
1

Multiresolution aspects of the diagnosis
problem

Internship report
Alexandre Blanché

Parcours Recherche et Innovation, L3 Rennes 1 University and ENS Rennes
Under the supervision of Éric Fabre (Inria)

Inria Rennes - Team SUMO

Abstract—The problems of state estimation and fault
diagnosis are essential in the monitoring of discrete-even t
systems. These two problems are studied here in the
simple setting of finite automata. We first explain the
problems, the relation between them and the concept of
diagnosability, before defining the "ambiguity depth" and
proving a simple result which links these two concepts.
Then we study some multiresolution aspects of the diag-
nosis problem. Here, the goal is to reduce the size of the
system on which the resolution of the diagnosis will be
achieved. After having solved the diagnosis problem on a
smaller system, we try to efficiently find the solution of
the diagnosis on the actual system. In the last section, we
try a multiresolution approach of the diagnosis by merging
states of the automaton. We prove that a certain type of
diagnosability is conserved by the merger of all the faulty
states of the system.

INTRODUCTION

In the monitoring of discrete-event systems, some
central problems we may encounter are that of state
estimation and diagnosis [1]. Given a finite labeled tran-
sition system, here represented as a finite automaton
whose labels are called events, and are either observable
or unobservable [2, 4], we partition the set of states into
safe and faulty states. The problem of state estimation
is to decide, given the observable part of an input
word, what states have been reached by the system,
while the problem of diagnosis is to decide if a faulty
state has been reached or not. Since the automaton is
nondeterministic, this decision can be ambiguous, as
there may exist a run of the automaton that reaches a
faulty state, and another run that reaches a safe state
with the same observable events. Therefore, we define
the property of diagnosability, which expresses that there
exists a uniform bound on the events we have to observe
in order to diagnose a fault after its occurrence. The first
contribution of this report is the introduction of a new
quantity, the ambiguity depth, which prevents arbitrarily
long ambiguous paths to be diagnosed. We then examine
a multiresolution problematic : under which conditions
can we merge some states of the system without losing

the diagnosability? We redefine diagnosability for sys-
tems with merged states, and we prove that this specific
diagnosability is conserved by the merger of the whole
faulty component.

I. THE PROBLEMS OF STATE ESTIMATION AND

DIAGNOSIS

Automaton: This section will formalize the problems
of state estimation and diagnosis, in the simple frame-
work of finite automata. We follow the setting of [3]. All
the results of this section, until the reachability of a faulty
state, are taken from [1]. A system is a nondeterministic
automaton A = (S, Σ, I, δ), where S is a finite set of
states, Σ is a finite alphabet, partitioned between the
set of observable labels Σo and the unobservable labels
Σu. I ⊆ S is the set of possible initial states, and
δ : S × Σ → 2S, the transition function of the automaton,
which extends naturally into δ : S×Σ∗ → 2S by iteration
on the second variable. In a first framework, the state
set S is partitioned in two components: the safe states Ss

and the faulty states S f : S = Ss ⊎ S f . The faults are also
assumed to be permanent: ∀s ∈ S f , δ(s, Σ) ⊆ S f .

Since the unobservable events are unusable, the sys-
tem that will be used in the paper, as in [1], is the ε-
reduction A′ of the current system A, with all unobserv-
able letters considered as ε. As the ε-reduction is chosen
"to the left" of the observable events, such an automaton
is defined by A′ = (S, Σo, I, δ′), where δ′ : S × Σo → 2S

is defined by δ′(s, α) = δ(s, Σ
∗
uα) =

⋃
ω∈Σ∗

uα δ(s, ω). The
study of the ε-reduced system is equivalent to the study
of the actual system, and the ε-reduction can easily be
achieved in linear time in the number of transitions of
the automaton.

If T = {(s, α, s′) ∈ S × Σ × S|s′ ∈ δ(s, α)} is the
set of the transitions, and if we adopt s−((s, α, s′)) =
s, s+((s, α, s′)) = s′ and σ((s, α, s′)) = α as notations,
we define a path in A as a sequence of transitions
π = t1t2 . . . tN ∈ TN , N ∈ N

∗, such that ∀i ∈
J1, N − 1K, s+(ti) = s−(ti+1) and that the last transition

2

is observable. By definition of the ε-reduction to the
left, the paths of A end in the same states that the
paths in A′. For this reason we only consider paths
of A′, we assume that Σ = Σo and we only work
with A′ until the end of the report. Some notations
we adopt are |t1t2 . . . tN | = N for the length of a path
and σ(t1t2 . . . tN) = σ(t1)σ(t2) . . . σ(tN) ∈ Σ∗

o for its
signature. A run π of A′ is a path which starts from
I: s−(π) ∈ I.

