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1 Introduction

Static analysis is a powerful discipline to detect mistakes in programs and create robust systems. It is
extensively used in critical domains such as flight control software [9]. SMT (Satisfiability Modulo Theories)
solvers are automated tools that decide the satisfiability of first-order formulae with respect to combinations of
first-order theories (also named background theories) such as linear arithmetic or the theory of uninterpreted
functions. It can sometimes take a long time to decide the satisfiability of a formula, but thanks to recent
technological advances, these tools have become more powerful. They have thus gained much use in the
static analysis domain to verify software [2]. However, their use has not developed in the domain of policy
specification yet.

Policies are a form of program used in many computer systems. Many policies follow the Event-Condition-
Action (ECA) paradigm, and are stated in the form of On Event If Condition Do Action. Their use varies
from mundane domains such as access control to critical systems such as determining what to do when
an engine stops working during an airplane flight. However, policy languages are often specialized for one
domain and lack the structure to allow easy static analysis. The Simple Unified Policy Programming
Language (Suppl) [11], presented in section 2, is an attempt to address these problems. It is a language
designed to allow easy combination of policies, however this can also lead to creating inconsistencies such as
deciding to both “allow” and “deny” entry at the same time for an access control policy.

Such inconsistencies can lead to fatal errors in critical systems; thus, my main contribution is a static
control flow analysis that makes use of SMT solvers to detect such inconsistencies. This analysis supersedes
the previous analysis implemented in the Suppl compiler and I have formally proved its soundness; it will be
introduced in section 3. Lastly, I show and explain the tools and improvements to the compiler I made to
help users design sound policies in section 4.

2 Suppl by example

Suppl is designed to state policies following the ECA paradigm; events and actions are thus primitive
concepts in the language. It also attempts to bridge two worlds: the world of logic programming through the
use of predicates à la Prolog [8] to model conditions and the imperative paradigm used to describe event
handling in a natural way.

To explain how a policy is written in Suppl, we will examine an example. Suppose we are writing a simple
policy to decide whether an e-mail is considered a spam or not. We can model this problem in Suppl using
the following declarations:

type address := string.
type user := string.
predicate trusted(address).
trusted("bob@leponge.com").

We define types address and user to be strings and a predicate named trusted which uses an address
as argument. We then indicate that bob@leponge.com is a trusted address.

Now, to make this policy a little bit more interesting, we need to add some properties to the system. For
example, we may want to record complaints from our users concerning some addresses.

table unwanted(address, user) key (in, in).

predicate isSpam(address).
isSpam("carlo@tentacule.com").
isSpam(A) :-

findall(U, unwanted(A, ?U), RS), set_size(RS) >= 10.

The only way in Suppl to keep track of a state is to use data tables to record this information. In the logic
part of the language, tables are considered like predicates, but the imperative event handling part provides
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commands to insert and delete rows from tables. We first define a table unwanted to record the addresses the
users consider to be sending them spam. The table has two columns with types address and user. The key
keyword is used to define the table’s primary key, the in and out keywords following key indicates which
columns form the table’s primary key: columns declared with in are in the primary key, those declared with
out are not. Every table will contain at most one row for the values in the primary key. If a new row is
inserted with the same values for all primary key columns as a row already in the table, the old row will be
evicted and the new row will replace it. Therefore, we are indicating for this table that there cannot be two
rows with the same exact values. We then say that an address A is considered a spammer if we manage to
find at least 10 complaints from 10 different users involving the address A. This is done by asking to find all
the U such that unwanted(A, U) holds and putting them into the set RS.

event receive(address).
data category ::= inbox | spam.
action send(category).

Here, we define an event named receive to indicate that the address given as argument is attempting to
send an e-mail to one of our users. We also define a data type named category, which can either be inbox
or spam. Finally, we define the action send, which is used to decide where the e-mail should be sent.

handle receive(?A) =>
query
| trusted(A) => send(inbox);
end;

end.

handle receive(?A) =>
query
| isSpam(A) => send(spam);
end;

end.

