Distributions

Pierron Théo

ENS Ker Lann

Table des matières

1	Introduction				
	1.1	Motivation	1		
	1.2	Idées	1		
2	Fon	ction tests	3		
3	Distributions				
	3.1	Définition	7		
	3.2	Distributions et fonctions localement intégrables	7		
	3.3	Ordre d'une distribution	9		
4	Dér	ivées de distributions 1	1		
	4.1	Définitions	1		
	4.2	Primitives de distributions	1		
5	Con	avergence des distributions 1	3		
	5.1		.3		
	5.2		4		
6	Loc	alisation 1	5		
7	Dist	tributions à support compact 1	7		
8	Multiplication par des fonctions 2		1		
9	Changement de variables				
	9.1		23		
	9.2	•	23		
	9.3	Image directe d'une distribution à support compact	24		
	9.4		24		
	9.5	Difféomorphismes 2	25		

		27		
10	Convolution des distributions			
	0.1 Convolution d'une distribution par une fonction	27		
	0.2 Opérateur de convolution	28		
	0.3 Densité	28		
	0.4 Convolution de deux distributions			
11	Cransformation de Fourier	31		
	1.1 Fourier dans L^1	31		
	1.2 Fourier dans \mathcal{E}'			
	1.3 Fourier dans l'espace de Schwartz S			
	1.4 Fourier dans S'			
	1.5 Inversion de Fourier			
	1.6 Fourier et convolution			
12	Solutions fondamentales	37		
	2.1 EDP linéaires	37		
	2.2 Solutions fondamentales	37		
	2.3 Laplacien			
	2.4 Opérateur de Cauchy-Riemann $\partial_{\overline{z}}$			
	2.5 Hypoellipticité	38		

Introduction

1.1 Motivation

On veut dériver toutes les fonctions.

Exemple 1.1 Considérons la fonction valeur absolue sur \mathbb{R} . Elle est continue dérivable sur \mathbb{R} sauf en 0.

On pourrait se dire que sa dérivée vaut $2 \times \mathbb{1}_{\mathbb{R}^+} - 1$ et qu'en 0, on s'en fiche. Mais alors la dérivée seconde vaut 0 et donc |x| = ax + b pour un certain (a, b), on ne peut donc pas donner de valeur cohérente en 0.

1.2 Idées

Lemme 1.0.1

Soit $\varphi \in C_c^{\infty}$ positives d'intégrale 1 nulle en dehors de] -c, c[. Soit $\varphi_{\varepsilon} = \frac{1}{\varepsilon} \varphi(\frac{\cdot}{\varepsilon})$. Alors, si f est continue, la fonction $f * \varphi_{\varepsilon}$ evu sur tout compact bets f quand $\varepsilon \to 0$.

En outre, $f * \varphi_{\varepsilon} \in C^{\infty}$.

Proposition 1.1 $(f * \varphi_{\varepsilon})' = f * (\varphi_{\varepsilon})'.$

Fonction tests

<u>Définition 2.1</u> On appelle fonctions test sur X une fonction $C^{\infty}(X,\mathbb{C})$ à support compact.

L'espace vectoriel des fonctions test est noté C_0^{∞} ou D(X).

Remarque 2.1 La seule fonction analytique à support compact est nulle.

Proposition 2.1 Pour tout $p \in \mathbb{R}^n$ et U ouvert contenant p, il existe $\varphi \in C^{\infty}(U)$ positive, d'intégrale 1 à support dans U et $\varphi(p) > 0$.

Démonstration. Sur \mathbb{R} , on prend $\alpha(x) = e^{-\frac{1}{x}} \mathbb{1}_{x>0}$, $\beta(x) = \alpha(x-a)\alpha(b-x)$ et $\gamma = \beta$ renormalisée.

Dans \mathbb{R}^n , on considère sur un pavé $\prod_{i=1}^n a_i, b_i[$ la fonction $\prod_{j=1}^n \gamma_{a_j,b_j}(x_j)$ qui marche bien puisque tout ouvert contient un pavé.

<u>Définition 2.2</u> Soit $(\varphi_j)_j$ une suite dans $C_0^{\infty}(X)$ et $\varphi \in C_0^{\infty}(X)$. On dit que φ_j converge vers φ ssi

- (i) il existe K compact de X et $N\geqslant 0$ tel que pour tout $j\geqslant N, \operatorname{supp}(\varphi_j)\subset K$
- (ii) pour tout $\alpha \in \mathbb{N}^n$, $\partial^{\alpha} \varphi_j$ cvu vers $\partial^{\alpha} \varphi$ sur K.

<u>Définition 2.3</u> On appelle suite régularisante dans $C_0^{\infty}(X)$ une suite $(\varphi_j)_j$ de C_0^{∞} telle que pour tout j,

$$\varphi_j \geqslant 0, \int \varphi_j = 1, \operatorname{supp} \varphi_j \subset B\left(0, \frac{1}{j}\right)$$

THÉORÈME 2.1 Soit φ_j une suite régularisante et $f \in C_0^k(\mathbb{R}^n)$.

Alors $f * \varphi_j \in C_0^{\infty}(\mathbb{R}^n)$ et pour tout $|\alpha| \leq k$, $\partial^{\alpha}(f * \varphi_j)$ cvu vers $\partial^{\alpha}f$.

Corollaire 2.1 Si $f \in C_0^{\infty}$ alors $f * \varphi_j$ cv vers f dans C_0^{∞} .

 $D\acute{e}monstration.$ $f*\varphi_j\in C_0^\infty$ par un lemme précédent.

Si $|\alpha| \leq k$, on a aussi $\partial^{\alpha}(f * \varphi_j) = (\partial^{\alpha} f) * \varphi_j$. Il suffit donc de montrer le résultat pour k = 0.

Il suffit d'étendre un lemme précédent à la dimension n.

Remarque 2.2 Le convergence dans C_0^{∞} provient d'une topologie : de la plus fine qui rende les injections $C_0^{\infty}(K) \hookrightarrow C_0^{\infty}(X)$ pour tout K compact de X. (La topologie sur $C_0^{\infty}(K)$ est celle de la cvu sur K des f_n et des dérivées, engendrée par la famille de semi-normes $p_k(\varphi) = \max_{|\alpha| \leqslant k, x \in K} |\partial^{\alpha} \varphi(x)|$).

On obtient un evtlc non métrisable mais complet.

Lemme 2.1.1

Soit $a \in \mathbb{R}^n$ et r > 0, il existe $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ telle que

$$\operatorname{supp}(\varphi) \subset B(a,2r), 0 \leqslant \varphi \leqslant 1, \varphi|_{B(a,r)} = 1$$

Démonstration. Par translation et dilatation, on prend a = 0 et r = 1.

Il existe $\eta \in C_0^{\infty}(\mathbb{R} \text{ d'intégrale 1 et à support dans } [1,4].$

 $\psi(x) = \int_x^4 \eta(t) dt$ vérifie les hypothèses pour n = 1. On pose $\varphi(x) = \psi(||x||)$ et ça marche!

Définition 2.4 Soit K un compact de X, U un recouvrement ouvert de K. Une partition de l'unité subordonnée à U est une suite de fonctions ψ_1, \ldots, ψ_l dans $C_0^{\infty}(X)$, positives telles que

- Il existe un voisinage V de K sur lequel $\sum_{j=1}^{l} \psi_j = 1$
- pour tout j, il existe $U_j \in I$ tel que $supp(\psi_j) \subset U_j$.

Théorème 2.2 Pour tout compact $K \subset X$ et tout recouvrement U ouvert de K, il existe une partition de l'unité subordonnée à U.

Démonstration. Pour tout $a \in K$, soit $U_a \in U$ un ouvert contenant a. SOit r > 0 tel que $B(a, 2r) \subset U_a$. Par compacité, il existe a_1, \ldots, a_l tel que $K \subset \bigcup_{j=1}^l B(a_j, r)$.

On prend les $\varphi_j \in C_0^\infty(X)$ fournis par le lemme. On pose alors $\psi_1 = \varphi_1$

On prend les $\varphi_j \in C_0^{\infty}(X)$ fournis par le lemme. On pose alors $\psi_1 = \varphi_1$ et $\psi_{j+1} = \varphi_{j+1} \prod_{i=1}^{j} (1 - \varphi_j)$.

On montre par récurrence que
$$\sum_{i=1}^{j} \psi_i = 1 - \prod_{i=1}^{j} (1 - \varphi_i)$$
, ce qui conclut. \blacksquare

Remarque 2.3 Si $\varphi \in C_0^{\infty}(X)$ et $f \in C^0(X)$ le fait de considérer φf s'appelle faire une troncature. On dit alors que φ est fonction de troncature.

COROLLAIRE 2.2 Soit K compact. Pour tout voisinage X de K, il existe $\chi \in C_0^{\infty}$ à support dans X, valant 1 sur K et tel que $0 \le \chi \le 1$.

<u>Définition 2.5</u> Une fonction f mesurable sur X ouvert de \mathbb{R}^n est dite localement intégrable ssi pour tout $a \in X$, ile xiste un pavé $R_a \ni a$ tel que $\int_{R_a} |f| < \infty$.

Lemme 2.2.1

Soit $f \in L^2_{loc}$ et $g \in C_0^k$. ALors $f * g \in C^k$ et $\operatorname{supp}(f * g) \subset \operatorname{supp}(f) + \operatorname{supp}(g)$. Si f a un support compact alors $f * g \in C_0^k(\mathbb{R}^n)$.

