Décomposition de Bruhat

Pierron Théo

9 juin 2014

Soit T_s l'ensemble des matrices triangulaires supérieures inversibles.

THÉORÈME $T_s \times T_s$ agit sur $GL_n(\mathbb{K})$. $\{P_{\sigma}, \sigma \in \mathfrak{S}_n\}$ est un système de représentants des orbites. En particulier

$$GL_n(\mathbb{K}) = \bigsqcup_{\sigma \in \mathfrak{S}_n} T_s P_{\sigma} T_s$$

Démonstration. Soit $(E_{i,j})_{i,j}$ la base canonique de $M_n(\mathbb{K})$. Si $i < j, \lambda \in \mathbb{K}$ et $\alpha \neq 0$, on définit

- $-T_{i,j}(\lambda) = \operatorname{Id} + \lambda E_{i,j} \in T_s$. La multiplication à gauche par $T_{i,j}(\lambda)$ correspond à l'opération $L_i \leftarrow L_i + \lambda L_j$. La multiplication à droite correspond à $C_j \leftarrow C_j + \lambda C_i$.
- $-D_i(\alpha) = \operatorname{Id} + (\alpha 1)E_{i,i} \in T_s$. La multiplication à gauche correspond à $L_i \leftarrow \alpha L_i$. Celle à droite correspond à $C_i \leftarrow \alpha C_i$.

Soit $A \in GL_n(\mathbb{K})$. Soit $i_1 = \max\{k, a_{k,1} \neq 0\}$ (qui est bien défini car A est inversible).

Pour tout $k < i_1$, on effectue l'opération $L_k \leftarrow L_k - \frac{a_{k,1}}{a_{i_1,1}} L_{i_1}$ en multipliant à gauche par $T_{k,i_1}(-\frac{a_{k,1}}{a_{i_1,1}}).$

On effectue aussi l'opération $L_{i_1} \leftarrow \frac{1}{a_{i_1,1}} L_{i_1}$, en multipliant à gauche par $D_{i_1}(\frac{1}{a_{i_1,1}})$.

Pour k > 1, on fait $C_k \leftarrow C_k - a_{i_1,k}C_1$ par multiplication à droite par $T_{1,k}(-a_{i_1,k})$.

On a donc transformé A en une matrice A_1 n'ayant que des 0 sur la i_1 -ème ligne et la première colonne, sauf à l'indice $(i_1, 1)$ où il y a un 1.

 A_1 est inversible donc $i_2=\max\{k,a_{k,2}\neq 0\}$ est bien défini. On réitère les opérations précédentes pour annuler la ligne i_2 et la colonne 2. On continue ainsi jusqu'à la n-ème colonne.

Par construction, la suite (i_k) est injective donc bijective. Elle définit donc une permutation $\sigma \in \mathfrak{S}_n$. On a donc trouvé $T_1, T_2 \in T_s$ tel que $P_{\sigma} = T_1 A T_2$. Ainsi, $A = T_1^{-1} P_{\sigma} T_2^{-1} \in T_s P_{\sigma} T_s$. Montrons enfin l'unicité de σ . Si $T_1 P_{\sigma} T_2 = T_1' P_{\tau} T_2'$, notons $T = (T_1')^{-1} T_1$ et $T' = T_2' T_2^{-1}$. On

a alors $P_{\tau}T' = TP_{\sigma}$.

Si
$$\sigma \neq \tau$$
, il existe i tel que $\sigma(i) < \tau(i)$. Alors $0 \neq t'_{i,i} = t_{\tau(i),\sigma(i)} = 0$. Donc $\sigma = \tau$.

Un drapeau de \mathbb{R}^n est une suite croissante de sev $\{0\} = E_0 \subset \cdots \subset E_n = \mathbb{R}^n$ avec $\dim(E_i) =$ i. Le drapeau canonique est obtenu en prenant $E_i = \text{Vect}\{e_1, \dots, e_i\}$ avec $(e_i)_i$ la base canonique. COROLLAIRE $GL_n(\mathbb{R})$ agit sur les couples de drapeaux. L'action a n! orbites.

 $D\acute{e}monstration$. $GL_n(\mathbb{R})$ agit transitivement sur l'ensemble des drapeaux. Le stabilisateur du drapeau canonique est T_s . Donc $D \simeq GL_n(\mathbb{R})/T_s$.

 $GL_n(\mathbb{R})$ agit donc sur $(GL_n(\mathbb{R})/T_s)^2$ via $G(\overline{A}, \overline{B}) = (\overline{GA}, \overline{GB})$. Soit $(\overline{A}, \overline{B})$ deux éléments du quotient. Écrivons la décomposition de Bruhat de $A^{-1}B = T_1 P_{\sigma} T_2$. Alors

$$(\overline{A}, \overline{B}) = A(\overline{I_n}, \overline{A^{-1}B}) = AT_1(\overline{T_1^{-1}}, \overline{P_{\sigma}T_2}) = AT_1(\overline{I_n}, \overline{P_{\sigma}})$$

et σ est unique. Autrement dit, on a une bijection entre les orbites et \mathfrak{S}_n .