it is A ∨B, we return the generalized model extracted from the formula that is
true when evaluated with (x, y) (if A and B are true, we return A). If the formula is an (in)equality
(A = B, A ≤ B or A ≥ B), we return A = B if the model is saturated by the (in)equality (i.e. if the
evaluation of A = B is true), else we return true.

5.6 Implementation of the multidimensional algorithm

The implementation of this algorithm follows the pseudo-code given in Algorithm 6, and I won’t develop
it.

6 Results

I have tested the algorithms on some programs extracted from the WTC toolsuite benchmarks (see
Appendix A for more details). The tool translating C programs in interpreted automata not being
available yet, I chose the examples that could be translated into an interpreted automaton with one
node and did it manually, as well as the computation of the invariants.

On all these examples, a correct result is obtained instantaneously, and the sizes of the LP problems
are reasonable (less than 10 unknowns, and less than 10 inequalities).

The ranking functions found for these programs are listed in table 1.
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Program Algorithm 2 Algorithm 5 Algorithm 6
cousot9 - i (ns) (i, j)

cousot9_cst 11× i+ j 11× i+ j 11× i+ j

easy1 −1/2× x −1/2× x −1/2× x
easy2 z z z

example1 −x −x −x
example2 −x− y − z −x− y − z −x− y − z
exemple3 - 1/2× j (ns) (1/2× j, i)
exmini −1/2× i− 1/2× j + 1/2× k −1/4× i− 1/4× j + 1/4× k −1/4× i− 1/4× j + 1/4× k
gcd x+ y x+ y x+ y

random1d −x+ max −x+ max −x+ max

real 0 (ns) x (ns) None
wcet2 −11× i− j −11× i− j −11× i− j
wise 0 (ns) 0 (ns) None

Table 1 – Results obtained with the three implemented algorithms. In the first column, “-” means that
the algorithm does not terminate on this automaton. “(ns)” means that the ranking found is not strict.

7 Conclusion and future work

In conclusion, the main objectives of this internship (understanding and implementing the algorithms,
testing them, and finishing to prove them) have been met. However, there is still some work remaining
in order to have a fully functional termination analysis program. First, implementing the algorithm
for several control point. Second, finishing the llvm2nts frontend which will be used to translate
C programs into interpreted automata, and third, implementing the computation of the invariants.
The next step would be to test the algorithm on larger programs, to compare the execution time of
the improved algorithm and the previous one, and, more importantly, the sizes of the LP instances
generated to ensure that the scalability has been improved.

The work this internship was based on has not been published yet. Laure Gonnord and David
Monniaux are currently writing a research report and an article that should be submitted soon.

Appendices

A Benchmarks

In this appendix, I present the benchmarks used to test the algorithms. All the C programs are
extracted from the WTC toolsuite benchmarks (http://compsys-tools.ens-lyon.fr/wtc/index.
html). I do not provide C codes for example1, example2, example3 and real in so far as these
examples have been created directly as automata in order to test the behaviour of the algorithms in
particular cases that may have been problematic.
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A.A cousot9
int cousot9(){

int i,j,N;

i=N;
while(i>0) {

if(j>0) {j--;}
else

{
j=N;i--;

}
}

return 0;
}

τ :

(
i ≥ 0 ∧ j ≥ 1 ∧ i′ = i ∧ j′ = j − 1 ∧N ′ = N

)
∨(

i ≥ 0 ∧ j ≤ 0 ∧ i′ = i− 1 ∧ j′ = N ∧N ′ = N
)

I :


i ≥ 0

j ≥ 0

N ≥ 0

−j +N ≥ 0

ρ(x) =

(
i
j

)
A.B cousot9_cst
int cousot9(){

int i,j;

i=10;
while(i>0) {

if(j>0) {j--;}
else

{
j=10;i--;

}
}

return 0;
}

τ :

(
i ≥ 0 ∧ j ≥ 1 ∧ i′ = i ∧ j′ = j − 1

)
∨(

i ≥ 0 ∧ j ≤ 0 ∧ i′ = i− 1 ∧ j′ = 10
)

I :


i ≥ 0

j ≥ 0

−j ≥ −10

ρ(x) = 11× i+ j

A.C easy1

int easy1() {
int x, y, z;
x=0;
y=100;
while (x<40) {

if (z==0) {
x=x+1;

} else {
x=x+2;

}
}

}

τ :

(
x ≤ 39 ∧ z = 0 ∧ x′ = x+ 1 ∧ z′ = z ∧ y′ = y

)
∨(

x ≤ 39 ∧ z ≤ −1 ∧ x′ = x+ 2 ∧ z′ = z ∧ y′ = y
)
∨(

x ≤ 39 ∧ z ≥ 1 ∧ x′ = x+ 2 ∧ z′ = z ∧ y′ = y
)