We first define an event handler saying that if the sender’s address is trusted, then the e-mail should be
sent to the inbox of the recipient. The second handler is the opposite: if the address is not trusted then its
message is sent to the spam box of the recipient.

3 Conflict detection

Suppl is designed so that combining code from different sources is easy. However, this also makes it possible
to write self-contradictory policies. In the previous example, it is possible for the system to decide that the
received message must be transmitted to both the inbox and the spam box of the recipient. We call such
contradiction a conflict. Our solution to this problem is to develop a tool that can detect potential conflicts
statically where the user supplies a conflict declaration such as

conflict send(?A), send(?B) => A <> B.

which explains to the system that the set of actions resulting from an event must not contain the actions
send(A) and send(B) such that A and B are not equal. Specifically, our analysis identifies control-flow paths
through a policy that are initiated from the same event but lead to conflicting actions. For each pair of
control-flow paths that lead to conflicting actions, we then generate a formula in first-order logic that states
what conditions would have to be true for the program to follow both these paths on a single event occurrence.
In a second phase, we pass the generated formulae to SMT solvers such as Alt-Ergo [6] or CVC4 [3] through
Why3 [13], which is a platform that uses multiple external solver. If the solver can show that a formula is
unsatisfiable, then we know that the corresponding potential conflict cannot actually occur. Otherwise, we
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report the potential conflict to the user. The analysis is formally proven to be sound for a core subset of
the language, in the sense that the conflict detection scheme produces a potential conflict for each actual
conflict; in other words, a policy that passes the analysis without complaints is guaranteed to run without
any conflicts.

3.1 Syntax

We detail here only a core subset of Suppl related to event handler bodies, as this is the only part that
matters in our conflict detection scheme. As explained earlier, a handler body may contain commands to
insert or delete rows from a table. However, as they are not involved in the conflict detection, these commands
are not included below, but remember that in the logic part, tables are considered predicates.
We will use act as an identifier for actions, t as an identifier for tables, p as an identifier for predicates and
a1, . . . , an, b1, . . . , bm as ground terms, already bound variables or binding variables. Binding variables are
preceded by a question mark ?; this means that the variable is not currently bound to any ground term in
the current environment. They are used in cases such as foreach p(3, ?a) => b end to say “find all values x
such that p(3, x) holds and execute b for each of these values x with a = x”.

b := handler body
act(a1, . . . , an) action
skip skip
b1;b2 sequence
foreach p(a1, . . . , an) => b end foreach
query brs1; . . . ; brsn end query

brs := query branches
branch qcl b query branch
defaultbranch b default branch

qcl := query clauses
a1 = a2 term matching
qcl1, qcl2 conjunction
p(a1, . . . , an) predicates

cdecl := conflict declaration
conflict act1(a1, . . . , an), act2(b1, . . . , am) => qcl. with a clause
conflict act1(a1, . . . , an), act2(b1, . . . , am). without a clause

3.2 Semantics

We now give semantics for an event handler’s execution. Our goal is to describe when multiple actions can
occur.

1. In a query, only one branch is ever executed at runtime, thus the set of actions reachable in a query
comes only from one of its branches.

2. In the case of a foreach, actions come from each iteration of the body.
3. In the case of a sequence, the actions from the first and second body are both executed.

We suppose hereafter that we have only one handler. This assumption is valid because when there are
multiple handlers for the same event, the actions of all handlers are executed; thus, it is actually similar to
the case of a sequence. Let σ be an environment (mapping from variables to ground terms). We define in
Fig. 1 a nondeterministic relation b σ−→ ` where b is a body and ` is a list of pairs of environments and actions.
(σ′, a) ∈ ` means that there exists an execution of the body b in the environment σ such that the action
a is executed in the environment σ′. This definition is nondeterministic because of the way predicates are
queried. For example, if we have a predicate p such that only p(1) and p(2) are true, there are two possible
executions of query | p(?N) => b; end; one where N is bound to 1 in b, the other one where N is bound to
2.
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act(a1, . . . , an)
σ−→ [(σ, act(a1, . . . , an))]

(actions)

b1
σ−→ `1 b2

σ−→ `2

b1; b2
σ−→ `1++`2

(seq)

