Formuler un problème d'ordonnancement juste-à-temps grâce à des inégalités de non-chevauchement

Anne-Elisabeth FALQ

encadrée par Pierre Fouilhoux et Safia Kedad-Sidhoum

18 Novembre 2020, en ligne avec le Gscop de Grenoble

Outline

1. Introduction

Scheduling around a common due date
Known results about UCDDP and CDDP
How to encode schedules?
2. A formulation for UCDDP using natural variables
3. How to manage this kind of formulations in practice
4. How to extend this formulation
5. Conclusion

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

A schedule :

0

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

A schedule :

0

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties : $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$
- unit earliness penalties : $\forall j \in J, \alpha_{j}=2$

A schedule:

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties: $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$
- unit earliness penalties : $\forall j \in J, \alpha_{j}=2$

A schedule :

Scheduling around a common due-date on a single machine

An instance $=\bullet$ a set of tasks : $J=\{1,2,3,4\}$

- common due date : $d=10$
- unit tardiness penalties: $\beta_{1}=\beta_{4}=5, \beta_{2}=\beta_{3}=2$
- unit earliness penalties: $\forall j \in J, \alpha_{j}=2$

A schedule :

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

A solution schedule $=$ a family of pairwise disjoint processing intervals

The Unrestrictive Common Due Date Problem (UCDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- an unrestrictive common due-date $d \geqslant \sum_{j \in J} p_{j}$
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

A solution schedule $=$ a family of pairwise disjoint processing intervals

The objective $=\min \sum_{j \in J} \alpha_{j} E_{j}+\beta_{j} \boldsymbol{T}_{j}=$
minimize the sum of earliness and tardiness penalties

The Unrestrictive Common Due Date Problem (CDDP)

An instance $=$

- a set of tasks J
- their processing times $\left(p_{j}\right)_{j \in J} \in \mathbb{N}^{J}$
- a unrestrictive common due-date d
- their unit earliness penalties $\left(\alpha_{j}\right)_{j \in J}$
- their unit tardiness penalties $\left(\beta_{j}\right)_{j \in J}$

A solution schedule $=$ a family of pairwise disjoint processing intervals

The objective $=\min \sum_{j \in J} \alpha_{j} E_{j}+\beta_{j} T_{j}=$ minimize the sum of earliness and tardiness penalties

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

In both cases,
\rightarrow the searching space can be reduced to T
\rightarrow other solutions can be discarded

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance	
properties	

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance properties	\bullet without idle time \square

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance	- without idle time
properties	
	- one on time task

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance	• without idle time
properties	
	• one on time task
complexity	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P}$

Kanet, 1981, Naval Research Logistics Quaterly

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance properties	- without idle time \square - one on time task
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \quad \text { NP-hard } \end{aligned}$

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$
dominance properties	\bullet without idle time
	\bullet one on time task
	$(+$ "V-shaped" $)$
complexity	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P}$ $\forall j \in J, \alpha_{j}=\beta_{j} \rightarrow$ weakly NP-hard

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	\bullet without idle time \square	
	\bullet one on time task	
complexity	 $(+$ "V-shaped" $)$	
 $\forall j \in J, \alpha_{j}=\beta_{j} \rightarrow$ weakly NP-hard		

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	- without idle time \square - one on time task (+ "V-shaped")	- without idle time - one on time task or beginning at 0 V-shaped
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \text { weakly NP-hard } \end{aligned}$	

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	- without idle time \square - one on time task (+ "V-shaped")	- without idle time - one on time task or beginning at 0 V-shaped
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \text { weakly NP-hard } \end{aligned}$	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow$ NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	- without idle time \square - one on time task (+ "V-shaped")	- without idle time $\square 1$ \square - one on time task or beginning at 0 V-shaped
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \text { weakly NP-hard } \end{aligned}$	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow$ NP-hard $\forall j \in J, \alpha_{j}=\beta_{j} \rightarrow$ weakly NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j \in J} p_{j}$	general case
dominance properties	\bullet without idle time	• without idle time \square
• one on time task		