The system A must be Σo-live, which means that the
system can meet an observable transition from every
state. In other words, A is Σo-live if and only if A′ is
live, which means ∀s ∈ S, δ′(s, Σo) 6= ∅.

State estimation: Given a system A and an input
sequence of observations ω ∈ Σ∗

o , the problem of state
estimation is to compute the possible current states of A
after having observed ω. In other words, we have to
build a function obs : Σ∗

o → 2S, such that ∀ω ∈ Σ∗
o ,

obs(ω) = {s+(π) | π is a run of A′ and σ(π) = ω}.
A natural way to solve this problem for a word ω ∈ Σ∗

o ,
is to compute the successive sets of possible states that
have encountered each prefix of ω: if ω = α1α2 . . . αn, we
compute the sets

Xk(ω) = s+(σ−1({α1 . . . αk})) (1)

for k ∈ J1, nK. Hence, the last set Xn(ω) answers the
question, by definition of obs, obs(ω) = Xn(ω). Such a
sequence of sets is interesting because it can easily be
computed recursively:

Xk+1(ω)
= δ′(Xk(ω), αk+1)
= {s+(t)|t ∈ To, σ(t) = αk+1 ∧ s−(t) ∈ Xk(ω)}.

Another way to solve the problem of state estima-
tion is to build an observer Obs(A) of A, defined by
Obs(A) = (Q, Σo, q0, δ), a deterministic automaton, still
over the alphabet Σo, where Q ⊆ 2S, q0 = I is the
unique initial state of Obs(A), and δ : Q × Σo → Q
its transition function. We define it in the canonical
way as Obs(A) = Det(A′) = Det(Red(A)), with Det
the determinization process, using the classical subset
construction. Such an observer answers the question, by
definition of the subset construction: for all ω ∈ Σ∗

o ,
obs(ω) is the unique state of Obs(A) reached with ω
for input, since this unique state represents the set of
all possible states of A′ reached after having read ω as
input. However, the main issue with such a construction
is the exponential number of states of the observer.

Diagnosis: Another problem, closely linked to the
previous one, is the diagnosis problem: at the end of a
given run, we have to decide if a fault has occurred
or not. As explained before, such a decision can be
ambiguous, because there may exist two runs π1 and
π2, with π1 reaching a safe state and π2 reaching a fault
before its end, both runs having the same observable
signature (σ(π1) = σ(π2)) and hence are indistinguish-

able. More precisely, we want to compute a function
diag : Σ

∗
o → {s, f , a}, such that:

∀ω ∈ Σ∗
o , diag(ω) =

s if obs(ω) ⊆ Ss

f if obs(ω) ⊆ S f

a otherwise

This can be done either by a recursive evaluation as
previously established with the state estimation problem,
or by simply reusing the observer: associating it with
a label function φ : Q → {s, f , a} which "tests" the
inclusion of q ∈ Q in Ss or S f suffices to answer the
question. Such a pair (Obs(A), φ) is called a diagnoser of
A. It will often be called "the" diagnoser, because only
the canonical construction is considered here. Obviously,
like the observer, the diagnoser has a number of states
that is exponential in the number of states of A.

The diagnosis function introduced in this paragraph
may enable some arbitrarily long sequences of a, even if
a fault has occurred, which is not desirable to solve our
problem. We wish to be able to detect a fault every time
it occurs, after a finite number of steps. This property,
called diagnosability, is formalized as follows:

Definition 1 (Diagnosability). A system A is diagnosable
iff ∃N ∈ N, such that ∀π run : s+(π) ∈ S f , ∀π′ run :
s−(π′) = s+(π), [|π′| > N ⇒ diag(σ(ππ′)) = f]

Or in other words, there exists a uniform bound N
such that at most N observations after the occurrence of
a fault, this fault is surely diagnosed.

We will now characterize the diagnosability with a
natural object, the so-called twin-machine [5] TA, defined
by TA := A′×A′

s, where A′
s is the restriction of A′ to its

safe states, and × is the classical synchronous product
of automata. We define an ambiguous path of TA as a
couple (π, π′) = (t1 . . . tn, t′1 . . . t′n) of paths of A′ such
that ∀i ∈ J1, nK, s+(ti) ∈ S f , and σ(π) = σ(π′). The
ambiguous cycles of TA are also defined in the same way.
We can easily prove the following result:

Proposition 1. A is diagnosable if and only if there is no
reachable ambiguous cycle in TA.

