2ème Année

TD 1 : Irréductibilité, récurrence, transience

Exercice 1 Soit X_n le maximum obtenu en jetant n fois un dé : Montrer que $(X_n)_{n\geq 1}$ est une chaîne de Markov et calculer la matrice de transition .

Exercice 2 A quelle condition sur sa matrice de transition une chaîne de Markov $(X_n)_{n\geq 0}$ définie sur un espace *infini* E est-elle croissante? strictement croissante? Les réponses sont-elles modifiées si l'espace d'états E est *fini*?

Exercice 3 Modèle de gestion de stocks. Une librairie a une capacité de stockage de S livres et doit faire face à Y_n demandes entre les instants n-1 et n; on suppose que la demande hebdomadaire ne dépasse jamais m exemplaires (avec $S \leq m$), et que les Y_n sont iid de loi donnée par $P(Y_n = k) = a_k$ pour $0 \leq k \leq m$. X_n est le nombre de livres en stock à l'instant n, compte tenu de la règle suivante : un seuil s étant donné, on décide de restocker si $X_n \leq s$. On considère également qu'on ne gère pas de stock négatif, autrement dit toute demande non satisfaite immédiatement est perdue (et donc on a toujours $X_n \geq 0$).

- 1. Déterminer X_{n+1} en fonction de X_n et Y_{n+1} .
- 2. En déduire la matrice de transition de la chaîne de Markov $(X_n)_{n\geq 0}$.

Exercice 4 On considère la chaîne de Markov de matrice de transition donnée en partie par

$$P = \begin{pmatrix} 1/2 & 1/2 & ? & ? & ? & ? \\ 0 & 0 & 1 & ? & ? & ? \\ ? & 0 & 0 & 1/3 & 1/3 & 0 \\ 0 & 0 & 0 & x & x & 0 \\ 0 & 0 & 0 & 0 & 0 & ? \\ 0 & 0 & 0 & 0 & 1 & ? \end{pmatrix}$$

- 1. Trouver x, et compléter les cases vides de P.
- 2. Dessiner le graphe correspondant à la matrice P. Quelles sont les classes d'équivalences pour la relation de communicabilité? Lesquelles sont fermées? Lesquelles sont récurrentes?

Exercice 5

1. Montrer que la chane de Markov $(X_n)_{n\in\mathbb{N}}$ trois tats 0, 1 et 2, de matrice de transition

$$P = \begin{pmatrix} 1 & 0 & 0 \\ p & 1 - p - q & q \\ 0 & 0 & 1 \end{pmatrix}, \quad p \ge 0, q \ge 0, p + q \le 1,$$

et d'tat initial 1 $(P(X_0 = 1) = 1)$ change d'tat pour la premire fois un instant alatoire $T \ge 1$ de loi gomtrique.

2. Montrer que X_T est une variable alatoire indpendante de T, de loi donne par

$$P(X_T = 0) = \frac{p}{p+q} = 1 - P(X_T = 2).$$

3. Montrer enfin que $X_t = X_T$ si $t \ge T$.

Exercice 6 On considère la chaîne de Markov $(X_n)_{n\geq 0}$ à valeurs dans $\{1,2,3,4\}$ de matrice de transition

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- 1. Relier cette matrice à un des exemples vus en cours.
- 2. On note $h_i = P_i(\tau < +\infty)$, où τ est le premier instant positif **ou nul** où la chaîne passe par l'état 4 (en particulier, $h_4 = 1$). Que vaut h_1 ? Montrer les relations $h_2 = h_1/2 + h_3/2$ et $h_3 = h_2/2 + h_4/2$.
- 3. En déduire les valeurs de h_2 et h_3 .
- 4. Soit σ le premier instant où la chaîne arrive dans un état absorbant, et $k_i = E_i(\sigma)$. Interpréter k_i , donner k_1 et k_4 , et montrer les relations $k_2 = 1 + k_1/2 + k_3/2$ et $k_3 = 1 + k_2/2 + k_4/2$; en déduire k_2 et k_3 .

Exercice 7 Pour modliser l'volution de configurations gn
tiques dans une population, on est amen considrer la chane de Markov suivante. Soit P la matrice de transition sur $E = \{0, 1, \cdots, N\}$ d
finie par

$$P(i,j) = \binom{N}{j} \left(\frac{i}{N}\right)^j \left(1 - \frac{i}{N}\right)^{N-j}$$

Autrement dit pour $i \in E$ fix, P(i, .) est une loi binomiale de paramtres N et i/N. N est la taille de la population, i le nombre d'individus porteurs d'un certain caractre gntique.

- 1. Interprter la matrice de transition dans le cadre de l'nonc.
- 2. Que vaut P(0,j)? Et P(N,j)? La chane est-elle irrductible? Quels sont les tats reurrents?
- 3. Soit $(X_n)_{n\in\mathbb{N}}$ une chane de Markov de matrice de transition P. Montrer que pour tout $x\in E, E_x(X_{n+1}|X_n)=X_n$. En dduire que l'esprance $E_x(X_n)$ est indpendante de n.
- 4. On admet que X_n converge p.s. et dans L^1 vers une v.a. X_{∞} . Montrer que la loi de $X_i nfty$ est porte par 0 et N, avec $P_x(X_{\infty} = N) = x/N$.

Exercice 8 Soit $(X_n)_{n\geq 0}$ une chane deux tats 0 et 1 telle que $P(X_{n+1}=1|X_n=0)=\alpha$ et $P(X_{n+1}=0|X_n=1)=\beta$. Calculer la probabilité, partant de l'état 1 l'instant 0, d'y être à nouveau l'instant n.