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

Dominance properties and complexity

	unrestrictive case $d \geqslant \sum_{j} p_{j}$	general case
dominance properties	- without idle time \square - one on time task (+ "V-shaped")	- without idle time II \square - one on time task or beginning at 0 V-shaped
complexity	$\begin{aligned} & \forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow \mathrm{P} \\ & \forall j \in J, \alpha_{j}=\beta_{j} \rightarrow \text { weakly NP-hard } \\ & \text { arbitrary } \alpha_{j}, \beta_{j} \rightarrow \text { NP-hard } \end{aligned}$	$\forall j \in J, \alpha_{j}=\beta_{j}=\omega \rightarrow$ NP-hard $\forall j \in J, \alpha_{j}=\beta_{j} \rightarrow$ weakly NP-hard arbitrary $\alpha_{j}, \beta_{j} \rightarrow$ Branch-and-Bound can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research Sourd, 2009, Informs Journal on Computing

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

0

First let us discretize the time horizon

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

0

First let us discretize the time horizon

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

First let us discretize the time horizon

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$

1- Introduction - 1.3 How to encode schedules?

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$
Objective function: $\sum_{j \in J} \sum_{t \in \mathcal{T}} c_{i, t} X_{i, t} \quad \begin{aligned} & \text { where } c_{i, t} \text { are pre-computed } \\ & \text { from the instance }\end{aligned}$

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$
Objective function: $\quad \sum \sum c_{i, t} X_{i, t}$ where $c_{i, t}$ are pre-computed $\sum_{j \in J} t \in \mathcal{T}$
from the instance

Constraints:

- $\forall i \in J, \sum_{t \in \mathcal{T}} x_{i, t}=1$
task i is placed
- $\forall t \in \mathcal{T}, \sum_{\substack{i \in J \\ s \in\left[t, t+p_{i}[\right.}} \sum_{\substack{s \in \mathcal{T}}} x_{i, s} \leqslant 1$ at most 1 task is in progress at t
- $\forall i \in J, \forall t \in \mathcal{T}, x_{i, t} \in \mathbb{Z} \quad$ integrity constraint

Time-indexed variables

First let us discretize the time horizon as $\mathcal{T}=[d-p(J), d+p(J)]$.
Variables: $\forall i \in J, \forall t \in \mathcal{T}: x_{i, t}=\left\{\begin{array}{l}1 \text { if } i \text { completes at } t \\ 0 \text { otherwise }\end{array}\right.$
Objective function: $\sum_{j \in J} \sum_{t \in \mathcal{T}} c_{i, t} x_{i, t} \quad \begin{aligned} & \text { where } c_{i, t} \text { are pre-computed } \\ & \text { from the instance }\end{aligned}$

+ easy to formulate as a MIP
+ good relaxation value
$-2 n p(J)$ binary variables $=$ a pseudo polynomial number
- $n+n p(J)$ inequalities $=$ a pseudo polynomial number

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\quad \sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\quad \sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$not linear!

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$not linear!

Completion time variables

Variables: $\forall j \in J, C_{j} \in \mathbb{R}_{+}$is the time when task j completes
Objective function: $\sum_{j \in J} \alpha_{j}\left[d-C_{j}\right]^{+}+\beta_{j}\left[C_{j}-d\right]^{+}$not linear!

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}$

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t
On the first example:

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t
On the first example:

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Earliness-Tardiness variables

Variables: $\forall j \in J, e_{j}=\left[d-C_{j}\right]^{+}$and $t_{j}=\left[C_{j}-d\right]^{+}$
Objective function: $\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} \leftarrow$ linear function of variables e and t

Outline

1. Introduction
2. A formulation for UCDDP using natural variables Describing the solution set for (e, t) variables
Non-overlapping inequalities
Validity
3. How to manage this kind of formulations in practice
4. How to extend this formulation
5. Conclusion

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities
in order to obtain: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P
in order to obtain: UCDDP $\Longleftrightarrow \min _{(e, t) \in P} g_{\alpha, \beta}(e, t)$

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, it cannot be sufficient (LP-solving $\in \mathcal{P}$ and UCDDP $\in \mathcal{N} \mathcal{P}$)
in order to obtain: UCDDP $\Longleftrightarrow \min _{(e, t) \in P} g_{\alpha, \beta}(e, t)$

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, it cannot be sufficient (LP-solving $\in \mathcal{P}$ and $U C D D P \in \mathcal{N} \mathcal{P}$)
- integrity constraints
in order to obtain:

$$
\mathrm{UCDDP} \Longleftrightarrow \min _{(e, t) \in \operatorname{int}(P)} g_{\alpha, \beta}(e, t)
$$

What is the goal?