This property can be considered as a characterization
of the diagnosability, and it can be checked in polyno-
mial time.

Reachability of a faulty state: Here comes the begin-
ning of my personal contribution, which will last until
the end of this report. Given a system A, even if it is
diagnosable, it is still possible to have an arbitrarily long
sequence of diagnosis a for a given non-faulty path. Fig-
ure 1 below gives an example: the system is diagnosable,

but an arbitrarily long sequence 0 a
→ 1 b

→ 0 a
→ 1 b

→ 0 . . .
leads to an always ambiguous diagnosis, even if no fault
occurs.

3

Figure 1. The system A′: 0 and 1 are safe, 2 is faulty

Figure 2. The diagnoser of A, with its ambiguous cycle between
1,2 and 0,2. The state 0 is safe, 2 is faulty and both 1,2 and 0,2 are
ambiguous.

We now give a result that may not seem obvious, given
the previous counter-example:

Proposition 2. If a system A is diagnosable and at least one
faulty state of A is reachable, then at least one faulty state of
the diagnoser of A is reachable.

This is not immediately clear, considering the example
of infinite ambiguous but non-faulty path of the previous
counter-example. However, it can be proved easily with
the definition of diagnosability:

Proof. Let A be a diagnosable system with at least one
reachable faulty state, and D its diagnoser. We will prove
by contradiction that at least one faulty state of D is
reachable: ∃ω ∈ Σ∗

o , such that obs(ω) ⊆ S f . So let us
assume that no faulty state of D is reachable.

A is diagnosable, so there exists N ∈ N such that
for all runs π of A′, s+(π) ∈ S f , ∀π′ : s−(π′) =
s+(π), [|π′| > N ⇒ diag(σ(ππ′)) = f]. The consequent
diag(σ(ππ′)) = f is impossible, because for any ω ∈
Σ
∗
o , diag(ω) = f if and only if obs(ω) ⊆ S f , which is

contradictory with the hypothesis that no faulty state of
D is reachable.

Hence, if π is a run that ends in S f , then for all runs π′:
[s+(π) = s−(π′) ⇒ |π′| ≤ N]. We now use the property
that A′ is Σo-live: from any state we can reach a (visible)
transition. Hence we can build an arbitrarily long path
π” which starts from the state s+(π) and then takes ran-
dom transitions. Such a path, at least longer that N + 1,
contradicts the property s+(π) = s−(π′) ⇒ |π′| ≤ N.
The result follows by contradiction.

Notice that the diagnosability is a property of the

system and not of the language. There exist two systems
that recognize the same safe and faulty languages, but
only one of these systems is diagnosable. For instance,
let us consider again the system in figure 1, and call
it A0. The system A1 in figure 3 recognize the same
safe language, LS = (ab)∗ + (ab)∗a and the same faulty
language, LF = (ab)∗ab∗, but A0 is diagnosable and not
A1.

Figure 3. The system A1, not diagnosable because of runs with
signature ab(ab)∗ that can be faulty and match a safe run as long as
we want.

II. THE AMBIGUITY DEPTH

Ambiguous runs: This section introduces a new use-
ful quantity, the ambiguity depth, in order to give a simple
method to bound the length of the ambiguous chains in
the diagnoser. First, we define a binary relation between
faulty and safe runs.

If π is a faulty run of A′, i.e. if it hits a faulty state
somewhere before its end, and if π′ is a safe run of A′,
i.e. if all of its transitions reach only safe states, then
π ∼ π′ if and only if σ(π) = σ(π′).

We are now able to define a function
l : {π |π run of A′} → N which counts the number of
ambiguous steps in a given run. More precisely, if the
run is faulty and equivalent (according to the relation
∼) to a run π′, l gives the number of faulty transitions
of π, that will lead to ambiguous states of the diagnoser.

First, we define the function l̃. Let π = t1t2 . . . tn be a
faulty run of A′:

• If there exists π′ safe, π ∼ π′, then l̃(π) :=
Card{i |s+(ti) ∈ S f }.

• Else, l̃(π) = 0.

We now define the function l:

∀π faulty run of A′, l(π) = max
π prefix of π

l̃(π)

The function l is closely linked with the twin-machine:
if π ∼ π′, then (π, π′) is a run of TA, and l̃(π) is
the number of transitions of this run that reach a state
belonging to S f × Ss. In other words, l(π) is the length
of the ambiguous part of (π, π′) in TA. The link with the

4

diagnosability is now obvious, with the characterization
as the non-existence of ambiguous cycle in TA: A is di-
agnosable if and only if its function l is upper-bounded.