Démonstration. Si $f \in L^1_{loc}$ et $\varphi \in C_0^{\infty}$ alors $f\varphi$ est intégrable puisqu'on peut recouvrir K par un nombre fini de pavés R_a et on a

$$\int |f\varphi| \leqslant \int_K |f\varphi| \leqslant \sum_{j=1}^l \int_{R_{a_j}} |f\varphi| \leqslant \sup_K |\varphi| \sum_{j=1}^l \int_{R_{a_j}} |f| < \infty$$

Posons h(x,y) = f(y)g(x-y). C'est une fonction C^k et

$$\partial_x^{\alpha} h = f(y) \partial_x^{\alpha} g(x - y)$$

est intégrable car f l'est et g est à support compact. Par dérivation sous l'intégrale, on a le résultat.

THÉORÈME 2.3 Soit X ouvert de \mathbb{R}^n . C_0^{∞} est dense dans $L^p(X)$ pour $1 \leq p < \infty$.

Démonstration. On va supposer connu que $C_0^0(X)$ est dense dans $L^p(X)$. Il suffit de montrer que C_0^{∞} est dense dans C_0^0 pour la norme p.

Soit φ_j une suite régularisante. On montre que si $f \in C_0^0$, $f * \varphi_j$ converge vers f dans L^p , ce qui découle de l'uniforme continuité de f sur les compacts.

Distributions

3.1 Définition

<u>Définition 3.1</u> Soit X un ouvert de \mathbb{R}^n . On appelle distribution sur X une forme linéaire séquentiellement continue de $C_0^{\infty}(X)$. On note D'(X) leur espace.

Si $u \in D'(X)$, on notera indifféremment $u(\varphi)$ ou $\langle u, \varphi \rangle$.

Exemple 3.1

- Distribution de Dirac. On note $\delta_a: \varphi \mapsto \varphi_a$. C'est une forme linéaire et elle est continue car si $\varphi_j \to \varphi$ uniformément, $\varphi_j(a) \to \varphi(a)$.
- Valeur principale de Cauchy. Elle est définie par

$$\varphi \mapsto \lim_{\varepsilon \to 0} \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{\varphi(x)}{x} \, \mathrm{d}x$$

C'est une distribution.

Remarque 3.1 D'(X) est un \mathbb{C} -ev. Admet-il une topologie?

3.2 Distributions et fonctions localement intégrables

THÉORÈME 3.1 Si $f \in \mathcal{L}^1_{loc}(X)$, on définit une distribution test f sur X par

$$\langle \text{test } f, \varphi \rangle = \int_X f \varphi$$

 $D\acute{e}monstration.$ test fest bien une forme linéaire. Si φ est à support dans K, on a

$$\left| \int_X f \varphi \right| \leqslant \sup_K |\varphi| \int_K |f|$$

Donc si $\varphi_i \to \varphi$, alors $\varphi_i - \varphi$ evu vers 0 donc

$$\left| \int f(\varphi_j - \varphi) \right| \leqslant C_K \sup_K |\varphi_j - \varphi| \to 0$$

Donc test f est continue.

Lemme 3.1.1

 $f \mapsto \text{test } f$ est injective de $C^0(X) \to D'(X)$. On peut donc considérer les fonctions continues comme des distributions.

Démonstration. On suppose que $f \neq 0$. Il existe donc $x, \varepsilon > 0$ tel que $f|_{]x-\varepsilon,x+\varepsilon[} > \alpha > 0$ et $f|_{]x-2\varepsilon,x+2\varepsilon[} > 0$. On prend alors φ valant 1 sur $]x-\varepsilon,x+\varepsilon[$ et à support dans $]x-2\varepsilon,x+2\varepsilon[$.

On a bien
$$\int f\varphi > 0$$
.

Proposition 3.1 Soit $f \in \mathcal{L}^2(X)$ et φ_j une suite régularisante. Alors $f * \varphi_j \to f$ en norme L^1 .

Démonstration. Par Fubini, on a $||f * \varphi_j||_{L^1} \leq ||f||_1 ||\varphi_j||_1$.

On sait que C_0^0 est dense dans L^1 donc pour tout $\varepsilon > 0$, il existe $f_{\varepsilon} \in C_0^0(X)$ tel que $||f - f_{\varepsilon}||_1 \leq \varepsilon$. On a donc

$$||f * \varphi_j - f_{\varepsilon} * \varphi_j||_1 \le ||f - f_{\varepsilon}|| \, ||\varphi_j|| \le \varepsilon$$

Ainsi,

$$||f * \varphi_j - f||_1 \le ||f * \varphi_j - f_{\varepsilon} * \varphi_j||_1 + ||f_{\varepsilon} * \varphi_j - f_{\varepsilon}||_1 + ||f_{\varepsilon} - f||_1$$
$$\le 2\varepsilon + ||f_{\varepsilon} * \varphi_j - f_{\varepsilon}||_1 \to 0$$

car $f_{\varepsilon} \in C_0^0(X)$ donc il y a cvu donc cv en norme 1.

COROLLAIRE 3.1 L'application $f \mapsto \text{test } f \text{ de } L^1_{loc} \to D'(X) \text{ est injective.}$

Démonstration. Si test f=0, on veut montrer que f=0 pp. Soit $K\subset X$ compact. Soit χ une fonction de troncature valant 1 sur un voisinage de K.

Soit $g = f\chi \in \mathcal{L}^1$. On a test g = 0 puisque $\chi \varphi \in C_0^{\infty}$. Si φ_j est une suite régularisante, $g * \varphi_j \to g$ en norme L^1 .

Or
$$g * \varphi_j(x) = \langle \text{test } g, y \mapsto \varphi_j(y - x) \rangle = 0 \text{ car } y \mapsto \varphi_j(y - x) \in C_0^{\infty}$$
.

Ainsi, g est nulle presque partout et f est nulle pp sur K. Comme X est union dénombrable de compacts, f = 0 pp sur X.

Remarque 3.2 On va donc souvent identifier les fonctions L^1_{loc} à des distributions. On omettra donc d'écrire les test. Inversement, on notera $\int u\varphi$ au lieu de $\langle u, \varphi \rangle$.

Remarque 3.3 Certaines distributions ne sont pas des fonctions. Prenons par exemple δ_a . Si $\delta_a = \text{test } f$, on écrit pour tout φ :

$$\int f\varphi = \varphi(a)$$

Donc si $a \notin \text{supp } \chi$, $\int f\chi = 0$ et $m\hat{e}me \int f\chi \varphi = 0$ donc $f\chi = 0$. Par le corollaire, $f\chi = 0$ et f = 0.

Alors test f = 0 mais $\delta_a \neq 0$. Contradiction

3.3 Ordre d'une distribution

Théorème 3.2 Soit u une forme linéaire sur $C_0^{\infty}(X)$. Alors u est un distribution ssi (*) pour tout $K \subset X$ compact,

$$\exists C_k, k_K \in \mathbb{N}, |\langle u, \varphi \rangle| \leqslant C_k \|\varphi\|_{C^{k_K}} \, \forall \varphi \in C_0^{\infty}(K)$$

Démonstration.

• Si (*), montrons que u est continue. Soit $\varphi_j \to 0$ dans $C_0^{\infty}(X)$. On sait qu'il existe $K \subset X$ compact tel que supp $\varphi_j \subset K$ et $\|\varphi_j\|_{C^k} \to 0$. Par (*),

$$|\langle u, \varphi_i \rangle| \leqslant C_K \|\varphi_i\|_{C^{k_K}} \to 0$$

• Si on n'a pas (*), il existe K compact tel que pour tout c, k, il existe $\varphi_{c,k}$ tel que

$$|\langle u, \varphi_{c,k} \rangle| > c \|\varphi_{c,k}\|_{C^k}$$

Posons $\psi_{c,k} = \frac{\varphi_{c,k}}{\langle u, \varphi_{c,k} \rangle} \in C_0^{\infty}$.

On a $\langle u, \psi_{c,k} \rangle = 1$ et $\|\psi_{c,k}\|_{C^k} < \frac{1}{c}$. Ainsi, la suite $\psi_{k,k}$ tend vers 0 dans C_0^{∞} (si k_0 est fixé, $\|\psi_{k,k}\|_{C^{k_0}} \leq \|\psi_{k,k}\|_{C^k}$ pour $k \geq k_0$).

Donc u n'est pas continue puisque $\psi_{k,k} \to 0$ et $\langle u, \psi_{k,k} \rangle = 1$.

<u>Définition 3.2</u> Si $u \in D'(X)$, soit $K \subset X$ compact. On appelle ordre de u sur K le plus petit entier $k \ge 0$ tel que

$$|\langle u, \varphi \rangle| \leqslant c_K \|\varphi\|_{C^k}$$

L'ordre de u est le sup des ordres de u sur tout compact de X.

Exemple 3.2 $u: \varphi \mapsto \sum_{k=0}^{\infty} (-1)^j \varphi^{(k)}(k)$ est une distribution d'ordre infini. δ_a est d'ordre 0.

THÉORÈME 3.3 Soit $X \subset \mathbb{R}^n$ ouvert. Soit $u \in D'(X)$ d'ordre 0. Alors u s'étend de manière unique en une forme linéaire continue v sur $C_0^0(X)$, ie une mesure de Radon.