I :


x ≥ 1

−x ≥ −41

y ≥ 100

−y ≥ −100

ρ(x) = −1/2× x

A.D easy2
int easy2() {

int x=12;
int y=0;
int z;
while (z>0) {

x=x+1;
y=y-1;
z=z-1;

}
return 0;
}

τ :
(
z ≥ 1 ∧ x′ = x+ 1 ∧ y′ = y − 1 ∧ z′ = z − 1

)

I :


x ≥ 12

−y ≥ 0

z ≥ 0

ρ(x) = z
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A.E example1

τ :

(
x ≤ 10 ∧ y ≥ 0 ∧ x′ = x+ 1 ∧ y′ = y + 1

)
∨(

x ≤ 0 ∧ y ≥ 0 ∧ x′ = x+ 1 ∧ y′ = y − 1
)

I :

{
x ≥ −1

−x ≥ −11

ρ(x) = −x

A.F example2

τ :

(
z ≥ 0 ∧ z ≤ 10 ∧ x′ = x ∧ y′ = y ∧ z′ = z + 1

)
∨(

y ≥ 0 ∧ y ≤ 10 ∧ x′ = x ∧ y′ = y + 1 ∧ z′ = z
)
∨(

x ≥ 0 ∧ y ≤ 10 ∧ x′ = x+ 1 ∧ y′ = y ∧ z′ = z
)

I :



x ≥ 0

y ≥ 0

z ≥ 0

−x ≥ −10

−y ≥ −10

−z ≥ −10

ρ(x) = −x− y − z

A.G example3

τ :

(
i ≥ 1 ∧ i′ = i− 1 ∧ j′ = j

)
∨(

i = 0 ∧ i′ = j ∧ j′ = j − 1
)

I :


i ≥ 0

j ≥ 0

−i+ j ≥ −1

ρ(x) =

(
1/2× j
i

)
A.H exmini
int exmini()
{

int i,j,k,tmp;

while(i<=100 && j<=k){
tmp = i;
i=j;
j=tmp+1;
k=k-1;

}

return 0;
}

τ :
(
i ≤ 100 ∧ j ≤ k ∧ i′ = j ∧ j′ = i+ 1 ∧ k′ = k − 1

)
I :

{
−i ≥ −100

−j + k ≥ 0

ρ(x) = −1/4× i− 1/4× j + 1/4× k
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A.I gcd

int gcd(int x, int y){
if(x<=0) return;
if(y<=0) return;
while(x != y)

if(x<y) y = y-x;
else x = x-y;

}

τ :

(
x ≥ 1 ∧ y ≥ x+ 1 ∧ x′ = x ∧ y′ = y − x

)
∨(

x ≥ y + 1 ∧ y ≥ 1 ∧ x′ = x− y ∧ y′ = y
)

I :

{
x ≥ 0

y ≥ 0

ρ(x) = x+ y

A.J random1d

int random1d() {
int a,x,max;
if (max>0) {

a=0;
x=1;
while (x<=max) {

if (random()) a=a+1; else a=a-1;
x=x+1;

}
}

}

τ :

(
x ≤ max ∧ a′ = a+ 1 ∧ x′ = x+ 1 ∧max′ = max

)
∨(

x ≤ max ∧ a′ = a− 1 ∧ x′ = x+ 1 ∧max′ = max
)

I :


−a+ x ≥ 1

x ≥ 1

max ≥ 1

−x+max ≥ 0

ρ(x) = −x+max

A.K real

τ :
(
x ≥ 0 ∧ x′ = 1/2× x

)
I : x ≥ 0

ρ(x) = None

A.L wcet2

int wcet2 () {
int i,j;

while(i<5){
j=0;
while(i>2 && j<=9) j++;
i++;

}
return 0;

}

τ :

(
i ≤ 4 ∧ i ≥ 3 ∧ j ≤ 9 ∧ j′ = j + 1 ∧ i′ = i

)
∨(

i ≤ 4 ∧ j ≥ 10 ∧ j′ = 0 ∧ i′ = i+ 1
)
∨(

i ≤ 4 ∧ j ≤ 2 ∧ j′ = 0 ∧ i′ = i+ 1
)

I :


j ≥ 0

−i ≥ −5

−j ≥ −10

ρ(x) = −11× i− j

A.M wise

void wise(){
int x, y;
if(x<0 || y<0) return;
while(x-y>2 || y-x>2)

if(x < y) ++x;
else ++y;

}

τ :

(
x ≥ 0 ∧ y ≥ 0 ∧ x− y ≥ 3 ∧ y′ = y + 1 ∧ x′ = x

)
∨(

x ≥ 0 ∧ y ≥ 0 ∧ y − x ≥ 3 ∧ x′ = x+ 1 ∧ y′ = y
)

I :

{
x ≥ 0

y ≥ 0

ρ(x) = None
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