Definition 2 (Ambiguity depth). The ambiguity depth of a
system A is defined by

DA := max {l(π) | π run of A′}

According to the fact that DA is the length of the
longest ambiguous path of TA, we can give a new
characterization of the diagnosability with the ambiguity
depth:

Proposition 3. A system A is diagnosable if and only if
DA < +∞.

Indeed, DA < +∞ means that l is upper-bounded, or
that there is a bound on the length of the ambiguous
paths of TA. Hence there there is no ambiguous cycle in
TA if and only if DA < +∞.

Let us now examine a simple example. The figure
below shows the twin-machine of the automaton in
figure 1: the longest ambiguous path has two transitions

that lead to states in S f × Ss, (0, 0) a
→ (2, 1) b

→ (2, 0).
Hence we deduce that DA = 2.

Figure 4. Twin-machine of the system given in figure 1.

State estimation: We have introduced the notations of
the state estimation in equation 1. First we can remark
that this set of states Xk(ω) is precisely the state of
the diagnoser reached by the unique run which has
α1 . . . αk as signature. Before stating the main theorem
of this section, we introduce new notations. For all
ω = α1α2 . . . αn ∈ Σ∗

o and for all k ≤ n:
X̂k|n(ω) := {s+(tk) | π = t1t2 . . . tn ∈ Tn

o , σ(π) = ω}

It is different from Xk, but we have these two proper-
ties:

X̂n|n(ω) = Xn(ω) (2)

X̂k|n(ω) ⊆ Xk(ω) (3)

• Proposition 2 is straightforward:
X̂n|n(ω) = {s+(tn) = s+(π) | π = t1 . . . tn, σ(π) =

ω} = s+(σ−1(ω)) = Xn(ω).
• For proposition 3, we consider k ≤ n and s ∈

X̂k|n(ω). By definition, there exists a run π = t1 . . . tn

of A′ which reaches s at step k and has ω as

signature. The prefix t1 . . . tk of π has α1 . . . αk for
signature and reaches s at step k as well. Hence,
s ∈ Xk(ω), and X̂k|n(ω) ⊆ Xk(ω).

• The other inclusion does not hold in general. In the
example in figure 1, X1(abb) = {1, 2} (the state of
the diagnoser reached by a), but the only run which

has abb as signature is the run 0 a
→ 2 b

→ 2 b
→ 2.

Hence X̂1|3(abb) = {2} 6= X1(abb).

We can now state our main theorem, which will help
disambiguate the paths of the diagnoser by bounding
the length of the ambiguity:

Theorem 1. For A such that DA < +∞ (i.e. A is
diagnosable) and for ω ∈ Σ∗

o with |ω| = n,

diag(ω) = a implies X̂n−DA|n
(ω) ⊆ Ss.

Or in other words, if a word is diagnosed as ambigu-
ous at step n, then it was safe DA steps earlier, given
the whole sequence of observations ω. So if a word sees
its diagnosis becoming ambiguous at step n, we just
have to examine the diagnosis DA steps further: if it is
safe or still ambiguous, we can solve the ambiguity and
declaring the word as safe at the current step n.

Proof. We will prove this result by contradiction. Let
ω be a word of length n in Σ∗

o . Let us assume by
contradiction that diag(ω) = a and X̂n−DA|n

(ω) * Ss,
i.e. ∃π = t1 . . . tn run of A′ such that σ(π) = ω and
s+(tn−DA

) ∈ S f . Since diag(ω) 6= f , there exists at least
one safe run π′ of A′ that matches the word ω. Hence
π ∼ π′, and (π, π′) is a run of the twin-machine TA.
Since faults are permanent, we have l(π) ≥ n − (n −
DA − 1) = DA + 1, by definition of l. l(π) > DA =
maxπ l(π): by contradiction, there does not exist such
a run π. We deduce that X̂n−DA|n

(ω) ⊆ Ss.

This result is useful to bound the ambiguity by DA.
Given a word ω = α1α2 . . . , and a step n of the diag-
nosis of ω, such that |ω| ≥ n + DA, we assume that
diag(α1 . . . αn) = a:

• if diag(α1 . . . αn+DA
) = s: then for any run π of A′

with σ(π) = α1 . . . αn+DA
, we have s+(π) ∈ Ss,

and hence for any π′ with σ(π′) = α1 . . . αn, since
s+(π′) ∈ Ss,

• else if diag(α1 . . . αn+DA
) = f : then for any run π

with σ(π) = α1 . . . αn+DA
, a fault occurs before step

n +DA,
• else, diag(α1 . . . αn+DA

) = a, and by the previous
theorem, we can conclude that for any π with
σ(π) = α1 . . . αn, we have s+(π) ∈ Ss.