CHAPITRE 3. DISTRIBUTIONS

Démonstration.

- Si v, calculons v(f) pour $f \in C_0^0$. Soit φ_j une suite régularisante. On pose $f_j = f * \varphi_j$. f_j evu vers f dont $f_j \to f$ dans C_0^0 (support inclused dnas un compact fixe) donc $u(f_j) = v(f_j) \to v(f)$ par continuité. Ainsi, nécessairement, $v(f) = \lim_{j \to \infty} u(f_j).$ • On montre que $u(f_j)$ existe.

$$|u(f_j - f_p)| \leqslant C_K ||f_j - f_p||$$

car u est d'ordre 0. Comme $||f_j - f_p|| \to 0$, $(u(f_j))_j$ est de Cauchy dans \mathbb{C} donc converge.

• Il reste à montrer que $v(f) = \lim_{i \to \infty} u(f_i)$ est continue.

$$|v(f)| \leq |v(f) - u(f_j)| + |u(f_j)| \leq |v(f) - u(f_j)| + C \|f_j\|$$

$$\leq |v(f) - u(f_j)| + C \|f\| + C \|f - f_j\| \to C \|f\|$$

Dérivées de distributions

4.1 Définitions

Si $f \in C^1(X)$, on peut voir f comme une distribution. Posons $x \in \mathbb{R}^n$. La dérivée $\frac{\partial f}{\partial x_i}$ est continue donc c'est une distribution et

$$\left\langle f, \frac{\partial \varphi}{\partial x_i} \right\rangle = -\left\langle \frac{\partial f}{\partial x_i}, \varphi \right\rangle$$

<u>Définition 4.1</u> Soit $u \in D'(X)$. On définit $\frac{\partial u}{\partial x_j} \in D'(X)$ par

$$\left\langle \frac{\partial u}{\partial x_i}, \varphi \right\rangle = -\left\langle u, \frac{\partial \varphi}{\partial x_i} \right\rangle$$

Remarque 4.1 Si $f \in C^1$, la dérivée au sens des distributions de f (ie la dérivée de test f) coïncide avec la distribution associée à la dérivée usuelle de f.

Lemme 4.0.1

Si $u \in D'(X)$ alors pour tout $j, k, \frac{\partial}{\partial x_j} \frac{\partial u}{\partial x_k} = \frac{\partial}{\partial x_k} \frac{\partial u}{\partial x_j}$.

Remarque 4.2 On peut donc utiliser la notation multi-indices.

Exemple 4.1 La dérivée de $|\cdot|$ au sens des distributions est Sgn. Sgn' = $2\delta_0$.

4.2 Primitives de distributions

THÉORÈME 4.1 Soit $I \subset \mathbb{R}$ intervalle. Soit $u \in D'(I)$. Il existe $v \in D'(I)$ tel que v' = u.

En outre, si w' = u avec $w' \in D(I)$ alors w = v + cste.

CHAPITRE 4. DÉRIVÉES DE DISTRIBUTIONS

 $D\acute{e}monstration.$ Soit $\chi\in C_0^\infty(I)$ d'intégrale 1. Pour $\varphi\in C_0^\infty(I),$ on définit

$$p(\varphi) = \int_{-\infty}^{x} \varphi(t) dt - \langle 1, \varphi \rangle \int_{-\infty}^{x} \chi(t) dt$$

 $p(\varphi)$ est C^{∞} à support compact et p est continue. De plus $p(\varphi') = \varphi$. Posons $v = -u \circ p \in D'(I)$. On a bien v' = u.

Soit w telle que w' = u. Alors a := v - w vérifie a' = 0 donc pour tout ψ , $\langle a', \psi \rangle = 0$ donc $\langle a, p(\varphi') \rangle = 0$.

Ce qui signifie que $a = \langle a, \chi \rangle = cste$.

Convergence des distributions

5.1 Définition

<u>Définition 5.1</u> Soit u_j une suite dans D'(X) et $u \in D'(X)$. On dit que u_j tend vers u au sens des distributions ssi pour tout $\varphi \in C_0^{\infty}(X)$, $\langle u_j, \varphi \rangle \to \langle u, \varphi \rangle$.

Exemple 5.1

- Si $f_j \to f$ en norme L^1 sur tout compact alors $f_j \rightharpoonup f$.
- Si φ_j est une suite régularisante, $\varphi_j \rightharpoonup \delta_0$.
- $u_k: x \mapsto ke^{ikx} 1_{x \geqslant 0}$ converge vers $i\delta_0$.

THÉORÈME 5.1 Si $u_j \in D'(X)$ vérifie que pour tout φ , $\langle u_j, \varphi \rangle$ converge dans \mathbb{C} alors sa limite $\varphi \mapsto \lim \langle u_j, \varphi \rangle$ est dans D'(X) et $u_j \rightharpoonup u$.

Démonstration. u est linéaire. Soit $K \subset X$ compact et $\varphi \in C_0^{\infty}(X)$.

$$|\langle u, \varphi \rangle| \le |\langle u_j, \varphi \rangle| + |\langle u, \varphi \rangle - \langle u_j, \varphi \rangle|$$

Par Banach-Steinhaus dans le Fréchet $C_0^{\infty}(K)$, $|\langle u_j, \varphi \rangle| \leq C_k \|\varphi\|_{C^k}$. On a donc

$$|\langle u, \varphi \rangle| \leqslant C_k \|\varphi\|_{C^k}$$

Remarque 5.1 Sous les hypothèses du théorème et si $\varphi_j \to \varphi$ dans C_0^{∞} alors $\langle u_j, \varphi_j \rangle \to \langle u, \varphi \rangle$.

Proposition 5.1 Si $(u_t)_t$ est une famille dans D'(X) et pour tout φ ,

$$\lim_{h\to 0} \frac{\langle u_{t+h}, \varphi \rangle - \langle u_t, \varphi \rangle}{h}$$

existe alors la limite $\frac{\partial u_t}{\partial t}(t_0)$ est une distribution pour tout t_0 .

5.2 Dérivées d'une suite convergente

THÉORÈME 5.2 Soit u_j une suite de D'(X) qui converge vers $u \in D'(X)$. Alors pour tout α , $\partial^{\alpha} u_j \rightharpoonup \partial^{\alpha} u$.

Localisation

Soit $U \subset X$ deux ouverts. L'injection canonique $C_0^{\infty}(U) \to C_0^{\infty}(X)$ est continue. On a donc une injection continue $D'(X) \to D'(U)$.

THÉORÈME 6.1 Soit X un ouvert de \mathbb{R}^n et $u \in D'(X)$. On suppose que pour tout $x \in X$, il existe un voisinage ouvert U_x de x tel que u = 0 sur U_x . Alors u = 0.

Démonstration. Pour tout x il existe U_x tel que $u|_{U_x} = 0$. Soit $\varphi \in C_0^{\infty}(X)$. $\{U_x, x \in \text{supp } \varphi\}$ est un recouvrement ouvert de $K := \text{supp } \varphi$.

Il existe donc J fini tel que $K \subset \bigcup_{j \in J} U_{x_j}$. Pour tout j, il existe $\varphi_j \in C_0^{\infty}(X)$

à support dans U_{x_j} et telle que $\sum_{j \in J} \varphi_j = 1$ sur K.

$$\langle u, \varphi \rangle = \sum_{j \in J} \langle u, \varphi_j \varphi \rangle = 0$$

<u>Définition 6.1</u> Le support de $u \in D'(X)$ noté supp(u) est l'ensemble des points $x \in X$ au voisinage desquels il n'existe pas d'ouvert U_x contenant x tel que $u|_{U_x} = 0$.

Autrement dit, $x \notin \text{supp } u$ ssi il existe U_x contenant x sur lequel u est nul. $X \setminus \text{supp } u$ est le plus grand ouvert de X sur lequel u = 0.

Exemple 6.1 Si $u \in C_0^0(X)$ le support de u vue comme une distribution coïncide avec le support habituel de u.

Remarque 6.1 Si $U \subsetneq X$,

$$\rho: \begin{cases} D'(X) & \to & D'(U) \\ u & \mapsto & u|_{U} \end{cases}$$

n'est pas injectif. En effet, il existe $a \in X \setminus U$ et on a $\rho(\delta_a) = 0$.

S'il existe $v \in D'(X)$ tel que $\rho(v) = u$ on dit que c'est une extension de $u \ a \ X$.

Exemple 6.2 Si $X = \mathbb{R}$ et $U = \mathbb{R}_+^*$. Posons $f_k(x) = x^{-k}$ avec $k \in \mathbb{N}^*$. On pose $v_k = \frac{(-1)^{k-1}}{(k-1)!} \frac{\partial^k \ln |x|}{\partial x^k} \in D'(\mathbb{R})$ et on a $v_k|_U = f_k$.