We already have: UCDDP $\Longleftrightarrow \min _{(e, t) \in \mathscr{S}} g_{\alpha, \beta}(e, t)$
where: $\rightarrow g_{\alpha, \beta}$ is linear $\left(g_{\alpha, \beta}=(e, t) \mapsto \sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j}\right)$
$\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if $\mathcal{P} \neq \mathcal{N} \mathcal{P}$, it cannot be sufficient (LP-solving $\in \mathcal{P}$ and UCDDP $\in \mathcal{N} \mathcal{P}$)
- integrity constraints
- extremality constraints
in order to obtain: UCDDP $\Longleftrightarrow \min _{(e, t) \in \text { int (extr } P)} g_{\alpha, \beta}(e, t)$

What do we need for describing the solution set?

An instance $=$

- a set of tasks J
- the processing times of these tasks $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- a unitary earliness penalty for each task $\left(\alpha_{j}\right)_{j \in J}$
- a unitary tardiness penalty for each task $\left(\beta_{j}\right)_{j \in J}$

What do we need for describing the solution set?

An instance $=$

- a set of tasks J
- the processing times of these tasks $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- a unitary earliness penalty for each task $\left(\alpha_{j}\right)_{j \in J}$
- a unitary tardiness penalty for each task $\left(\beta_{j}\right)_{j \in J}$

What do we need for describing the solution set?

An instance $=$

- a set of tasks J
- the processing times of these tasks $\left(p_{j}\right)_{j \in J}$
- an unrestrictive common due-date $d \geqslant \sum p_{j}$
- a unitary earliness penalty for each task $\left(\alpha_{j}\right)_{j \in J}$
- a unitary tardiness penalty for each task $\left(\beta_{j}\right)_{j \in J}$

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] e_{j} and t_{j} are not simultaneously strictly positive [non-overlapping] processing intervals are pairwise disjoints
[positivity] processing intervals don't begin before time 0

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] e_{j} and t_{j} are not simultaneously strictly positive [non-overlapping] processing intervals are pairwise disjoints [positivity] processing intervals don't begin before time 0

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_{j} and t_{j} are not simultaneously strictly positive
[non-overlapping] processing intervals are pairwise disjoints

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_{j} and t_{j} are not simultaneously strictly positive

- Adding disjunctive variables $\left(\delta_{j}\right)_{j \in J}$ such that $\delta_{j}=\left\{\begin{array}{l}1 \text { if } j \text { is early } \\ 0 \text { if } j \text { is tardy }\end{array}\right.$

$$
\begin{array}{ll}
\forall j \in J, \\
e_{j} & e_{j} \leqslant \delta_{j}(e .1) \quad \forall j \in J, t_{j} \geqslant 0 \quad(t .1) \\
t_{j} \leqslant M\left(1-\delta_{j}\right) & (t .2)
\end{array} \text { where } \boldsymbol{M}=\sum_{j \in J} p_{j}
$$

[non-overlapping] processing intervals are pairwise disjoints

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_{j} and t_{j} are not simultaneously strictly positive

- Adding disjunctive variables $\left(\delta_{j}\right)_{j \in J}$ such that $\delta_{j}=\left\{\begin{array}{l}1 \text { if } j \text { is early } \\ 0 \text { if } j \text { is tardy }\end{array}\right.$

$$
\begin{aligned}
& \forall j \in J, \\
& e_{j} \geqslant 0 \quad(e .0) \quad \forall j \in J, t_{j} \geqslant 0 \quad(t .1) \\
& e_{j} \leqslant M \delta_{j}(e .1) t_{j} \leqslant M\left(1-\delta_{j}\right)(t .2)
\end{aligned} \text { where } \boldsymbol{M}=\sum_{j \in J} p_{j}
$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule : the early tasks \longleftrightarrow the tardy tasks
- are entirely processed before d - are entirely processsed after d

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] e_{j} and t_{j} are not simultaneously strictly positive

