Développement : Fractions continues

Pierron Théo – Lacoste Cyril

4 novembre 2013

Référence : Gourdon Algèbre Annexe C

Soit $\xi \in \mathbb{R}$. On définit les suites $(\xi_n)_n$ et $(a_n)_n$ par $a_n = \lfloor \xi_n \rfloor$, $\xi_0 = \xi$ et $\xi_{n+1} = \frac{1}{\xi_n - a_n}$. On définit alors les suites $(p_n)_n$ et $(q_n)_n$ par

$$p_0 = a_0$$
, $p_1 = a_1 a_0 + 1$ et $p_n = a_n p_{n-1} + p_{n-2}$

$$q_0 = 1$$
, $q_1 = a_1$ et $q_n = a_n q_{n-1} + q_{n-2}$

On note aussi $[a_0,\ldots,a_n]=a_0+\cfrac{1}{a_1+\cfrac{1}{\cdots+\cfrac{1}{a_{n-1}+\cfrac{1}{a_n}}}}.$

En particulier $\xi = [a_0, \dots, \xi_n] = \frac{p_{n-1}\xi_n + p_{n-2}}{q_{n-1}\xi_n + q_{n-2}}$.

Lemme

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}.$$

Démonstration. On prouve cette propriété par récurrence.

Si n = 1, par définition de p_0, p_1, q_0 et q_1 , on a $p_1q_0 - p_0q_1 = a_0a_1 + 1 - a_0a_1 = 1$.

Si la propriété est vraie au rang n, on a

$$p_{n+1}q_n - p_nq_{n+1} = (a_np_n + p_{n-1})q_n - p_n(a_nq_n + q_{n-1}) = -(p_nq_{n-1} - p_{n-1}q_n) = (-1)^n$$

Le principe de récurrence assure le résultat.

THÉORÈME Soit ξ irrationnel. ξ est quadratique 1 ssi il existe T > 0 tel que $\xi_{k+T} = \xi_k$ pour tout k assez grand.

Remarque Si ξ est rationnel, son développement n'est pas périodique et il n'est pas non plus quadratique.

Démonstration.

 \Leftarrow Soient r, T tels que $\xi_{r+T} = \xi_r$. On a alors

$$\xi_r = [a_r, \dots, a_{r+T-1}, \xi_{r+T}] = \frac{\alpha \xi_{r+T} + \alpha'}{\beta \xi_{r+T} + \beta'} = \frac{\alpha \xi_r + \alpha'}{\beta \xi_r + \beta'}$$

où α, β, α' et β' sont des entiers.

Ainsi, le polynôme $Q := \beta X^2 + (\beta' - \alpha)X - \alpha'$ annule ξ_r . De plus $Q \in \mathbb{Z}[X]$ et $\deg(Q) = 2$. Si Q était réductible, ses racines seraient rationnelles donc $\xi_r \in \mathbb{Q}$, ce qui est absurde. Donc Q est irréductible sur \mathbb{Q} .

^{1.} Un nombre réel est dit quadratique s
si il est racine d'un polynôme de $\mathbb{Z}[X]$ de degré 2 et irréductible sur \mathbb{Q}

On a de plus, par définition de p_n, q_n et $\xi_n, \xi = \frac{p_{r-1}\xi_r + p_{r-2}}{q_{r-1}\xi_r + q_{r-2}}$. Alors

$$q_{r-1}\xi_r\xi + q_{r-2}\xi = p_{r-1}\xi_r + p_{r-2} \text{ donc } \xi_r = \frac{-q_{r-2}\xi + p_{r-2}}{q_{r-1}\xi - p_{r-1}}$$

Le polynôme

$$R = (q_{r-1}X - p_{r-2})^2 Q\left(\frac{-q_{r-2}X + p_{r-2}}{q_{r-1}X - p_{r-1}}\right) \in \mathbb{Z}[X]$$

est de degré 2 et annule ξ . Comme précédemment, R est irréductible sur \mathbb{Q} , et ξ est quadratique.