Exemple 6.3 $u(x) = e^{\frac{1}{x}} \in D'(U)$. S'il existe $v \in D'(\mathbb{R})$ tel que $v|_U = u$, pour tout $\varphi \in C_0^{\infty}(\mathbb{R}_+^*)$ positive et on pose $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon}\varphi(\frac{x}{\varepsilon})$ avec $\varepsilon \in]0,1]$.

$$a_{\varepsilon} = \langle e^{\frac{1}{x}}, \varphi_{\varepsilon} \rangle = \frac{1}{\varepsilon} \int_{0}^{\infty} e^{\frac{1}{x}} \varphi\left(\frac{x}{\varepsilon}\right) dx \geqslant \frac{1}{\varepsilon} \int_{0}^{\infty} \frac{1}{x^{N} N!} \varphi\left(\frac{x}{\varepsilon}\right) dx$$
$$\geqslant \frac{1}{N! \varepsilon^{N}} \int_{0}^{\infty} \frac{\varphi(y)}{y^{N}} dy \geqslant c_{N} \varepsilon^{-N}$$

On a $v|_U = u$ donc pour un certain N fixé,

$$|\langle v, \varphi_{\varepsilon} \rangle| = |a_{\varepsilon}| \leqslant c \sup_{n \leqslant N'} |\partial_x^n \varphi_{\varepsilon}(x)| \leqslant c \varepsilon^{-N'-1}$$

En appliquant la relation précédente avec N > 1 + N', on a la contradiction recherchée puisque $\varepsilon^{N-1-N'}$ serait minoré par une constante non nulle.

THÉORÈME 6.2 Soit \mathcal{U} une famille d'ouverts de X dont l'union vaut X. On suppose que pour tout $U \in \mathcal{U}$, on connaît $u_U \in D'(U)$ vérifiant $u_U = u_V$ sur $U \cap V$ pour tout $U, V \in \mathcal{U}$. Alors il existe une unique $u \in D'(X)$ avec $u|_U = u_U$ pour tout u.

<u>Définition 6.2</u> Soit $u \in D'(X)$. Le support singulier de u est l'ensemble des $x \in X$ qui ne possèdent pas un voisinage ouvert U_x sur lequel $u|_{U_x} \in C^{\infty}(U_x)$.

Ainsi, x n'est pas dans le support singulier de u ssi il existe U_x voisinage de x tel que $u|_{U_x} \in C^{\infty}(U_x)$.

Le complémentaire du support singulier est le plus grand ouvert de X sur lequel $u \in C^{\infty}$.

Distributions à support compact

Si $u \in L^1_{loc}(X)$, on peut définir $u(\varphi) = \int_X u(x)\varphi(x) dx$ si φ est à support compact.

Mais si le support de u est compact, on pourait prendre $u \in C^{\infty}(X)$.

<u>Définition 7.1</u> Soit $\varphi_j \in C^{\infty}(X)$ et $\varphi \in C^{\infty}(X)$. On dit que $\lim_{j \to +\infty} \varphi_j = \varphi$ ssi pour tout multiindice α et pour tout compact $K \subset X$, la suite $\partial_x^{\alpha} \varphi_j$ evu sur K vers $\partial_x^{\alpha} \varphi$.

<u>Définition 7.2</u> Une forme linéaire sur $C^{\infty}(X)$ est continue si $u(\varphi_j) \to u(\varphi)$ quand $\varphi_j \to \varphi$. L'ensemble des formes linéaires continus sur $C^{\infty}(X)$ est noté $\mathcal{E}'(X)$.

<u>Définition 7.3</u> On dit que $(K_j)_j$ avec K_j compact de X est une suite exhaustive de compacts ssi $K_j \subset K_{j+1}$ et $X = \bigcup_{j \in \mathbb{N}} K_j$.

Lemme 7.0.1

Soit X un ouvert de \mathbb{R}^n .

- (i) Il existe une suite K_j exhaustive de compacts pour X
- (ii) Il existe une suite $\chi_j \in C_0^{\infty}(X)$ avec $j \in \mathbb{N}$ telle que pour tout $\varphi \in C^{\infty}(X)$, la suite $\varphi_j = \chi_j \varphi$ converge dans $C^{\infty}(X)$ vers φ
- (iii) La restriction $\rho: \mathcal{E}'(X) \to D'(X)$ est injective

Démonstration.

- (i) On pose $K_j = \{x \in X, ||x|| \le j, d(x, C) \ge \frac{1}{j}\}$ avec $C = \mathbb{R}^n \setminus X$. C'est une suite exhaustive de compacts.
- (ii) On utilise la densité de $C_0^{\infty}(X)$ dans $C^{\infty}(X)$. Soit $\chi_j \in C_0^{\infty}(X)$ avec $\chi_j|_{K_j} = 1$.

Soit $\varphi \in C^{\infty}$. On considère $\varphi_j = \chi_j \varphi \in C_0^{\infty}(X)$. Soit K compact de X. Il existe $J \in \mathbb{N}$ tel que $K \subset K_j$ pour tout $j \geqslant J$. Pour tout $\alpha \in \mathbb{N}^n$,

$$\partial_x^{\alpha} \varphi_j|_K = \sum_{|\beta| \leq |\alpha|} c_{\alpha,\beta} (\partial_x^{\beta} \chi_j) (\partial_x^{\alpha-\beta} \varphi) = \chi_j (\partial_x^{\alpha} \varphi)|_K = \partial_x^{\alpha} \varphi|_K$$

D'où la convergence (suite stationnaire!).

(iii) On suppose $\rho(u) = \rho(v)$. Pour tout $\varphi \in C^{\infty}(X)$, on a

$$u(\varphi) = \lim_{j \to +\infty} u(\varphi_j) = \lim_{j \to +\infty} v(\varphi_j) = v(\varphi)$$

THÉORÈME 7.1 Soit $u \in D'(X)$. On a $u \in \mathcal{E}'(X)$ ssi $\operatorname{supp}(u)$ est un compact de X. Si c'est le cas, alors u est d'ordre fini et il existe c > 0 et $k \in \mathbb{N}$ tel que $|u(\varphi)| \leq c \|\chi \varphi\|_{C^k}$ pour tout $\varphi \in C^{\infty}(X)$ et $\chi \in C_0^{\infty}(X)$ valant 1 sur un voisinage de $\operatorname{supp}(u)$.

Démonstration.

 \Leftarrow Si supp(u) est un compact K, soit $\chi \in C_0^{\infty}(X)$ valant 1 sur K. On définit v par $\langle v, \varphi \rangle = \langle u, \chi \varphi \rangle$ pour tout $\varphi \in C^{\infty}$.

Soit $\varphi_j \to 0$ dans C^{∞} . Alors $\chi \varphi_j \to 0$ dans $C_0^{\infty}(X)$ par la formule de Leibniz.

On a donc $v \to 0$ donc $v \in \mathcal{E}'(X)$. Il reste à montrer que v = u dans D'(X). Si $\varphi \in C_0^{\infty}(X)$, on veut montrer que $\langle u, \varphi \rangle = \langle v, \varphi \rangle$.

 $\varphi(1-\chi)$ est nul au voisinage de $\operatorname{supp}(u)$ donc $\operatorname{supp}(\varphi(1-\chi)) \cap \operatorname{supp}(u) = \emptyset$. On a donc $\langle u, \varphi(1-\chi) \rangle = 0$ ie $\langle u, \varphi \rangle = \langle v, \varphi \rangle$.

 \Rightarrow Soit $u \in \mathcal{E}'(X)$. Montrons la caractérisation de $\mathcal{E}'(X)$ par les seminormes :

Lemme 7.1.1

$$\exists C>0 \exists k\geqslant 0, \exists K\subset X, |\langle u,\varphi\rangle|\leqslant C\left\|\varphi\right\|_{C^k(K)} \forall \varphi\in C^\infty(X)$$

 $D\'{e}monstration.$

 \Leftarrow On choisit $\varphi_j \to 0$ dans $\mathcal{E}(X)$ et on a facilement $\langle u, \varphi_j \rangle \to 0$.

 \Rightarrow Sinon pour tout C, k, K, il existe $\varphi_{C,k,K}$ telle que $|\langle u, \varphi_{C,k,K} \rangle| > c \|\varphi\|_{C^k(K)}$.

On choisit C = k = j, et $K = K_j$ suite de compacts qui absorbe X. Posons

$$\psi_j = \frac{\varphi_{j,j,K_j}}{|\langle u, \varphi_{j,j,K_j}|}$$

On a $|\langle u, \psi_j \rangle| = 1$ et $\|\psi_j\|_{C^j(K_j)} < \frac{1}{j}$. Cette suite converge donc vers 0 dans $C^{\infty}(X)$. On fixe k et K. Pour j assez grand, $K \subset K_j$ et $k \leq j$, ce qui assure que $\|\cdot\|_{C^k(K)} \leq \|\cdot\|_{C^j(K_j)}$.

Donc quand $j \to \infty$, on a une contradiction avec $|\langle u, \psi_j \rangle| = 1$.

Si $u \in \mathcal{E}'(X)$, on voit que si $\operatorname{supp}(\varphi)$ est en dehors de K, $|\langle u, \varphi \rangle| = 0$ donc $\operatorname{supp}(u) \subset K$.

THÉORÈME 7.2 Toute distribution à support compact et d'ordre fini.

Démonstration. On sait qu'il existe C, k, K tel que $|\langle u, \varphi \rangle| \leq C \|\varphi\|_{C^k(K)}$ pour tout $\varphi \in C^{\infty}(X)$.

Soit $\chi=1$ au voisinage de K et $\varphi\in C_0^\infty(X)$. On a $\varphi(1-\chi)=0$ en dehors du support de u donc $\langle u,\varphi\rangle=\langle u,\chi\varphi\rangle$.