Application: We consider again the example in figure
1 above. We saw in figure 4 that the system A was
diagnosable, with DA = 2. However, we saw on the
diagnoser of A, in figure 2, that there exist arbitrarily
long sequences with an ambiguous diagnosis, for words

5

in (ab)∗. We consider here the word ω = abababb. The
first six observations are diagnosed ambiguous, but the
seventh is faulty:

0 a
→ (1

2)
b
→ (0

2)
a
→ (1

2)
b
→ (0

2)
a
→ (1

2)
b
→ (0

2)
b
→ 2

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
S → A → A → A → A → A → A → F

We have got six ambiguous observations, but with
the help of the theorem, we can bound it at two by
synchronizing it with the diagnosis two steps further
(because DA = 2) :

· · · → A
⇓

→ A
⇓

→ A
⇓

→ A
⇓

→ F

0 a
→ (1

2)
b
→ (0

2)
a
→ (1

2)
b
→ (0

2)
a
→ (1

2)
b
→ (0

2)
b
→ 2

↓ ⇓ ⇓ ⇓ ⇓ ↓ ↓ ↓
S → S → S → S → S → A → A → F

III. MERGING STATES

Framework: Here comes the central topic of this
report, the multiresolution aspects of the diagnosis prob-
lem. This problem can be explained like this: given an
instance of a diagnosis problem, we assume we can
solve this problem for an abstraction of this instance.
Is it possible to deduce from it, in an efficient way, the
diagnosis of the actual instance? The type of abstraction
considered here is a reduction of the number of states
of the automaton. Given a system A, we merge two of
its states. The goal is to reduce the number of states
of the automaton without changing the diagnosis of
the words received as input by A. Such a family of
words can be formalized: we denote L(A) the language
of A as L(A) := {ω ∈ Σ∗ | ∃π run of A, σ(π) = ω}.
We once again consider the safe language, as the words
that are matched by at least one safe run, the faulty
language defined in the same way for faulty runs, and
the ambiguous language as the intersection of the safe
language and the faulty language. The goal of the study
is to merge two states of the system: the language will
change, but not necessarily the diagnosis of the words
from the language of A. More precisely, we will define
the merged system A such that L(A) ⊆ L(A).

Given a system A = (S, Σ, I, δ), nondeterministic and
such that all letters of Σ are assumed to be observable.
Let s1 and s2 be two different states of S. The merged
system is defined as:

Definition 3. If we merge s1 and s2 in A, the merged system
is defined by A = (S, Σ, I, δ), with:

• S = S \ {s1, s2} ⊎ {s12}, where s12 is a new state of A,

• I =

{
I if {s1, s2} ∩ I = ∅

I \ {s1, s2} ⊎ {s12} otherwise

• δ : S×Σ → 2S such that ∀α ∈ Σ, δ(s12, α) = δ(s1, α)∪
δ(s2, α),
and ∀s ∈ S \ {s1, s2},

δ(s, α) =

{
δ(s, α) if {s1, s2} ∩ δ(s, α) = ∅

δ(s, α) \ {s1, s2} ⊎ {s12} otherwise

Let us consider an example. The automaton on the left
of figure 5 is the system we are studying, the one on the
right is the system where the states 2 and 3 have been
merged.

Figure 5. The system and its merged version.

By this definition, the language of the merged system
A contains the language of the first system A, since the
paths of A still exist in A. New words can obviously be
matched, for instance by a run that reaches s1 and then
uses a transition starting from s2. For example, in figure
5, the word ba is not recognized by A, but is recognized
by A.

However, if the two merged states are of the same
type (safe or faulty), which is the case in our framework,
then we can notice that the diagnosis of a word can
only change to a more ambiguous one: if it was faulty
or ambiguous, then it cannot become safe, and if it
is ambiguous, then it cannot become safe or faulty.
Indeed, if a run matching a given word leads to a faulty
state (respectively safe), then it will still be the case
after having merged two states of the same type. The
state estimation of a word for A will contain the state
estimation of this word for A, and then the diagnosis
cannot become more accurate.

Merging faulty states: First, we examine the proper-
ties of a merger of two faulty states. A first result we
will prove is that the diagnosability of a system can be
lost when two faulty states are merged. As a counter-
example, the first system A in figure 6 is diagnosable
(its ambiguity depth DA = 1), but the merged one is not,

6

since a run of (ab)∗ can be faulty and eternally diagnosed
ambiguous.

