TD d'optimisation numéro 1 optimisation sans contrainte

Jocelyne Erhel

ENSAI, Janvier 2020

1 Exercice 1: point de minimum et points selles

On considère la fonction suivante définie dans \mathbb{R}^2 :

$$f(x,y) = 3xy^2 - y^3 + x^2 + y^2 - 1.$$

- 1. Vérifier que la fonction est au moins de classe C^2 dans ${\bf R}^2.$
- 2. Calculer le gradient de f en tout point (x,y) de \mathbf{R}^2 et montrer qu'il existe trois points critiques.
- 3. Calculer la matrice hessienne $H_f(x,y)$ en tout point (x,y) de \mathbf{R}^2 puis aux points critiques.
- 4. Montrer qu'un des points critiques est un point de minimum local et que les deux autres points critiques sont des points selles.

2 Exercice 2: fonction de Rosenbrock

On considère la fonction suivante définie dans \mathbb{R}^2 , dite fonction de Rosenbrock:

$$f(x_1, x_2) = 100 * (x_2 - x_1^2)^2 + (1 - x_1)^2.$$

- 1. Calculer le gradient de f en tout point $x=(x_1,x_2)$ et montrer qu'il existe un unique point critique.
 - 2. Calculer la matrice hessienne $H_f(x_1, x_2)$ en tout point (x_1, x_2) puis au point critique.
- 3. Vérifier que la matrice hessienne au point critique est symétrique définie positive. Que peut-on en conclure ?
 - 4. Montrer que le point critique est un point de minimum global.

3 Exercice 3: moyenne et variance empiriques

Soit $n \in \mathbb{N}$ avec $n \geq 2$ et $a_1, a_2, \dots, a_n \in \mathbb{R}$. On suppose que les a_i ne sont pas tous égaux. On considère le problème de maximisation $\max_{(m,\sigma)\in\mathbb{R}\times[0,+\infty[}g(m,\sigma)$ où

$$g(m,\sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(a_i - m)^2}{2\sigma^2}).$$

1. Montrer que le problème est équivalent à minimiser la fonction f définie par

$$f(m, \sigma) = -\log(g(m, \sigma)).$$

- 2. Montrer qu'il existe un unique point critique et le déterminer.
- 3. Montrer que ce point critique est un point de minimum local.

4 Exercice 4: nuage de points en 3D

Soit m un entier naturel non nul. Dans l'espace \mathbb{R}^3 , on considère un nuage de m points $A_i, i = 1, \ldots, m$ de coordonnées $(a_i, b_i, c_i)^T$, $i = 1, \ldots, m$. On cherche un point M de coordonnées $(x, y, z)^T$ "proche" des points A_i .

Soit f la fonction de \mathbb{R}^3 dans \mathbb{R} définie par

$$f(x,y,z) = \sum_{i=1}^{m} [(x-a_i)^2 + (y-b_i)^2 + (z-c_i)^2].$$

On admet que f est de classe $C^2(\mathbf{R}^3)$.

- 1. Interpréter géométriquement la fonction f.
- 2. Calculer le gradient $\nabla f(x, y, z) \in \mathbf{R}^3$ et la matrice hessienne $H_f(x, y, z) \in \mathbf{R}^{3 \times 3}$ en tout point $(x, y, z)^T$ de \mathbf{R}^3 .
 - 3. Montrer que le problème $\min_{(x,y,z)^T \in \mathbf{R}^3} f(x,y,z)$ a une unique solution.
 - 4. Calculer cette solution.
 - 5. Interpréter géométriquement cette solution.