Donc

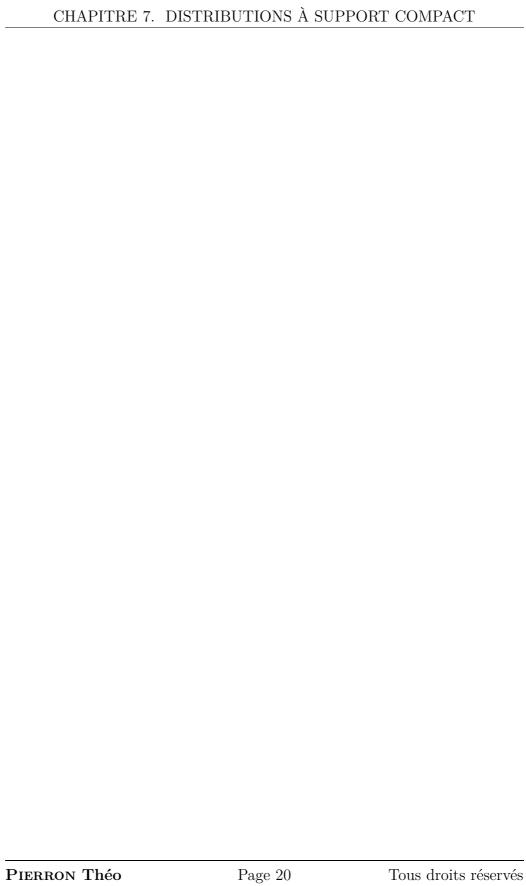
$$|\langle u, \varphi \rangle| \leqslant C \|\chi \varphi\|_{C^k} \leqslant C' \|\varphi\|_{C^k(\text{supp }\varphi)}$$

Remarque 7.1 Si $U \subset X$ tout élément de $\mathcal{E}'(U)$ est un élément de $\mathcal{E}'(X)$, mais ce n'est pas vrai pour D'(U).

Théorème 7.3 Soit $u \in D'(X)$ à support $\{a\}$, $a \in X$. Alors u est combinaison linéaire de dérivées de masses de Dirac en a.

Lemme 7.3.1

Soit $u \in \mathcal{E}'(X)$ d'ordre k à support $\{a\}$ et $\varphi \in C^{\infty}(X)$ telle que pour tout $|\alpha| \leq k$, $\varphi^{(\alpha)}(a) = 0$. Alors $\langle u, \varphi \rangle = 0$.



Multiplication par des fonctions

<u>Définition 8.1</u> Pour $u \in D'(X)$ et $\psi \in C^{\infty}(X)$. On définit $\psi u \in D'(X)$ par $\langle \psi u, \varphi \rangle = \langle u, \psi \varphi \rangle$.

Lemme 8.0.2

 $\operatorname{supp}(\psi u) \subset \operatorname{supp}(\psi) \operatorname{supp}(u).$

Exemple 8.1

- $\psi \delta_a = \psi(a) \delta_a$
- $\operatorname{Id} \delta_0 = 0$
- $\operatorname{Id} \operatorname{vp}(\frac{1}{r}) = 1$

Proposition 8.1 $\mathcal{E}'(X)$ est dense dans D'(X).

Démonstration. Soit K_j une suite exhaustive de compacts dans X et $\chi_j \in C_0^{\infty}$ valant 1 sur K_j . Soit $v_j = \chi_j u \in D'(X)$.

On a $v_j \in \mathcal{E}'$ car $\operatorname{supp}(\chi_j u) \subset \operatorname{supp}(u) \cup \operatorname{supp}(\chi_j)$. Il reste à montrer que $\langle v_j, \varphi \rangle \to \langle u, \varphi \rangle$ pour tout $\varphi \in C_0^{\infty}$.

Comme
$$\chi_j \varphi \to \varphi$$
 dans C_0^{∞} et $\langle v_j, \varphi \rangle = \langle u, \chi_j \varphi \rangle$, c'est bon.

Proposition 8.2 Si $\psi \in C^{\infty}(X)$ et $u \in D'(X)$.

$$\partial_j(\psi u) = (\partial_j \psi)u + \psi(\partial_j u)$$

Changement de variables

État de l'art :

$$D \to C_0^0(X) \hookrightarrow \mathcal{L}_{loc}^1(X) \to L_{loc}^1 \hookrightarrow \{\text{mesures}\} \hookrightarrow \mathcal{E}' \hookrightarrow D'$$

Comment passer de X à Y?

9.1 Transposition

<u>Définition 9.1</u> Soient E et F des ev et $A: E \to F$ linéaire.

L'application linéaire transposée de A notée $A^T: F' \to E'$ est définie par

$$\forall l \in F', x \in E, A^{T}(l)(x) = l(A(x))$$

Exemple 9.1

- La multiplication M_{ψ} par $\psi \in C_0^{\infty}$ est linéaire et sa transposée est $M_{\psi}^T u(\varphi) = \langle u, \psi \varphi \rangle$.
- On peut faire pareil pour la dérivation : ∂_j sur D' est la transposée de $-\partial_j$ sur les fonctions.
- La transposée de l'injection $C_0^{\infty}(U) \hookrightarrow C_0^{\infty}(V)$ est la restriction $u \mapsto u|_U$.

9.2 Image réciproque d'une fonction

<u>Définition 9.2</u> Soit $\Phi: X \to Y$. On définit $\Phi^*\psi$ par $\Phi^*\psi(x) = \psi(\Phi(x))$ pour tout $\psi: Y \to \mathbb{C}$.

Remarque 9.1

• Si Φ est linéaire et f est une forme linéaire, on obtient la transposition $\Phi^* f = \Phi^T f$.

• $Si \Phi est C^{\infty}$, on a que $si f \in C^{\infty}(Y)$, alors $\Phi^* f \in C^{\infty}(X)$. Attention : si f est à support compact, $\Phi^* f$ n'est pas en général à support compact.

9.3 Image directe d'une distribution à support compact

<u>Définition 9.3</u> Soit X ouvert de \mathbb{R}^n et Y ouvert de \mathbb{R}^p . Soit $\Phi: X \to Y$.

On sait que $\Phi^*: C^{\infty}(Y) \to C^{\infty}(X)$. On définit l'image directe par Φ , notée $\Phi_*: \mathcal{E}'(X) \to \mathcal{E}'(Y)$ par $\Phi_* = (\Phi^*)^T$.

On a
$$\langle \Phi_* u, \varphi \rangle = \langle u, \varphi \circ \Phi \rangle$$
.

Exemple 9.2 Soit $a \in X$. On considère $\delta_a \in \mathcal{E}'(X)$.

$$\langle \Phi_* \delta_a, \varphi \rangle = \langle \delta_a, \varphi \circ \Phi \rangle = \langle \delta_{\Phi(a)}, \varphi \rangle$$

Donc $\Phi_*\delta_a = \delta_{\Phi(a)}$.

9.4 Image directe dans D'

<u>Définition 9.4</u> Une application $\Phi: X \to Y$ est dite propre ssi l'image réciproque d'un compact est toujours compacte.

THÉORÈME 9.1 Soit $\Phi: X \to Y$ une application C^{∞} propre. Alors Φ_* s'étend en une unique application continue de $D'(X) \to D'(Y)$ et on a $\operatorname{supp}(\Phi_* u) \subset \Phi(\operatorname{supp}(u))$.

Démonstration.

- ! On peut construire une suite $u_j = \chi_j u$ dans \mathcal{E}' telle que $u_j \to u$ dans D'. Nécessairement $\Phi_* u = \lim_{j \to \infty} \Phi_* u_j$.
- \exists Soit $L \subset Y$ un compact. Soit $\chi \in C_0^{\infty}(X)$ valant 1 sur $K := \Phi^{-1}(L)$. On définit pour $\varphi \in C_0^{\infty}(L)$, $\langle v_L, \varphi \rangle = \langle u, \chi(\varphi \circ \Phi) \rangle$. v_L est une forme linéaire continue sur $C_0^{\infty}(L)$. Montrons que $u \mapsto v_L$ est continue.

Soit $u_j \to u$ dans D' avec $u_j \in \mathcal{E}'$. Pour tout $\varphi \in C_0^{\infty}(L)$,

$$\langle \Phi_* u_i, \varphi \rangle = \langle u_i, \chi(\varphi \circ \Phi) \rangle$$

car $\chi = 1$ sur K. Donc en passant à la limite, ça converge vers $\langle v_L, \varphi \rangle$. On a donc bien défini une distribution $\Phi_* u \in D'(Y)$.

• Si $\operatorname{supp}(\varphi)$ et $\Phi(\operatorname{supp}(u))$ sont disjoints, les images réciproques par Φ sont disjointes donc

$$\Phi^{-1}(\operatorname{supp}(\varphi)) = \operatorname{supp}(\varphi \circ \Phi) \text{ et } \operatorname{supp}(u) \subset \Phi^{-1}(\Phi(\operatorname{supp} u))$$

Donc $\langle u, \varphi \circ \Phi \rangle = 0$.

On a donc supp $(\Phi_* u) \subset \Phi(\text{supp}(u))$.

9.5 Difféomorphismes

<u>Définition 9.5</u> $\Phi: X \to Y$ est un difféomorphisme ssi Φ est C^{∞} bijective à réciproque C^{∞} .

<u>Définition 9.6</u> Si Φ est C^1 , on définit la jacobienne par $(\frac{\partial \Phi^i}{\partial x_j})_{i,j}$.