(foreach qcl b) σ−→ []
(foreachN)

(foreach qcl b) σ−→ ` σ −−→
qcl

σ′ b
σ′
−→ `′

(foreach qcl b) σ−→ `++`′
(foreachS)

(query []) σ−→ []
(querynil)

∀σ′,¬ (σ −−→
qcl

σ′) (query qbrs) σ−→ `

(query (branch qcl b) : qbrs) σ−→ `
(queryF)

σ −−→
qcl

σ′ b
σ′
−→ `

(query (branch qcl b) : qbrs) σ−→ `
(queryT)

b
σ−→ `

(query (defaultbranch b) : qbrs) σ−→ `
(querydefault)

skip σ−→ []
(skip)

Fig. 1. Inference rules for b σ−→ `
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σ −−→
qcl1

σ′ σ −−→
qcl2

σ′

σ −−−−−→
qcl1,qcl2

σ′ (and)

σ(a1) = σ(a2)
σ −−−−→

a1=a2
σ (matching)

σ −−−−−→
?a1=a2

σ[a1 ← σ(a2)]
(matchingleft)

σ −−−−−→
a1=?a2

σ[a2 ← σ(a1)]
(matchingright)

σ . σ′ p(σ′(a1), . . . , σ
′(an))

σ −−−−−−−→
p(a1,...,an)

σ′ (pred)

Fig. 2. Inference rules for σ −−→
qcl

σ′

σ −−→
qcl

σ′ is defined in Fig. 2 and is a nondeterministic relation that means that σ′ is an extension of the

environment σ (written σ . σ′) such that the query clause qcl holds in σ′. Note that the semantics given in
Fig. 1 is an approximation of the actual execution of an event handler in the sense that for all actions a that
are executed in b under the environment σ, there exists a ` such that b σ−→ ` and a ∈ `. However, it is not
necessary true that there exists a ` such that for all actions a that are executed in b under the environment σ,
b
σ−→ ` and a ∈ `. This approximation is still suitable for the usage of our proof (in 3.5) as a property over all

actions a that are executed in b under the environment σ can be proven by proving the property over all `
such that b σ−→ `.

3.3 Definition of conflicts

We define an actual conflict (σ1, a1(x1, . . . , xn)) ./c (σ2, a2(y1, . . . , ym)) as meaning that c is a conflict
declaration conflict a1(z1, . . . , zn), a2(t1, . . . , tm) => cl such that the clause cl where all zk are substituted
by σ1(xk) and all tk substituted by σ2(yk) is true.

The goal of our analysis is to discover all actual conflicts of a policy. However, because of the static nature
of our analysis, there must be a tradeoff, which is the completeness of our analysis. Indeed, our analysis can
report false positives. In order to keep the rate of false positives minimal, we introduce a data structure
named PConflict to represent potential conflicts.

A PConflict (ev(z1, . . . , zk), cp, d1, d2, a1(x1, . . . , xn), a2(y1, . . . , ym), `) is defined by the event (ev) pro-
ducing the potential conflicts, the arguments (z1, . . . , zk) of the event, control flow paths (cp, d1, d2) leading
to the two conflicting actions, the two conflicting actions (a1(x1, . . . , xn), a2(y1, . . . , ym)) themselves and the
conflict declarations (`) that they might satisfy. A control flow path is represented by a list of query clauses
(as defined in 3.1). The clauses are either positive or negative (preceded by a ¬), a positive clause must hold
for the action, at the end of the path, to be executed. Conversely, for a negative clause ¬qcl, qcl must not hold
for the action to be executed. The two paths may have a common prefix, which we store in cp. Consequently,
the two divergent parts are stored in d1 and d2. This information is vital to check whether these potential
conflicts are realizable and are actual conflicts as explained in 3.6.