- Adding disjunctive variables $\left(\delta_{j}\right)_{j \in J}$ such that $\delta_{j}=\left\{\begin{array}{l}1 \text { if } j \text { is early } \\ 0 \text { if } j \text { is tardy }\end{array}\right.$

$$
\begin{aligned}
& \forall j \in J, \\
& e_{j} \geqslant 0 \quad(e .0) \quad \forall j \delta_{j}(e .1)
\end{aligned} \quad \forall j, t_{j} \geqslant 0 \quad(t .1) \quad \text { (1-2) } \quad t_{j} \leqslant M\left(1-\delta_{j}\right) \quad(t .2) \quad \text { where } \boldsymbol{M}=\sum_{j \in J} p_{j}
$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule
the early tasks
- are entirely processed before d
- are entirely processsed after d
- do not overlap each other

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] e_{j} and t_{j} are not simultaneously strictly positive

- Adding disjunctive variables $\left(\delta_{j}\right)_{j \in J}$ such that $\delta_{j}=\left\{\begin{array}{l}1 \text { if } j \text { is early } \\ 0 \text { if } j \text { is tardy }\end{array}\right.$

$$
\begin{aligned}
& \forall j \in J, \\
& e_{j} \geqslant 0 \quad(e .0) \quad \forall j \delta_{j}(e .1)
\end{aligned} \quad \forall j, t_{j} \geqslant 0 \quad(t .1) \quad \text { (1-2) } \quad t_{j} \leqslant M\left(1-\delta_{j}\right) \quad(t .2) \quad \text { where } \boldsymbol{M}=\sum_{j \in J} p_{j}
$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule : the early tasks $\longleftrightarrow \mid \longrightarrow$ the tardy tasks
- are entirely processed before d
- do not overlap each other
- are entirely processsed after d
- do not overlap each other

Non-overlapping inequalities for $1|-| \min \sum \omega_{j} C_{j}$

Queyranne's non-overlapping inequalities

$$
\begin{aligned}
& \text { Cic } \begin{array}{l}
i \\
\forall C_{i} \\
\forall S \subseteq J, \sum_{j \in S} p_{j} C_{j} \geqslant g(S)
\end{array} \text { where } g(S)=\frac{1}{2}\left[\sum_{j \in S} p_{j}^{2}+\left(\sum_{j \in S} p_{j}\right)^{2}\right]
\end{aligned}
$$

- scheduling problem without due-date

Non-overlapping inequalities for $1|-| \min \sum \omega_{j} C_{j}$

Queyranne's non-overlapping inequalities

$$
\begin{aligned}
& \underset{0}{i} \\
& \forall S \subseteq J, \sum_{j \in S} p_{j} C_{j} \geqslant g(S) \text { where } g(S)=\frac{1}{2}\left[\sum_{j \in S} p_{j}^{2}+\left(\sum_{j \in S} p_{j}\right)^{2}\right]
\end{aligned}
$$

- scheduling problem without due-date
- encoding schedules by their completion times $\left(C_{j}\right)_{j \in J}$

Non-overlapping inequalities for $1|-| \min \sum \omega_{j} C_{j}$

> Queyranne's non-overlapping inequalities

- scheduling problem without due-date
- encoding schedules by their completion times $\left(C_{j}\right)_{j \in J}$
- these inequalities describe the convex hull of such vectors C

2- A formulation for UCDDP using natural variables

Non-overlapping inequalities for $1|-| \min \sum \omega_{j} C_{j}$

Queyranne's non-overlapping inequalities

- scheduling problem without due-date
- encoding schedules by their completion times $\left(C_{j}\right)_{j \in J}$
- these inequalities describe the convex hull of such vectors C
- all extreme points of the polyhedron encode feasible schedules

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2 -task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables
The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables

The set of vectors $\left(C_{1}, C_{2}\right)$ encoding a 2-task schedule

2- A formulation for UCDDP using natural variables

Non-overlapping inequalities for UCDDP

2- A formulation for UCDDP using natural variables - 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

A first idea : $\{$

2- A formulation for UCDDP using natural variables - 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

A first idea : $\{\forall S \subseteq J, p * t(S) \geqslant g(S)$

2- A formulation for UCDDP using natural variables - 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