Lemme 9.1.1

Soit $\Phi: X \to Y$ et $g: Y \to Z$. $D(g \circ \Phi)(x) = Dg(\Phi(x)) \circ D\Phi(x)$.

Lemme 9.1.2

Si $\Phi: X \to Y$ est un difféomorphisme, alors n = p.

Définition 9.7 On appelle jacobien le déterminant de la jacobienne et on note $j_{\Phi}(x) = |\det D\Phi(x)|$.

THÉORÈME 9.2 Soient X, Y ouverts de \mathbb{R}^n , $\Phi: X \to Y$ un difféomorphisme. Alors Φ_* est bien définie de $D'(X) \to D'(Y)$ et si $f \in L^1_{loc}(X)$, $\Phi_* f$ est aussi $L^1_{loc}(Y)$ et on a $\Phi_* f = j_{\Psi} \Phi^* f$ avec $\Psi = \Phi^{-1}$.

 $D\acute{e}monstration.$ $\Phi: X \to Y$ est un difféomorphisme donc propre donc Φ_* est bien définie. On sait que

$$\int_X f\varphi = \int_Y f \circ \Psi \varphi \circ \Psi j_\Psi$$

ie $\langle f, \varphi \rangle = \langle f \circ \Psi, \varphi \circ \Psi j_{\Psi} \rangle$.

Par définition, $\langle \Phi_* f, \varphi \circ \Psi \rangle = \langle f, \varphi \circ \Psi \circ \Phi \rangle = \langle f, \varphi \rangle$ donc

$$\langle \Phi_* f, \varphi \circ \Psi \rangle = \langle \Psi^* f, j_\Psi \Psi^* \varphi \rangle = \langle j_\Psi \Psi^* f, \varphi \circ \Psi \rangle$$

Donc $\Phi_* f = j_{\Psi} \Psi^* f$.

Théorème 9.3 $Si \Phi: X \to Y$ est un difféomorphisme, alors on peut définir l'image réciproque $\Phi^*: D'(Y) \to D'(X)$ qui étend l'image réciproque sur les fonctions et on a

$$\Phi_* \circ j_\Phi = (\Phi^{-1})^*$$

Démonstration. On voit par le théorème précédent que $\Phi_*: C_0^{\infty}(X) \to C_0^{\infty}(Y)$ et on définit $\Phi^* = (\Phi_*|_{C_0^{\infty}})^T$.

Convolution des distributions

On note T_a la translation par a. $(T_a\varphi)(x) = \varphi(x-a) = (T_{-a})^*\varphi$. On note S la symétrie $x \mapsto -x$. $S\varphi = S^*\varphi = (S^{-1})^*\varphi$. On utilise aussi $\check{\varphi} = S\varphi$.

Ainsi, $f * g = \langle f, T_x Sg \rangle$.

10.1 Convolution d'une distribution par une fonction

<u>Définition 10.1</u> Si $u \in D'(\mathbb{R}^n)$ et $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ (ou $u \in \mathcal{E}'$ et $\varphi \in \mathcal{E}$), on note $u * \varphi$ la fonction

$$x \mapsto \langle u, y \mapsto \varphi(x - y) \rangle$$

Exemple 10.1 $(\delta_a * \varphi)(x) = \varphi(x - a) = T_a \varphi(x)$.

Ainsi, $\delta_0 * \varphi = \varphi$.

THÉORÈME 10.1 Soit $u \in D'$ et $\varphi \in C^{\infty}$. Si $\operatorname{supp}(u)$ compact ou $\operatorname{supp} \varphi$ compact alors $u * \varphi \in C^{\infty}$.

De plus, $supp(u * \varphi) \subset supp(u) + supp(\varphi)$ et

$$\forall a, T_a(u * \varphi) = (T_a u) * \varphi = u * (T_a \varphi)$$

$$\forall \alpha, \partial^\alpha (u * \varphi) = (\partial^\alpha u) * \varphi = u * (\partial^\alpha \varphi)$$

Démonstration. Si supp (φ) est compact (l'autre cas est similaire), l'application $x \mapsto T_x S\varphi$ est continue donc par composition, $u * \varphi$ est continue.

Soit e_j un vecteur de base

$$\frac{1}{t}((u*\varphi)(x+te_j)-(u*\varphi)(x))=\left\langle u,y\mapsto \frac{\varphi(x+te_j-y)-\varphi(x-y)}{t}\right\rangle$$

Donc par continuité de u,

$$\frac{1}{t}((u*\varphi)(x+te_j)-(u*\varphi)(x))=\langle u,\partial_j\varphi(x-\cdot)\rangle+o(1)$$

Ainsi, $u * \varphi$ est dérivable et $\partial_j(u * \varphi) = u * \partial_j \varphi$. Ainsi, les dérivées partielles sont continues donc on a la C^1 -itude donc par récurrence, la C^{∞} -tude.

Soit $C = \text{supp}(u) + \text{supp}(\varphi)$. C est fermé (somme d'un fermé et d'un compact). Comme C^c est ouvert, il suffit de montrer que $u * \varphi|_{C^c} = 0$.

Soit $x \notin C$. $x - \operatorname{supp} \varphi$ ne rencontre pas $\operatorname{supp}(u)$ et $x - \operatorname{supp} \varphi = \operatorname{supp}(T_x S \varphi)$ donc $\langle u, T_x S \varphi \rangle = 0$.

10.2 Opérateur de convolution

Théorème 10.2

- (i) Soit $u \in D'$, l'opérateur de convolution (u*) est linéaire continu et commute avec les translations.
- (ii) Réciproquement, toute application linéaire continue $U: C_0^{\infty} \to C^{\infty}$ qui commute avec les translations est un opérateur de convolution. Précisément, il existe un unique u tel que U = u* et $u = \delta_0 \circ U \circ S$.

Démonstration.

- Continuité : Si K et L sont des compacts, on montre pour tout k l'existence de C telle que $\|u * \varphi\|_{C^k(L)} \leqslant C \|\varphi\|_{C^k(L)}$ pour tout $\varphi \in C_0^{\infty}(K)$. Si $\varphi_j \to 0$ dans C_0^{∞} , on a $\|u * \varphi_j\|_{C^k(L)} \to 0$ donc $u * \varphi_j \to 0$ dans \mathcal{E} .
- Existence : Posons $u = \delta \circ U \circ S$.

$$u * \varphi = \langle \delta, U \circ S(T_x S \varphi) \rangle = (U(S(T_x(S(\varphi)))))(0)$$

= $(U \circ T_{-x} \varphi)(0) = (T_{-x} \circ U \varphi)(0) = U \varphi$

• Unicité : Si $U\varphi = u * \varphi$ alors

$$\langle \delta, U\varphi \rangle = (U\varphi)(0) = \langle u, S\varphi \rangle$$

Donc
$$\langle \delta \circ U, \varphi \rangle = \langle u, S\varphi \rangle$$
 donc $\langle \delta US^{-1}, \varphi \rangle = \langle u, \varphi \rangle$.

10.3 Densité

Lemme 10.2.1

Soit X ouvert de \mathbb{R}^n et A une application telle que pour tout $t \in \mathbb{R}^m$, $A(t) \in C_0^{\infty}$ et

- 1. A est nulle en dehors d'un compact
- 2. les A(t) sont à support dans un compact fixe
- 3. A est uniformément équicontinue pour toutes les normes C^k .

alors

- $\int_{\mathbb{R}^m} A(t) dt = x \mapsto \int_{\mathbb{R}^m} A(t)(x) dt$ est une fonction $C_0^{\infty}(X)$.
- Pour tout $u \in D'(X)$, $t \mapsto u \circ A(t)$ est une fonction continue à support compact
- $\langle u, \int A(t) dt \rangle = \int_{\mathbb{R}^m} u \circ A(t) dt$

Remarque 10.1 Si on a une fonction f(t,x) de $C_0^{\infty}(\mathbb{R}^m \times X)$ alors les conditions précéents sont satisfaites pour $A(t) = f(t,\cdot)$.

Démonstration.

- Dérivation sous l'intégrale
- continuité par (3) et par composition. Support compact par (1).
- On remplace l'intégrale par une somme de Riemann sur un compact. Soit h > 0, on pose $S_h = h^m \sum_{t \in \mathbb{Z}^m} A(ht)$.

$$\langle u, \int A \rangle = \langle u, \lim_{h \to 0} S_h \rangle = \lim_{h \to 0} \langle u, S_h \rangle = \int u \circ A(t) dt$$

THÉORÈME 10.3 Si $u \in D'(\mathbb{R}^n)$, $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ et $\psi \in C_0^{\infty}(\mathbb{R}^n)$ alors

$$\langle u * \varphi, \psi \rangle = \langle u, S\varphi * \psi \rangle$$

Démonstration.

$$\langle u * \varphi, \psi \rangle = \int \langle u, T_x S \varphi \rangle \psi(x) \, dx = \int \langle u, \psi(x) T_x S \varphi \rangle \, dx$$
$$= \left\langle u, \int \psi(x) T_x S \varphi \, dx \right\rangle = \left\langle u, \psi * S \varphi \right\rangle$$

car l'application $A(x) = \psi(x)T_xS\varphi$ vérifie les hypothèses du lemme.

Théorème 10.4 Soit X ouvert. $C_0^{\infty}(X)$ est dense dans D'(X).