A PConflict (ev(z1, . . . , zk), cp, d1, d2, a1(x1, . . . , xn), a2(y1, . . . , ym), `) corresponding to an actual conflict
(σ1, a1(x1, . . . , xn)) ./c (σ2, a2(y1, . . . , ym)) is said to be realizable if there exists an environment σ such that
the path cp is satisfied under the environment σ (noted σ |= cp), σ1 |= d1, σ2 |= d2, σ . σ1, σ . σ2 and c ∈ `.
We will explain in detail in 3.6 what it means for a path to be satisfied by σ.
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path := [] empty path
qcl :p positive clause
¬qcl :p negative clause

Fig. 3. Syntax of paths

3.4 Algorithm

We now describe an algorithm for detecting potential conflicts. The algorithm takes the program’s abstract
syntax tree (AST) as input and returns PConflict data structures. It follows multiple steps :

1. From the program AST, we get a list of event handlers.
2. We then group the handlers by the event they handle, thus giving us a list of lists of event handlers.
3. For each group of handlers, we construct a single equivalent handler. This is done by :

(a) Looking for the handler that binds the most variables used by the event.
(b) Renaming all variables in the handlers and their bodies so that the variables bound at the event level

are the same for each handler.
(c) Forming a single handler body from all the bodies by concatenating them in sequence.
The idea behind this step is that a conflict that lies in two different handlers is the same as a conflict
happening by executing the body of the first handler and then executing the body of the second handler
(thus in sequence).

4. Finally, we look for the potential conflicts within each handler. This is roughly done by computing all paths
leading to an action and checking for each pair of actions whether they conflict. This is what the is_pconflict
function is used for in the definition of combine; it returns the list of all conflict declarations in the program
that have the two actions’ names. We use three functions to generate the potential conflicts, the main
function pconflicts and auxiliary functions paths and combine. The functions have the following signatures :

pconflicts : Path→ Body→ PConflict List
paths : Body→ (Actions, Args, Path) List
combine : Path→ (Actions, Args, Path) List→

(Actions, Args, Path) List→ PConflict List.

Here, Path is a control flow path as defined in 3.3 and Fig. 3.
pconflicts is given a prefix for the common path and computes all the potential conflicts that can happen
within the body given as second argument.
pconflicts pre b =

case b of
b1;b2 → pconflicts pre b1 ++

pconflicts pre b2 ++
combine pre (paths b1) (paths b2)

foreach p(a1, . . . , an) => b′ → pconflicts (p(a1, . . . , an):pre) b′ ++
combine pre

(paths (foreach p(a1, . . . , an) => b′))
(paths (foreach p(a1, . . . , an) => b′))

query (branch qcl b):bs → pconflicts (qcl :pre) b ++
pconflicts (¬qcl :pre) (query bs)

query (defaultbranch b):bs → pconflicts pre b
_ → []

paths computes the list of possibly reached actions in the body given as argument and the control flow
paths used to reach the actions.
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paths b =
case b of
b;b′ → paths b ++ paths b′
foreach q(a1, . . . , an) => b → map (λ(act, args, p) 7→ (act, args, q(a1, . . . , an):p)) (paths b)
query (branch qcl b):qbrs → map (λ(act, args, p)7→ (act, args, qcl :p)) (paths b) ++

map (λ(act, args, p)7→ (act, args, ¬qcl :p)) (paths (query qbrs))
query (defaultbranch b):qbrs → paths b
query [] → []
act(a1, . . . , an) → [(act, (a1, . . . , an), [])]
_ → []

combine computes the potential conflicts given the paths received as arguments. This is done by getting
all possible pairs of path/actions and checking if a conflict is possible.
combine pre ` `′ = concat

map (λ(act, args, p) 7→
(concat
map (λ(act’, args’, p′) 7→
case is_pconflict(act, act’ ) of
[] → []
c → [(pre, p, p′, act, args, act’, args’, c)]) `′)) `

3.5 Formal proof

In order to prove the soundness of our conflict detection scheme, we need to show that for each actual conflict
caused by actions that can be executed, our algorithm will generate a corresponding realizable (as defined
in 3.3) PConflict data structure. Let σ0 be the empty environment, the theorem is stated as follows:
Soundness theorem:
∀b, w, σ1, a1, arg1, σ2, a2, arg2, c,

b
σ0−→ w ∧

(σ1, a1(arg1)) ∈ w ∧
(σ2, a2(arg2)) ∈ w ∧
(σ1, a1(arg1)) ./c (σ2, a2(arg2)) =⇒
∃cp, d1, d2, `,

