Théorèmes de Hahn-Banach en dimension finie

PIERRON Théo

28 décembre 2013

On fixe E un evn de dimension finie.

THÉORÈME 1 Soit $p: E \to \mathbb{R}$ telle que pour tout $\lambda > 0$, $x, y \in E$,

$$p(\lambda x) = \lambda p(x)$$
 et $p(x+y) \le p(x) + p(y)$

Soit G un sev de E et g une forme linéaire sur G telle que $g \leq p$. Alors il existe f forme linéaire de E telle que $f|_G = g$ et $f \leq p$.

 $D\acute{e}monstration$. Soit F un sev de E de dimension maximale vérifiant

- $G \subset F$
- il existe $f: F \to \mathbb{R}$ linéaire telle que $f|_G = g$ et $f \leq p$ Supposons que $F \neq E$. Soit donc $x_0 \in E \setminus F$. On définit alors

$$f': \begin{cases} F \oplus \mathbb{R}x_0 & \to & \mathbb{R} \\ x + tx_0 & \mapsto & f(x) + t\alpha \end{cases}$$

où α est un paramètre à déterminer.

On a clairement $f'|_G = f|_G = g$. On va chercher α pour que $f' \leq p$, i.e. on veut que pour tout $t \in \mathbb{R}$ et $x \in F$, on ait

$$f(x) + t\alpha \leq p(x + tx_0)$$

Si α vérifie : pour tout $x \in F$,

$$f(x) + \alpha \leq p(x + x_0)$$
 et $f(x) - \alpha \leq p(x - x_0)$

alors on a, si t > 0,

$$f(x) + t\alpha = t\left(f\left(\frac{x}{t}\right) + \alpha\right) \leqslant tp\left(\frac{x}{t} + x_0\right) = p(x + tx_0)$$

et si t < 0,

$$f(x) + t\alpha = -t\left(f\left(\frac{x}{-t}\right) - \alpha\right) \leqslant -tp\left(\frac{x}{-t} - x_0\right) = p(x + tx_0)$$

donc on a bien $f(x + tx_0) \leq p(x + tx_0)$ pour tout t, x.

On veut donc prendre α tel que

$$s := \sup_{y \in F} (f(y) - p(y - x_0)) \leqslant \alpha \leqslant \inf_{y \in F} (p(y + x_0) - f(y)) =: i$$

Il suffit donc de prouver que $s \leq i$. Pour tout $x, y \in F$,

$$f(x) + f(y) \le p(x+y) \le p(x+x_0) + p(y-x_0)$$

donc pour $x, y \in F$,

$$f(y) - p(y - x_0) \le p(x + y) \le p(x + x_0) - f(x)$$

Donc en passant au sup et à l'inf, on a bien $s \leq i$ donc il existe $\alpha \in [s, i]$. Pour cet α on a bien $f' \leq p$.

Or $F \subsetneq F \oplus \mathbb{R}x_0$, ce qui contredit la maximalité de F. Donc F = E et f est bien une forme linéaire sur E.

Lemme

Soit A un convexe ouvert de E contenant 0. Alors la jauge de A:

$$p_A: \begin{cases} E & \to & \mathbb{R} \\ x & \mapsto & \inf\left\{\alpha \in \mathbb{R}, \frac{x}{\alpha} \in A\right\} \end{cases}$$

vérifie

- $p_A(\lambda x) = \lambda p_A(x)$ pour $\lambda > 0$
- $p_A(x+y) \leqslant p_A(x) + p_A(y)$
- $C = \{x, p_A(x) < 1\}$

THÉORÈME 2 Si C est un convexe ouvert de E non vide et $x_0 \in E \setminus C$, il existe un hyperplan H séparant $\{x_0\}$ et C.

Démonstration. Quitte à translater, on peut supposer $0 \in C$. Soit

$$g: \begin{cases} \mathbb{R}x_0 & \to & \mathbb{R} \\ tx_0 & \mapsto & t \end{cases}$$

Comme $x_0 \notin C$, la jauge p_C vérifie $p(x_0) \ge 1 = g(x_0)$ donc si t > 0, $g(tx_0) \le p(tx_0)$. De plus, si $t \le 0$, on a

$$g(tx_0) = t \leqslant 0 \leqslant p(tx_0)$$

Donc il existe une forme linéaire f sur E telle que $f \leq p$ et $f(x_0) = g(x_0) = 1$. On a de plus $f|_C \leq p|_C < 1 = f(x_0)$. L'hyperplan $\{x, f(x) = 1\}$ sépare $\{x_0\}$ et C.

On arrive enfin à l'objet de ce développement

Théorème 3 Soient A, B convexes de E disjoints non vides. Si A est ouvert, il existe un hyperplan H qui sépare A et B.

Démonstration. On pose $C = A - B = \{x - y, x \in A, y \in B\}$ qui est clairement convexe. Comme $A \cap B = \emptyset, 0 \notin C$.

De plus $C = \bigcup_{y \in B} (A - y)$. Les A - y sont ouverts donc C est ouvert. Par le théorème précédent,

on peut séparer $\{0\}$ et C par un hyperplan H = Ker(f).

On a $f(z) \leq 0$ pour tout $z \in C$ donc pour $x \in A$ et $y \in B$, $f(x) \leq f(y)$. En passant au sup et à l'inf, on trouve que

$$s := \sup_{x \in A} f(x) \leqslant \sup_{y \in B} f(y) =: i$$

Donc il existe $\alpha \in [s, i]$. L'hyperplan $\{x, f(x) = \alpha\}$ sépare donc A et B.