Figure 6. The diagnosable system A and its merged non-diagnosable
version A.

The goal is now to "drive" the merged system A with
the former language L(A), and examine if the diagnos-
ability is preserved for such a language. Obviously, we
have to redefine the type of diagnosability we want for
the merged system.

Definition 4 ((s1, s2)-Diagnosability). A diagnosable sys-
tem A is (s1, s2)-diagnosable if and only if every faulty word
of A is diagnosed faulty in the merged system A in bounded
time: ∃N ∈ N, ∀ω ∈ L(A) : ω = ω1ω2,[

diag(ω1) = f ∧ |ω2| > N ⇒ diag(ω) = f
]

where diag is the diagnosis function of the merged system
A, according to the merger of s1 and s2.

We do not care about the safe words of L(A), they
can become infinitely ambiguous. For instance, in the
example in figure 6, the word abababab . . . ab is safe in
A, but infinitely ambiguous in A. Hence the system A
is (2, 3)-diagnosable, but A is not diagnosable according
to the first definition.

We will prove the following theorem, which will fi-
nally allow us to merge all the faulty states, and restrict
the framework to systems with only one faulty state:

Theorem 2. If a system A is diagnosable and s1 and s2 are
two faulty states, A is (s1, s2)-diagnosable.

We first consider the automaton A× TA, and proves
this lemma:

Lemma 1. A is not (s1, s2)-diagnosable if and only if there
is a cycle of type S f × (S f × Ss) in A× TA.

Proof. (of the lemma)

• Let us assume that there is such a cycle in A× TA.
Hence for any N ∈ N, we can find a word ω ∈ Σ∗

of size n, which is diagnosed faulty in A at step
n− N − 1 (because A is assumed to be diagnosable),
and is still ambiguous N + 1 steps later in A. It is
the logical complement of the definition of (s1, s2)-
diagnosability:
∀N ∈ N, ∃ω ∈ L(A) : ω = ω1ω2, diag(ω1) = f ∧
|ω2| > N ∧ diag(ω) 6= f

• For the other implication, the negation of the prop-
erty of (s1, s2)-diagnosability implies the existence
of a cycle of type S f × (S f × Ss) in A × TA: A is
finite, so in order to find a word ω as long as we
want, there exists a cycle in A × TA. Any word
matching this cycle is faulty in A if it is long enough,
but still ambiguous in A, since a faulty run can
only become more ambiguous after the merger (i.e.
diag(ω) 6= f ⇒ diag(ω) = a). Hence this cycle
needs to be of type S f × (S f × Ss).

Proof. (of the theorem 2)

According to the previous lemma, the system A is
(s1, s2)-diagnosable if and only if there is no cycle of
type S f × (S f × Ss) in A × TA. Let us consider such
a cycle. It can be described by a triplet of sequences
of states ((fk)k, (f ′k)k, (sk)k). If the sequences (fk)k and
(f ′k)k are different, then there exists a cycle described
by ((fk), (fk), (sk)), by definition of the product. Since
we only want the existence of such a cycle, we only
consider cycles with (fk) = (f ′k). Hence, it suffices to
examine the restricted automaton A × A|S instead of
A×TA = A× (A×A|S), and search for a cycle of type
S f × Ss.

The merged states s1 and s2 are faulty, so the safe com-
ponent of A has not changed: A|S = A|S and Ss = Ss.
We immediately deduce that A×A|S = A×A|S = TA.
The system A has been assumed to be diagnosable, so TA
does not contain a cycle of S f ×Ss. Hence, the automaton
A× TA does not contain a cycle of type S f × (S f × Ss),
and the result follows.

We now want to use this theorem to prove that we can
restrict the framework to systems with only one faulty
state without loss of generality, i.e. we can merge the
whole faulty component into one unique faulty state.
We first need to prove the following result:

Proposition 4. The order of the successive mergers does not
change the final merged system.

Proof. We only have to prove that the operation of merg-
ing two states is associative: given three states s1, s2, s3,
we want to prove (s1 ↔ s2) ↔ s3 = s1 ↔ (s2 ↔ s3),
where (s1 ↔ s2) denotes the merger of s1 and s2. Then
we will conclude by the generalized associative law that
it is also true for any number of states merged.

7

Let A12,3 = (S12,3, Σ, I12,3, δ12,3) be the system result-
ing from the merger (s1 ↔ s2) ↔ s3, and A23,1 =
(S23,1, Σ, I23,1, δ23,1) the one that results from the merger
s1 ↔ (s2 ↔ s3).