(cp, d1, d2, a1(arg1), a2(arg2), `) ∈ pconflicts [] b ∧
c ∈ ` ∧
∃σ, σ |= cp ∧

σ . σ1 ∧
σ . σ2 ∧
σ1 |= d1 ∧
σ2 |= d2

Before proving the theorem, we first state the following lemma, which says that for all actions resulting of
the execution of the body b, there exists a path leading to the action inside of b that is computed by the
function paths.
Lemma:
∀b, σ, w, b σ−→ w → ∀(σ′, a) ∈ w,∃p, σ′ |= p and (a, p) ∈ paths b.
Proof of lemma:
The proof is by structural induction of the derivation of σ−→.
Proof of theorem:
By structural induction on the derivation of σ−→.

1. If b is an action; then a1(arg1) = a2(arg2), thus there is no conflict and the theorem holds.
2. If b = b1;b2, by definition, there exist u and v such that w = u++v and b1

σ−→ u and b2
σ−→ v. If

(σ1, a1(arg1)) and (σ2, a2(arg2)) are both in u or both in v, we only need to use the induction hypothesis.
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Otherwise, if (σ1, a1(arg1)) ∈ u and (σ2, a2(arg2)) ∈ v, then by the lemma there exist d1 and d2 that
are suitable candidates. Furthermore, since is_conflict (σ1, a1(arg1)) (σ2, a2(arg2)) holds, we know that
is_pconflict(a1, arg1, a2, arg2) is non-empty and there exists c such that (cp0, d1, d2, c) is suitable. The
proof is similar if (σ1, a1(arg1)) ∈ v and (σ2, a2(arg2)) ∈ u.

3. If b = foreach qcl => b′ and w = [], then we get a contradiction as (σ1, a1(arg1)) ∈ w. Therefore, there
exist ` and `′ such that w = `++`′ and (foreach qcl b′) σ−→ ` and σ −−→

qcl
σ′ and b σ′

−→ `′. If (σ1, a1(arg1)) ∈ `

and (σ2, a2(arg2)) ∈ `, then we just need to use the induction hypothesis. Otherwise, we use the lemma
twice to get p1 and p2. If (σ1, a1(arg1)) ∈ `′, we define d1 as qcl : p1, otherwise d1 = p1. Likewise for d2.
Finally, we can conclude that exists c such that (cp0, d1, d2, c) is suitable.

4. For the querynil and skip rules, we have a contradiction as w = [] and (σ1, a1(arg1)) ∈ w.
5. For the queryF and queryT rules, we only need to use the induction hypothesis and add qcl or ¬qcl to

the common prefix to conclude.
6. Lastly, for the querydefault rule, we only need to use the induction hypothesis to conclude.

We can then easily prove the corollary that says that if all PConflicts are unrealizable, then there will be
no actual conflict at runtime. Furthermore, the lemma and the theorem have both been verified in Coq [10].

3.6 Formulae generation

Why3 is a platform for deductive program verification that relies on automated theorem provers to discharge
its verification tasks. We translate PConflict data structures generated in the previous step into first-order
formulae to be passed off to Why3. This is why the structures contain so much information: we need to help
the solvers as much as possible so that they produce as few false positives as possible. We first build the
background theory. This is a mostly straightforward step, as the translation to the Why3 input language is
almost one-to-one. All the types, predicates, table declarations are translated into the background theory;
strings are the only tricky part as Why3 does not natively support equality over them; thus, strings are
translated as constants represented by lists of integers corresponding to their ASCII encoding. For example,
here are some of the translations from Suppl to Why3:

Suppl Why3
type user := string type user = string
data category ::= type category = Z_inbox | Z_spam

inbox | spam
predicate trusted(address) predicate trusted (_arg0 : (address))
trusted("bob@leponge.com") = (_arg0 = string4)
bob@leponge.com constant string4 : string =

(Cons 98 (Cons 111 (Cons 98 ...