Démonstration. On pose $u_j = (\chi_j u) * \varphi_j \in C_0^{\infty}$. φ_j est une suite régularisante et χ_j est une partition de l'unité associée à une suite de compacts K_j absorbant $X: d(K_j, X^c) > \frac{1}{j}$.

$$\langle u_j, \psi \rangle = \langle \chi_j u, S\varphi_j * \psi \rangle = \langle u, \chi_j(S\varphi_j) * \psi \rangle$$

Pour j assez grand, K_j contient le support de $S\varphi_j * \psi$ donc $\chi_j(S\varphi_j) * \psi = (S\varphi_j) * \psi$. Donc $\langle u_j, \psi \rangle = \langle u, (S\varphi_j) * \psi \rangle \to \langle u, \psi \rangle$.

10.4 Convolution de deux distributions

On a défini $(u*):D\to\mathcal{E}$ donc on obtient un opérateur $(u*)^t:\mathcal{E}'\to D'$ par

$$\langle (u*)^t v, \varphi \rangle = \langle v, u * \varphi \rangle$$

Or si u est une fonction, on sait que $\langle v, u * \varphi \rangle = \langle v * Su, \varphi \rangle$.

<u>Définition 10.2</u> Si $u \in D'$ est $v \in \mathcal{E}'$, on définit $u * v \in D'$ par

$$\langle u * v, \varphi \rangle = \langle u, (Sv) * \varphi \rangle$$

où $Sv := S_*v$.

Proposition 10.1

- $\operatorname{supp}(u * v) \subset \operatorname{supp}(u) + \operatorname{supp}(v)$
- $\langle u, (Sv)*\varphi \rangle = \langle v, (Su)*\varphi \rangle$. On peut donc définir v*u et on a u*v = v*u.
- Si deux des trois distributions u, v, w sont à support compact, alors (u * v) * w = u * (v * w)

Transformation de Fourier

11.1 Fourier dans L^1

Définition 11.1 Si $u \in L^1$, on note Fu sa transformée de Fourier la fonction

$$\xi \mapsto \int_{\mathbb{R}^n} e^{-i\langle x,\xi\rangle} u(x) \, \mathrm{d}x$$

Théorème 11.1 Si $u \in L^1(\mathbb{R}^n)$ alors Fu est uniformément continuer et tend vers 0 aux infinis.

Ainsi, Fu est bornée et $|Fu(\xi)| \leq ||u||_1$.

Démonstration.

$$Fu(\xi) = -\int e^{-i\langle x + \frac{\pi\xi}{\|\xi\|^2}, \xi \rangle} u(x) dx$$
$$= -\int e^{-i\langle x, \xi \rangle} u\left(x - \frac{\pi\xi}{\|\xi\|^2}\right) dx = -F(T_{\frac{\pi\xi}{\|\xi\|^2}} u)(\xi)$$

On demi-somme:

$$Fu(\xi) = \frac{1}{2}F(u - T_{\frac{\xi\pi}{\|\xi\|^2}}u)(\xi)$$

Si $u \in L^1$ alors $||u - T_h u||_1 \to 0$ si $h \to 0$ (utiliser la densité de C_0^0 dans L^1 .

Ainsi
$$|Fu(\xi)| \le \left\| u - T_{\frac{\pi\xi}{\|\xi\|^2}} u \right\|_1 \to 0 \text{ quand } \|\xi\| \to \infty.$$

11.2 Fourier dans \mathcal{E}'

<u>Définition 11.2</u> Si $u \in \mathcal{E}'$, on pose $Fu = \xi \mapsto \langle u, e^{-i\langle x, \xi \rangle} \rangle$.

Lemme 11.1.1

Si $u \in \mathcal{E}'$, Fu est analytique.

Démonstration. On note $e_{-i\xi} = x \mapsto e^{-i\langle x,\xi \rangle}$.

 $\xi \mapsto e_{-i\xi}$ est continue donc Fu est continue. De plus

$$\lim_{t \to 0} \frac{(Fu)(\xi + te_j) - (Fu)(\xi)}{t} = \left\langle u, \lim \frac{e_{i(\xi + te_j)} - e_{i\xi}}{t} \right\rangle$$

qui existe car $\xi \mapsto e_{i\xi}$ est analytique donc dérivable.

Remarque 11.1 L'application $u \mapsto \langle u, e_{-n} \rangle$ est la transformée de Laplace.

11.3 Fourier dans l'espace de Schwartz S

<u>Définition 11.3</u> On dit que φ est à décroissance rapide ssi pour tout β , $x^{\beta}\varphi(x)$ est bornée.

 $\varphi \in S$ ssi $\varphi \in C^{\infty}$ et toutes ses dérivées sont à décroissance rapide.

Remarque 11.2 $D \subset S \subset \mathcal{E}$ et les injections sont continues.

De plus S est dense dans \mathcal{E} .

<u>Définition 11.4</u> On dit que $\varphi_n \to \varphi$ dans S ssi pour tout α, β ,

$$\sup |x^{\beta} \partial^{\alpha} (\varphi_n - \varphi)| \to 0$$

Lemme 11.1.2

D est dense dans S. Soit $\chi \in C_0^{\infty}$, $\chi = 1$ sur ||x|| < 1.

Soit $\varepsilon^*\chi = x \mapsto \chi(\varepsilon x)$. Pour tout $\varphi \in S$, $\varphi_{\varepsilon} := (\varepsilon^*\chi)\varphi \in C_0^{\infty}$ et converge vers φ dans S.

Démonstration. $\varphi_{\varepsilon} - \varphi = (\varepsilon^* \chi - 1) \varphi$.

$$\partial^{\alpha}(\varphi_{\varepsilon} - \varphi) = (\varepsilon^* \chi - 1) \partial^{\alpha} \varphi + O(\varepsilon)$$

Or
$$\|(\varepsilon^*\chi - 1)\partial^{\alpha}\varphi\| \le \sup_{\varepsilon \|x\| < 1} \|\partial^{\alpha}\varphi\|.$$

Lemme 11.1.3

F est une application linéaire continue de $S \to S$. On note $D_j = \frac{1}{i} \partial_j$.

$$F(D_j\varphi)(\xi) = \xi_j F\varphi(\xi)$$
 et $F(x_j\varphi)(\xi) = -D_j F\varphi(\xi)$

$$F(T_a^*\varphi)(\xi) = (e_{ia}F\varphi)(\xi)$$
 et $F(e_{ia}\varphi)(\xi) = (T_{-a}^*F\varphi)(\xi)$

11.4 Fourier dans S'

<u>Définition 11.5</u> On appelle distribution tempérée une forme linéaire continue sur S.

<u>Définition 11.6</u> On dit que $u_j \to u$ dans S' ssi pour tout $\varphi \in S$, $\langle u_j, \varphi \rangle \to \langle u, \varphi \rangle$.

Remarque 11.3 Si $u \in \mathcal{E}'$, on peut restreindre $u \ alpha S \subset \mathcal{E}$.

 $Si \varphi_j \to 0 \ dans \ S$, on a vu que $\varphi_j \to 0 \ dans \ \mathcal{E} \ donc \ \langle u, \varphi_j \rangle \to 0 \ donc \ u \in S'$.

D'autre part, si $u \in S'$, on peut restreindre u à C_0^{∞} et si $\varphi_j \to 0$ dans C_0^{∞} alors $\varphi_j \to 0$ dans S' donc $u \in D'$.

Définition 11.7 Si $u \in S'$, on définit $Fu \in S'$ par $\langle Fu, \varphi \rangle = \langle u, F\varphi \rangle$.

F étend la transformation de Fourier sur S.

Théorème 11.2 Soit u une forme linéaire sur S. Alors $u \in S'$ ssi il existe C, k, N tel que pour tout $\varphi \in S$,

$$|\langle u, \varphi \rangle| \leqslant C \|\varphi\|_{S(k,N)}$$

Remarque 11.4 $\|\varphi\|_{S(k,N)} = \sup_{x,\beta \leq N, \alpha \leq k} |x^{\beta} \partial^{\alpha} \varphi(x)|$.

Démonstration.

- \Leftarrow Soit $\varphi_n \to 0$ dans S. Pour tout $k, N, \|\varphi_n\|_{S(k,N)} \to 0$ donc $\langle u, \varphi_n \rangle | \to 0$.
- ⇒ Il faut passer par contraposée.

COROLLAIRE 11.1 Soit $u \in D'(\mathbb{R}^n)$. Alors $u \in S'$ ssi il existe C, k, N tel que pour tout $\varphi \in C_0^{\infty}$,

$$|\langle u,\varphi\rangle|\leqslant C\,\|\varphi\|_{S(k,N)}$$

Démonstration.

- \Rightarrow Si $u \in S'$, on a le résultat pour $\varphi \in S$ donc pour $\varphi \in D$.
- \Leftarrow Soit $\psi \in S$. On pose $\psi_{\varepsilon}(x) = \chi(\varepsilon x)\psi(x)$ où $\chi \in C_0^{\infty}$ valant 1 sut ||x|| < 1.