A first idea : $\{\forall S \subseteq J, p * t(S) \geqslant g(S)$

2- A formulation for UCDDP using natural variables - 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

A first idea : $\{\forall S \subseteq J, p * t(S) \geqslant g(S)$

Non-overlapping inequalities for UCDDP

A first idea: $\left\{\begin{array}{l}\forall S \subseteq J, p * t(S) \geqslant g(S) \\ \forall S \subseteq J, p *[p+e](S) \geqslant g(S)\end{array}\right.$

Non-overlapping inequalities for UCDDP

$$
\forall S \subseteq J, p * t(S) \geqslant g(S) \text { Are these inequalities valid? }
$$

Non-overlapping inequalities for UCDDP

$\forall S \subseteq J, p * t(S) \geqslant g(S)$ Are these inequalities valid?
For $S=\{i, j\}$ with $t_{i}=0, p * t(S) \geqslant g(S) \Leftrightarrow p_{i} t_{i}+p_{j} t_{j}>p_{i}^{2}+p_{j}^{2}+p_{i} p_{j} \Leftrightarrow t_{j}>p_{j}$

Non-overlapping inequalities for UCDDP

$\forall S \subseteq J, p * t(S) \geqslant g(S)$ Are these inequalities valid?
For $S=\{i, j\}$ with $t_{i}=0, p * t(S) \geqslant g(S) \Leftrightarrow p_{i} t_{i}+p_{j} t_{j}>p_{i}^{2}+p_{j}^{2}+p_{i} p_{j} \Leftrightarrow t_{j}>p_{j}$

This inequality is not valid for

Non-overlapping inequalities for UCDDP

$\forall S \subseteq J, p * t(S) \geqslant g(S)$ Are these inequalities valid?
For $S=\{i, j\}$ with $t_{i}=0, p * t(S) \geqslant g(S) \Leftrightarrow p_{i} t_{i}+p_{j} t_{j}>p_{i}^{2}+p_{j}^{2}+p_{i} p_{j} \Leftrightarrow t_{j}>p_{j}$

This inequality is not valid for

\hookrightarrow So we consider: $\left\{\begin{array}{l}\forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E) \\ \forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T)\end{array}\right.$

Non-overlapping inequalities for UCDDP

$\forall S \subseteq J, p * t(S) \geqslant g(S)$ Are these inequalities valid?
For $S=\{i, j\}$ with $t_{i}=0, p * t(S) \geqslant g(S) \Leftrightarrow p_{i} t_{i}+p_{j} t_{j}>p_{i}^{2}+p_{j}^{2}+p_{i} p_{j} \Leftrightarrow t_{j}>p_{j}$

This inequality is not valid for

\hookrightarrow So we consider: $\left\{\begin{array}{l}\forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E) \\ \forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

Non-overlapping inequalities for UCDDP

$\forall S \subseteq J, p * t(S) \geqslant g(S)$ Are these inequalities valid?
For $S=\{i, j\}$ with $t_{i}=0, p * t(S) \geqslant g(S) \Leftrightarrow p_{i} t_{i}+p_{j} t_{j}>p_{i}^{2}+p_{j}^{2}+p_{i} p_{j} \Leftrightarrow t_{j}>p_{j}$

This inequality is not valid for

\hookrightarrow So we consider: $\left\{\begin{array}{l}\forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E) \\ \forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

- the right-hand side term is no more a constant

Non-overlapping inequalities for UCDDP

$\forall S \subseteq J, p * t(S) \geqslant g(S)$ Are these inequalities valid?
For $S=\{i, j\}$ with $t_{i}=0, p * t(S) \geqslant g(S) \Leftrightarrow p_{i} t_{i}+p_{j} t_{j}>p_{i}^{2}+p_{j}^{2}+p_{i} p_{j} \Leftrightarrow t_{j}>p_{j}$

This inequality is not valid for

\hookrightarrow So we consider: $\left\{\begin{array}{l}\forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E) \\ \forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

- the right-hand side term is no more a constant
- variables δ appear on both side to express the intersection

Non-overlapping inequalities for UCDDP

$\forall S \subseteq J, p * t(S) \geqslant g(S)$ Are these inequalities valid?
For $S=\{i, j\}$ with $t_{i}=0, p * t(S) \geqslant g(S) \Leftrightarrow p_{i} t_{i}+p_{j} t_{j}>p_{i}^{2}+p_{j}^{2}+p_{i} p_{j} \Leftrightarrow t_{j}>p_{j}$