• S12,3 = (S \ {s1, s2} ⊎ {s12}) \ {s12, s3} ⊎ {s123} =
(S \ {s1, s2, s3}) ⊎ {s123}
= (S \ {s2, s3} ⊎ {s23}) \ {s23, s1} ⊎ {s123}
Hence S12,3 = S23,1.

• In the same way: if {s1, s2, s3} 6= ∅, then I12,3 =
I23,1 = I \ {s1, s2, s3} ⊎ {s123}, and I12,3 = I23,1 = I
otherwise.

• Idem, ∀α ∈ Σ, ∀s ∈ S \ {s1, s2, s3}, if {s1, s2, s3} ∩
δ(s, α) = ∅, then δ12,3(s, α) = δ23,1(s, α) = δ(s, α).
Else, δ12,3(s, α) = δ23,1(s, α) = δ(s, α) \ {s1, s2, s3} ⊎
{s123}.
And for all α ∈ Σ, δ12,3(s123, α) = δ23,1(s123, α) =
δ(s1, α) ∪ δ(s2, α) ∪ δ(s3, α), by associativity of the
union.

Hence A12,3 = A23,1, and so (s1 ↔ s2) ↔ s3 = s1 ↔
(s2 ↔ s3). By the generalized associative law, the merger
of an arbitrarily number of states does not depend on the
order of the successive mergers.

Using this proposition, we can extend the definition of
diagnosability for a merged system, since the definition
of (s1, s2)-diagnosability does not depend on s1 and s2.

Definition 5. (E-diagnosability) Given a diagnosable system
A = (S, Σ, I, δ), and E ⊆ Ss or E ⊆ S f , E 6= ∅. A is the
system resulting from the merger of all the states of E (in any
order, according to proposition 4).
A is E-diagnosable if and only if:
∃N ∈ N, ∀ω ∈ L(A) : ω = ω1ω2,[

diag(ω1) = f ∧ |ω2| > N ⇒ diag(ω) = f
]

where diag is the diagnosis function of the merged system A.

This generalized definition of the diagnosability for
a merged system now enables us to deduce a new
property of the merger, which will lead us to the desired
restriction of the framework.

Theorem 3. Given a diagnosable system A = (S, Σ, I, δ),
and E ⊆ Ss or S f , E 6= ∅:[
∀(a, b) ∈ E2,A is (a, b)-diagnosable

]

⇒ A is E-diagnosable.

Proof. We only have to prove that, after having merged
a family (x1, . . . , xn−1) of states (of the same type), if
a new state xn can be merged with all other xi, it can
be merged with the state x resulting from the merger
of the xi. An immediate induction on the cardinal of
the family will then suffice to prove, using proposition
4, the theorem 3. So we have to prove the following
proposition. Given E = {x1, . . . , xn−1} ⊆ S f or Ss, with
A being E-diagnosable, A the merged system according
to the merger of E, x the resulting state, and xn ∈ S \ E

(in the same component as the elements of E): if A is
(xi, xn)-diagnosable for any i ∈ J1, n − 1K, then A is
(E ⊎ {xn})-diagnosable.

We start by assuming these hypotheses. We denote
AE the resulting system from the merger of E, diagE
its associated diagnosis function, and for x ∈ E, Ax

the resulting system from the merger of x with xn, and
diagx its diagnosis function. The diagnosis function of
the system A resulting from the merger of E ⊎ {xn} is
denoted diag. To prove that A is (E⊎ {xn})-diagnosable,
we exhibit one N that verifies the definition 5. We have
assumed that A is E-diagnosable: we denote NE the "N"
of the definition 5. We have also assumed that A is
(x, xn)-diagnosable for any x ∈ E: we denote Nx the N
in the definition 4. The N we will consider is:

Ñ = max(NE, max
x∈E

Nx)

Let ω be a word of L(A), such that ω = ω1ω2, with
|ω2| > Ñ and diag(ω1) = f (with diag the diagnosis
function of the original system A). By this way, we
have: diagE(ω) = f , and ∀x ∈ E, diagx(ω) = f . We
have to prove that diag(ω) = f , i.e. that ∀π run of A
with σ(π) = ω, s+(π) ∈ S f . Let π be a run of A with
σ(π) = ω.