 \Rightarrow Soit $Q = \alpha X^2 + \beta X + \gamma = \alpha (X - \xi)(X - \xi') \in \mathbb{Z}[X]$ irréductible sur \mathbb{Q} qui annule ξ . Pour tout n, on définit

$$Q_n = (q_{n-1}X + q_{n-2})^2 Q\left(\frac{p_{n-1}X + p_{n-2}}{q_{n-1}X + q_{n-2}}\right)$$

Comme $Q(\xi)=0$ et $\xi=\frac{p_{n-1}\xi_n+p_{n-2}}{q_{n-1}\xi_n+q_{n-2}},$ $Q_n(\xi_n)=(q_{n-1}\xi_n+q_{n-2})^2Q(\xi)=0$. Posons $Q_n=\alpha_nX^2+\beta_nX+\gamma_n$ avec $\alpha_n,$ $\beta_n,$ γ_n entiers. On remarque que $\alpha_n=q_{n-1}^2Q(\frac{p_{n-1}}{q_{n-1}})\neq 0$ car Q n'a pas de racines rationnelles. De même,

 $\gamma_n = q_{n-2}^2 Q(\frac{p_{n-2}}{q_{n-2}}) = \alpha_{n-1}.$ Montrons que le discriminant Δ_n de Q_n est égal au discriminant Δ de Q. Par définition du discriminant et de Q_n , $\Delta_n = \alpha_n^2 (\xi_n - \xi_n')^2$ et $\Delta = \alpha (\xi - \xi')^2$ où $\xi_n' = \frac{-q_{n-2}\xi' + p_{n-2}}{q_{n-1}\xi' - p_{n-1}}.$ Comme $Q = \alpha(X - \xi)(X - \xi')$, on obtient $\alpha_n = \alpha(p_{n-1} - q_{n-1}\xi)(p_{n-1} - q_{n-1}\xi')$. Alors

$$\Delta_n = \alpha^2 (p_{n-1} - q_{n-1}\xi)^2 (p_{n-1} - q_{n-1}\xi')^2 \left(\frac{-q_{n-2}\xi + p_{n-2}}{q_{n-1}\xi - p_{n-1}} - \frac{-q_{n-2}\xi' + p_{n-2}}{q_{n-1}\xi' - p_{n-1}}\right)^2$$

$$= \alpha^2 ((q_{n-2}\xi - p_{n-2})(p_{n-1} - q_{n-1}\xi') - (q_{n-2}\xi' - p_{n-2})(p_{n-1} - q_{n-1}\xi))^2$$

$$= \alpha^2 \underbrace{(p_{n-1}q_{n-2} - p_{n-2}q_{n-1})^2}_{1} (\xi - \xi')^2 = \Delta$$

Montrons maintenant qu'il y a un nombre fini de Q_n . Il suffit de borner les coefficients de Q_n . Par inégalité des accroissements finis, on a

$$|\alpha_n| = \left| q_{n-1}^2 Q\left(\frac{p_{n-1}}{q_{n-1}}\right) \right| = q_{n-1}^2 \left| Q\left(\frac{p_{n-1}}{q_{n-1}}\right) - Q(\xi) \right| \leqslant q_{n-1}^2 M \left| \frac{p_{n-1}}{q_{n-1}} - \xi \right| \leqslant M$$

où $M = \sup_{|x-\xi|<1} |Q'(x)|.$

Comme $\gamma_n = \alpha_{n-1}$, on a $|\gamma_n| \leq M$. On a de plus

$$\beta_n^2 = \Delta_n + 4\alpha_n \gamma_n = \Delta + 4\alpha_n \gamma_n \leqslant \Delta + 4M^2$$

Ainsi, l'ensemble des Q_n est fini donc il existe $n_1 < n_2 < n_3$ tels que $Q_{n_1} = Q_{n_2} = Q_{n_3}$. Comme ξ_{n_j} est racine de Q_{n_j} , il existe $i \neq j$ tel que $\xi_{n_i} = \xi_{n_j}$. Ainsi, ξ est périodique à partir du rang n_i .