This inequality is not valid for

\hookrightarrow So we consider: $\left\{\begin{array}{l}\forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E) \\ \forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

- the right-hand side term is no more a constant
- variables δ appear on both side to express the intersection
- products $\delta_{i} \delta_{j}$ appear

Non-overlapping inequalities for UCDDP

$\forall S \subseteq J, p * t(S) \geqslant g(S)$ Are these inequalities valid?
For $S=\{i, j\}$ with $t_{i}=0, p * t(S) \geqslant g(S) \Leftrightarrow p_{i} t_{i}+p_{j} t_{j}>p_{i}^{2}+p_{j}^{2}+p_{i} p_{j} \Leftrightarrow t_{j}>p_{j}$

This inequality is not valid for

\hookrightarrow So we consider: $\left\{\begin{array}{l}\forall S \subseteq J, p *[p+e](S \cap E) \geqslant g(S \cap E) \\ \forall S \subseteq J, p * t(S \cap T) \geqslant g(S \cap T)\end{array}\right.$
Using δ_{j} variables $E=\left\{j \in J \mid \delta_{j}=1\right\}$ and $T=\left\{j \in J \mid \delta_{j}=0\right\}$

- the right-hand side term is no more a constant
- variables δ appear on both side to express the intersection
- products $\delta_{i} \delta_{j}$ appear
\hookrightarrow linearisation variables are needed

Formulation F^{3} for UCDDP

$$
\begin{array}{rlr}
\forall(i, j) \in J^{<}, & X_{i, j} \geqslant 0 & (\times .1) \\
X_{i, j} & =\delta_{i}+\delta_{j} \quad(\times .2) \\
X_{i, j} & =\delta_{i}-\delta_{j} \\
x_{i, j} & \geqslant 2-\delta_{i}-\delta_{i}-\delta_{j}(x .4)
\end{array}
$$

Formulation F^{3} for UCDDP

$$
\begin{aligned}
& \forall(i, j) \in J^{<}, X_{i, j} \geqslant 0 \\
& X_{i, j} \leqslant \delta_{i}+\delta_{j} \\
& X_{i, j} \geqslant \delta_{i}-\delta_{j} \\
& X_{i, j} \geqslant 2-\delta_{i}-\delta_{j}(x .1) \\
&\forall S .4) \\
& \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \\
& \sum_{i \in S} p_{i} t_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-x_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)(\mathrm{S} 2)
\end{aligned}
$$

Formulation F^{3} for UCDDP

$$
\begin{align*}
& \forall j \in J, 0 \leqslant \delta_{j} \leqslant 1(\delta) \\
& \forall j \in J, e_{j} \geqslant 0 \quad(e .0) \quad \forall j \in J, t_{j} \geqslant 0 \quad(t .1) \\
& e_{j} \leqslant M \delta_{j}(e .1) \quad t_{j} \leqslant M\left(1-\delta_{j}\right) \quad \text { (t.2) } \\
& \forall(i, j) \in J<, X_{i, j} \geqslant 0(x .1) \tag{S1}\\
& X_{i, j} \leqslant \delta_{i}+\delta_{j} \quad(x .2) \\
& X_{i, j} \geqslant \delta_{i}-\delta_{j}(x .3) \\
& X_{i, j} \geqslant 2-\delta_{i}-\delta_{j}(x .4) \\
& \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \\
& \sum_{i \in S} p_{i} t_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-X_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)(\mathrm{S} 2)
\end{align*}
$$

Formulation F^{3} for UCDDP

$$
F^{3}: \min \left\{\begin{array}{c|l}
\sum_{j \in J} \alpha_{j} e_{j}+\beta_{j} t_{j} & (e, t, \delta, X) \in \operatorname{extr}\left(P^{3}\right) \text { and } \delta \in\{0,1\}^{J}
\end{array}\right\}
$$

where:
$P^{3}=\{(e, t, \delta, X)$

$$
\begin{aligned}
& \forall j \in J, 0 \leqslant \delta_{j} \leqslant 1(\delta) \\
& \begin{aligned}
& \forall j \in J, \\
& e_{j} \leqslant 0(e .0) \\
& e_{j} \leqslant j \delta_{j}(e .1)
\end{aligned} \quad \forall j \in J, t_{j} \geqslant 0 \quad(t .1)
\end{aligned}
$$

$$
\begin{align*}
& \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \tag{S1}\\
& \sum_{i \in S} p_{i} t_{i} \geqslant \sum_{(i, j) \in S<} p_{i} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-X_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)(S 2)
\end{align*}
$$