The next part is to use the PConflict structures and verify if they are realizable conflicts. This is done by
telling the solvers what would have to be true in order for the two actions to be conflicting and verifying that
it cannot happen. This is effectively translating the control flow paths. For example, if we have a conflict
declaration conflict a(?N), a(?M) => N <> M and the following body where p and q are predicates over
numbers:

query
| p(?N) => query

| q(N) => a(N);
end;
query
| q(N) => a(N);
end;

end;
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We would get a PConflict where the common path is p(?N) and the two divergent paths are q(N) and q(N).
Thus, to have an realizable conflict, we need that there exists a N such that p(N), q(N) and N <> N.

axiom conflict : exists _x0 : real.
((p _x0) /\
((q _x0) /\
((q _x0) /\
(not (_x0 = _x0)))))

goal impossible : false

We ask the solvers to prove that it is actually impossible, which is the case here as obviously not (_x0 =
_x0) cannot be true. However, had we not have a common path, but only divergent paths, the generated
formula would look like :

axiom conflict : exists _x0 : real.
((p _x0) /\
((q _x0) /\
(exists _x1 : real.
((p _x1) /\
((q _x1) /\
(not (_x0 = _x1)))))))

goal impossible : false

This is what the previous analysis did. In this case, the solvers cannot find the contradiction, thus we get a
false positive.

4 Feedback to the user

The conflict detection algorithm generates potential conflicts that are passed off to external SMT solvers,
which verifies if the corresponding formulae are unsatisfiable and these conflicts cannot actually happen at
runtime. On the other hand, conflicts that the solvers are not able to prove unsatisfiable are reported to the
user. But if the user only gets back which control-flow paths and which actions caused the conflict, this might
not be sufficient to understand why the conflict is happening. For example, suppose we have the two following
paths from the policy described in section 2 highlighted in red and blue leading to a conflict that could not
be ruled out.

handle receive(?A) => handle receive(?A) =>
query query
| trusted(A) => send(inbox); | isSpam(A) => send(spam);
end; end;

end. end.

The user might not immediately understand why it is possible for the address A to be considered both
trusted and isSpam. Thus, we have implemented a scheme that tries to report to the user which rules in the
predicate definition may cause the conflict. This is accomplished by going through the control-flow paths of
the conflicts and looking at which predicates are present in positive guards. Following this step, we generate
different versions of the potential conflict by creating different backgrounds in which the involved predicates
each only have one rule. These different versions of the potential conflict are then given back to the solvers.
In the example, we only have two predicates involved, trusted and isSpam. trusted has only one rule and
isSpam has two rules, so we split the original conflict in two cases. The first case is the one where isSpam
only has the one rule isSpam("carlo@tentacule.com"). The second case is the one where isSpam only has
the other rule isSpam(A) :- findall(U, untrusted(A, ?U), RS), set_size(RS) >= 10. We then give
back these two problems to the SMT solvers. The first case is easily ruled out by the solvers. However, the
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second case is not, so it is reported to the user by highlighting the rules and the control flow paths involved,
as seen in Fig. 5. Indeed, a keen reader might have noticed that there is nothing to say that a trusted address
cannot have more than 10 users considering it a spammer, which would cause a conflict.

However, a predicate might have many more than two rules, which would create many different versions
of the same conflict. In this case, we try to help the user by checking if all rules of a predicate still appear in
the different versions of the conflict that the solvers were not able to solve. If this is the case, we can deduce
that whatever the rule that this predicate follows, the conflict still exists, meaning that the predicate is not
the cause of the conflict and is thus not highlighted in the display.

predicate p(number). predicate q(number, number). predicate r(number, number).
p(N) :- N > 4. q(N, M) :- N > M + 5. r(N, M) :- M > 10.
p(N) :- N < 0. q(N, M) :- M = 0. r(N, M) :- N > M + 2.

handle ev(?N, ?M) => handle ev(?N, ?M) =>
query => query =>
| p(N) => query | r(N, M) => act2;

| q(N, M) => act1; end;
end; end.

end;
end.