On sait que $\psi_{\varepsilon} \to \psi$ dans S et on définit $\langle \widetilde{u}, \psi \rangle = \lim_{\varepsilon \to 0} \langle u, \psi_{\varepsilon} \rangle$. Cette limite existe car

$$\langle u, \varphi_{\varepsilon} - \varphi_{\varepsilon'} \rangle | \leqslant C \| \varphi_{\varepsilon} - \varphi_{\varepsilon'} \|_{S(k,N)}$$

Or φ_{ε} converge dans S donc est de Cauchy, ainsi $\langle u, \varphi_{\varepsilon} \rangle$ est de Cauchy donc converge.

THÉORÈME 11.3 Pour tout $1 \leq p \leq \infty$, $S \subset L^p \subset S'$.

Démonstration. $S \subset L^p$ est claire (décroissance rapide)

Soit $u \in L^p$. On montre que $\langle u, \cdot \rangle$ est bien défini est continue sur S.

C'est bien défini par Hölder. Si $p=\infty,$ on veut $\|\varphi\|_1<\infty,$ c'est bon car $\varphi\in S.$

Si p=1, on a $|\langle u,\varphi\rangle|\leqslant \|u\|_1\|\varphi\|_{\infty}$, et $\|\cdot\|_{\infty}=\|\cdot\|_{S(0,0)}$. Donc u est continue sur S par le théorème.

Si $q < \infty$, on peut écrire $\varphi(x) = (1 + ||x||)^{-N} (1 + ||x||)^N \varphi(x)$ donc

$$\|\varphi\|_{q} \le \left(\int (1+\|x\|)^{-Nq}\right)^{\frac{1}{q}} \sup |(1+\|x\|)^{N} \varphi(x)| < C \|\varphi\|_{S(0,N)}$$

dès que Nq > n, ce qu'on a le droit de choisir car N est arbitraire.

Lemme 11.3.1

Si $\varphi, \psi \in S$ alors $\langle \varphi, F\psi \rangle = \langle F\varphi, \psi \rangle$.

Démonstration.

$$\int F\varphi\psi = \iint e^{-i\xi x}\varphi(x)\psi(\xi) dx d\xi = \iint e^{-ix\xi}\varphi(x)\psi(\xi) dx d\xi = \int F\psi\varphi \quad \blacksquare$$

<u>Définition 11.8</u> Soit $u \in S'$, on définit $Fu \in S'$ par $\langle Fu, \varphi \rangle = \langle u, F\varphi \rangle$ pour tout $\varphi \in S$.

THÉORÈME 11.4 $F: S' \to S'$ étend les transformations $S \to S$, $L^1 \to C^0$ et $E' \to C^\infty$ analytiques.

11.5 Inversion de Fourier

THÉORÈME 11.5 $F: S \to S$ est bijective et $F^{-1} = \frac{1}{(2\pi)^n} F \circ S = \frac{1}{(2\pi)^n} S \circ F$. $F: S' \to S'$ est aussi bijective et on a encore $FF = (2\pi)^n S$.

Démonstration. Tout repose sur $F1 = (2\pi)^n \delta$.

Soit $v = F1 \in S'$. Pour tout j, $\xi_j v = F(D_j 1) = 0$.

Soit
$$\varphi \in C_0^{\infty}$$
, par Taylor on a $\varphi(\xi) = \varphi(0) + \sum_{k=1}^n \xi_j g_j(\xi)$.

Soit $\chi \in C_0^{\infty}$ valant 1 sur supp φ .

$$\varphi(\xi) = \chi(\xi)\varphi(0) + \sum_{j=1}^{n} \xi_j \chi(\xi) g_j(\xi)$$

Donc $\langle v, \varphi \rangle = \varphi(0) \langle v, \chi \rangle + 0$ donc $v = c\delta$ dans D' donc dans S'. On détermine $c = (2\pi)^n$ avec $\varphi = \mathrm{e}^{-\frac{\|\xi\|^2}{2}}$.

Alors

$$(2\pi)^n \varphi(x) = \langle F1, T_x^* \varphi \rangle = \langle 1, FT_x^* \varphi \rangle = \langle 1, e_{ix} F \varphi \rangle = SFF(\varphi)(x)$$

D'où le résultat. On obtient donc les mêmes formules sur S' par transposition.

Proposition 11.1 Soit $u \in S'$. Pour tout j, $FD_ju = \xi_jFu$ et $F(x_ju) = -D_jFu$.

Théorème 11.6 Parseval $Soit \varphi, \psi \in S \ alors$

$$\langle \varphi, \overline{\psi} \rangle = \frac{1}{(2\pi)^n} \langle F\varphi, \overline{F\psi} \rangle$$

 $D\acute{e}monstration. \ \overline{F\psi} = SF\overline{\psi} \ {\rm et}$

$$\langle F\varphi, \overline{F\psi} \rangle = \langle F\varphi, SF\overline{\psi} \rangle = \langle \varphi, FSF\overline{\psi} \rangle = \frac{1}{(2\pi)^n} \langle \varphi, \overline{\psi} \rangle$$

11.6 Fourier et convolution

Théorème 11.7 S est stable par Fourier et par convolution : pour tout $\varphi, \psi \in S$,

$$F(\varphi * \psi) = (F\varphi)(F\psi) \text{ et } F(\varphi\psi) = \frac{1}{(2\pi)^n}(F\varphi) * (F\psi)$$



Solutions fondamentales

12.1 EDP linéaires

<u>Définition 12.1</u> Une équation de la forme $\sum_{|\alpha| \leq n} c_{\alpha}(x) \partial^{\alpha} u = f$ avec c_{α} une fonction sur \mathbb{R}^n telle qu'il existe α avec $c_{\alpha} \neq 0$ est appelée équation aux dérivées partiellles linéaire d'ordre $|\alpha|$ avec second membre f.

On peut l'écrire $P(x,\partial)u=f$ avec $P(x,\partial)=\sum_{|\alpha|\leqslant m}c_{\alpha}(x)\partial^{\alpha}$. P est une opérateur différentiel linéaire.

La fonction

$$(x,\xi) \mapsto \sum_{|\alpha| \leqslant m} c_{\alpha}(x) (i\xi)^{\alpha}$$

s'appelle le symbole de l'opérateur P. La fonction $P_m(x,\xi) := \sum_{|\alpha|=m} c_{\alpha}(x) (i\xi)^{\alpha}$ s'appelle le symbole principal de P.

Lemme 12.0.1

Si P est à coefficients constants alors pour tout $u \in S'$, $F(P(\partial)u)(\xi) = P(i\xi)Fu(\xi)$.

12.2 Solutions fondamentales

<u>Définition 12.2</u> Soit P un opérateur différentiel. On appelle solution fondamentale de P une distribution $E \in D'$ telle que $PE = \delta$.

On dit aussi que E est une fonction de Green de P.

On suppose par la suite que P est à coefficients constants.

Théorème 12.1 Soit E une solution fondamentale de P. Alors

- Pour tout $f \in \mathcal{E}'$, P(E * f) = f
- Pour tout $u \in \mathcal{E}'$, u = E * (Pu).

Autrement dit, si on considère l'équation Pu = f alors si f est à support compact, $u = E \times f$ est solution et si la solution u est à support compact elle est unique car E * P(u) = E * f.

<u>Théorème 12.2</u> Ehrenpreis-Malgrange Tout opérateur à coefficients constants admet une solution fondamentale.

12.3 Laplacien

<u>Définition 12.3</u> Une distribution $u \in D'(X)$ est dit harmonique ssi $\Delta u = 0$ dans D'.

Théorème 12.3 Soit E définie pour $x \neq 0$ par

$$E(x) = \begin{cases} \frac{1}{(2-n)c_n \|x\|^{n-2}} & si \ n \neq 2\\ \frac{\log \|x\|}{2\pi} & sinon \end{cases}$$

où c_n est le volume de \mathbb{S}^{n-1} . Alors $E \in L^1_{loc}$ est c'est une solution fondamentale de Δ

12.4 Opérateur de Cauchy-Riemann $\partial_{\overline{z}}$

Lemme 12.3.1

La fonction $z \mapsto \frac{1}{\pi z} \in L^1_{loc}$ est solution fondamentales de $\partial_{\overline{z}}$.

12.5 Hypoellipticité

<u>Définition 12.4</u> On dit que P est hypoelliptique sur \mathbb{R}^n ssi pour tout ouvert X et $u \in D'(X)$, le supposrt singulier de Pu est le même que celui de u.

Remarque 12.1 Si $u \in C^{\infty}(X)$, on a toujours $Pu \in C^{\infty}(X)$ donc l'inclusion \subset est claire. L'autre dit que si u est solution de Pu = f avec $f \in C^{\infty}$ alors $u \in C^{\infty}$.

On peut définir SSA(u) le support singulier analytique (le complémentaire du plus grand ouvert où u est analytique) et l'hypoellipticité analytique : SSA(Pu) = SSA(u).

Théorème 12.4 Si P admet une solution fondamentale, il est hypoelliptique. Si de plus cette solution est analytique en dehors de 0 alors P est analytiquement hypoelliptique.

12.5. HYPOELLIPTICITÉ

Démonstration. Si $u \in \mathcal{E}'$, $u = \delta * u = (PE) * u = E * (Pu)$ donc $SS(u) \subset SS(E) + SS(Pu) \subset SS(Pu)$.

Si $u \in D'$, on la remplace par χu .

Corollaire 12.1

- (i) Toute distribution harmonique est analytique.
- (ii) Toute solution de Cauchy-Riemann est analytique.
- (iii) Si $f \in C^{\infty}$, toute solution de $\Delta u = f$ est C^{∞} .