• Case 1: If π does not hit x before its end, then the
path of π is the same as in AE, and since diagE(ω) =
f , then s+(π) ∈ S f ,

• Case 2: Else, if s+(π) ∈ Ss, then it means that
∃x ∈ E, ∃π0, π1 two paths of A such that s−(π0) ∈
I, σ(π0π1) = ω, and either s+(π0) = x ∧ s−(π1) =
xn or s+(π0) = xn ∧ s−(π1) = x. But this implies
that the run equivalent of π in Ax also ends in a safe
state, which implies diagx(ω) 6= f which is absurd.
Hence, s+(π) ∈ S f .

Hence for all π run of A matching ω, π ends in a
faulty state, which means ∀ω = ω1ω2 with |ω2| > Ñ and
diag(ω1) = f , diag(ω) = f . Our Ñ verifies the definition
5: A is (E ⊎ xn)-diagnosable.

As said in the beginning of the proof, an immediate
induction on n = |E| − 1 suffices to prove that for any
E ⊆ Ss or S f , if ∀(a, b) ∈ E2,A is (a, b)-diagnosable, then
A is E-diagnosable.

We finally deduce the desired result:

Theorem 4. A diagnosable system A is S f -diagnosable.

Proof. We use the theorem 3 with E = S f . The hypothesis
"∀(a, b) ∈ E2,A is (a, b)-diagnosable" is given by theo-
rem 2.

In other words, all the faulty states of a system can be
merged, and the diagnosability is preserved according
to our definition. Hence we can restrict the framework

8

to systems with only one faulty state, and only focus on
the safe ones.

Ss-diagnosability: We finally consider a simple exam-
ple that proves that there exists a system A which is not
Ss-diagnosable. In figure 7 below, we can see the system
A and its merged system A according to the merger of
its safe component Ss:

Figure 7. The system A and its merged system A.

A is diagnosable according to the classical definition,
but is not Ss-diagnosable: we consider the words of
L(A) of type abb(b∗). Such words are as long as we
want, diagnosed faulty in A from the third letter (a safe
word cannot have two successive b). However, in A,
such a word is infinitely ambiguous. Hence we have the
property:
∀N ∈ N, ∃ω ∈ L(A), ω = abbω′,
|ω′| > N ∧ diag(abb) = f ∧ diag(ω) = a 6= f .

This proves that A is not Ss-diagnosable.

CONCLUSION

In this report we introduced the framework of state
estimation and diagnosis problems on finite automata.
We first focused on the aspects of diagnosability, proving
a first simple result about reachability of a faulty state
in the diagnoser of a diagnosable system. Then we
introduced the ambiguity depth, and used it to bound
the lengths of the ambiguous chains in the diagnoser. We
then focused on multiresolution aspects, by introducing
a framework of merging several states. We defined a
notion of diagnosability for merged systems, and finally
proved that all faulty states of a diagnosable system
could be merged without losing the diagnosability, but
that it was not the case for the safe states.

The main line of research that should now be achieved
is a study of the necessary and sufficient conditions
that enable us to merge safe states without losing the
diagnosability as we did for the faulty states. It must
be more difficult, as the whole safe component cannot
be merged according to our last counterexample. It
can however lead to a problem of minimization of the
number of states of the system, which would be really
interesting.

Acknowledgments

I would like to thank my internship supervisor Éric
Fabre, Romain Amand, Laura Chassard, Alexandre De-
bant, Olivier Havot, Sophie Pinchinat for their help,
and the whole team SUMO from Inria Rennes for the
welcome I have received. I would also like to thank
Raphaël Berthon, David Pichardie and Owen Rouillé for
their review of the current report.

REFERENCES

[1] Eric Fabre. Distributed Control of Large Plants; Chap-
ter 5, Observers and automata. Ed. by Carla Seatzu,
Manuel Silva, and Jan H. van Schuppen. Springer,
2012.

[2] Peter J Ramadge and W Murray Wonham. “Super-
visory control of a class of discrete event processes”.
In: SIAM journal on control and optimization 25.1
(1987), pp. 206–230.

[3] Meera Sampath et al. “Diagnosability of discrete-
event systems”. In: Automatic Control, IEEE Transac-
tions on 40.9 (1995), pp. 1555–1575.

[4] JohnN. Tsitsiklis. “On the control of discrete-event
dynamical systems”. English. In: Mathematics of Con-
trol, Signals and Systems 2.2 (1989), pp. 95–107. ISSN:
0932-4194. DOI: 10.1007/BF02551817. URL: http://
dx.doi.org/10.1007/BF02551817.

[5] Tae-Sic Yoo and Stephane Lafortune. Polynomial-
Time Verification of Diagnosability of Partially-Observed
Discrete-Event Systems. 2002.