Fig. 4. One possible version of the potential conflicts

In the situation of Fig. 4, both versions of the conflict with combination of rules

p(N) :- N > 4. p(N) :- N < 0.
q(N, M) :- N > M + 5. q(N, M) :- N > M + 5.
r(N, M) :- N > M + 2. r(N, M) :- N > M + 2.

cannot be ruled out. Therefore, both of the rules of predicate p are not highlighted.
Note that this case differentiation is not necessarily a sound approach for all conflicts. Indeed, in some

cases, all different versions of the conflict can be ruled out, but the original cannot.

predicate friend(string, string).
friend("Gary", "Bob").
friend("Bob, "Patrick").
friend(A, C) :- friend(A, ?B), friend(B, C).

query => query =>
| friend("Gary", "Patrick") => act1; | _ => act2;

end; end;

Indeed, in this situation, our case differentiation scheme is useless since the conflict needs all three rules for it
to be realizable.

There are several ways for the user to prevent the solver from reporting a potential conflict. The Suppl
language supports the use of axioms and lemmas in the source code. For the example given at the beginning of
this section, we can add an axiom to tell the compiler that the conflict is not possible : axiom trusted(A) ->
(findall(U, untrusted(A, ?U), RS), set_size(RS) = 0). This says that if address A is trusted, then
no user have filed complaint a concerning this address. Note that this facility is obviously very unsafe. On
the other hand, specifying a lemma will cause the solvers to try to prove the lemma first. The compiler also
accepts a keyword presume that is used to tell the solvers that events must always follow a given clause. For
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example, we can say that we can only receive e-mails from "sheldon@plankton.com": presume receive(?A)
=> A = "sheldon@plankton.com".

These features can possibly lead the user to accidently create an inconsistency that would then render all
conflicts unsatisfiable. Therefore, if one of these constructs is used in the policy, we first ask the SMT solvers
to try to prove false and raise an error if they do manage to prove it. However, this is unfortunately not a
complete check as solvers not managing to find an inconsistency does not mean there isn’t one.

Furthermore, as tables are simply treated like predicates in the logic side of the compiler, we also automati-
cally generate axioms so that the SMT solvers can understand that there can only be one row for the values in
the table’s primary key. For example, suppose that we have the following table declaration table t(string,
string) key(in, out), we would then generate the following axiom t(A1, A2) -> t(B1, B2) -> A1 =
B1 -> A2 = B2. This work is necessary to have an as faithful as possible translation of the background
theory in order to decrease the number of false positives.

5 Related work

Conflict detection has been extensively studied, for example, Lupu and Sloman [14] present a tool for static
detection of conflicts in a role-based management framework (policies define which roles have authorization
or obligation of certain actions). Unlike Suppl’s domain-neutral approach, Ben Youssef et al. [4] propose
an automatic method using the SMT solver Yices [12] to verify that there is no conflict within a security
policy for firewalls. The use of automated theorem provers is not a novel idea and they have been used for a
long time in others domains such as bounded model checking [5] which is a technique that makes use of SAT
solvers to automatically detect errors in finite state systems. This technique was then extended to use SMT
solvers by Armando et al. [1]. Our refinement scheme where a conflict is split into multiple cases is vaguely
similar to the counterexample-guided abstraction refinement (CEGAR) [7] model checking method in the
sense that it refines an abstract model in order to avoid false counterexamples.

6 Conclusion

Suppl is an attempt to create a domain-neutral language for the ECA paradigm, while keeping the possibility
of having static analyses. My internship took place in this context, an existing compiler written in Haskell
which I improved by adding the diverse new features. I implemented and proved the soundness of the static
control flow analysis algorithm for detecting conflicts in policies presented in section 3. I also designed and
implemented a scheme to try helping users understand the causes of a conflict as well as improved the output
to Why3 in order to decrease the number of false positives previously reported as presented in section 4.

However, the feedback to the user can still be improved. Indeed, it might also be useful to report a possible
instantiation of the conflict to the user. Unfortunately, Why3 does not analyze the output of an automated
prover and therefore does not report the possible counterexamples found by the prover. Moreover, the current
system only supports pairwise policy conflicts while the user may need to specify n-way conflicts.
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