Validity of F^{3}

- validity proof
- is not based on a geometrical proof
- must be compatible with additional inequalities

Validity of F^{3}

- validity proof
- is not based on a geometrical proof
- must be compatible with additional inequalities
- we provide 2 key lemmas to use non-overlapping inequalities combined with additional inequalities

Two key lemmas for non-overlapping inequalities

Let $y \in \mathbb{R}^{J}$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_{j} y_{j} \geqslant g(S)(Q)$.

Two key lemmas for non-overlapping inequalities

Let $y \in \mathbb{R}^{J}$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_{j} y_{j} \geqslant g(S)(Q)$.
Lemma 1
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j$ and $y_{i} \leqslant y_{j}<y_{i}+p_{j}$,

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)

Two key lemmas for non-overlapping inequalities

Let $y \in \mathbb{R}^{J}$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_{j} y_{j} \geqslant g(S)(Q)$.
Lemma 1
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j$ and $y_{i} \leqslant y_{j}<y_{i}+p_{j}$,

Two key lemmas for non-overlapping inequalities

Let $y \in \mathbb{R}^{J}$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_{j} y_{j} \geqslant g(S)(Q)$.
Lemma 1
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j$ and $y_{i} \leqslant y_{j}<y_{i}+p_{j}$,
then there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ s.t. $\left\{\begin{array}{l}y^{+-}=y+\frac{\varepsilon}{p_{i}} \mathbb{I}_{i}-\frac{\varepsilon}{p_{j}} \mathbb{I}_{j} \\ y^{-+}=y-\frac{\varepsilon}{p_{i}} \mathbb{I}_{i}+\frac{\varepsilon}{p_{j}} \mathbb{I}_{j}\end{array}\right.$
also satisfy ineq. (Q).

Two key lemmas for non-overlapping inequalities

Let $y \in \mathbb{R}^{J}$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_{j} y_{j} \geqslant g(S)(Q)$.
Lemma 1 to use with extremality of y
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j$ and $y_{i} \leqslant y_{j}<y_{i}+p_{j}$,
then there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ s.t. $\left\{\begin{array}{l}y^{+-}=y+\frac{\varepsilon}{p_{i}} \mathbb{I}_{i}-\frac{\varepsilon}{p_{j}} \mathbb{I}_{j} \\ y^{-+}=y-\frac{\varepsilon}{p_{i}} \mathbb{I}_{i}+\frac{\varepsilon}{p_{j}} \mathbb{I}_{j}\end{array}\right.$

Two key lemmas for non-overlapping inequalities

Let $y \in \mathbb{R}^{J}$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_{j} y_{j} \geqslant g(S)(Q)$.
Lemma 1 to use with extremality of y
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j$ and $y_{i} \leqslant y_{j}<y_{i}+p_{j}$,
then there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ s.t. $\left\{\begin{array}{l}y^{+-}=y+\frac{\varepsilon}{p_{i}} \mathbb{I}_{i}-\frac{\varepsilon}{p_{p}} \mathbb{I}_{j} \\ y^{-+}=y-\frac{\varepsilon}{p_{i}} \mathbb{I}_{i}+\frac{\varepsilon}{p_{j}} \mathbb{I}_{j}\end{array}\right.$
also satisfy ineq. (Q).

Lemma 2
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j, y_{j}<y_{i}+p_{j}$ and $y_{j} \geqslant p_{j}$,

Two key lemmas for non-overlapping inequalities

Let $y \in \mathbb{R}^{J}$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_{j} y_{j} \geqslant g(S)(Q)$.
Lemma 1 to use with extremality of y
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j$ and $y_{i} \leqslant y_{j}<y_{i}+p_{j}$,
then there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ s.t. $\left\{\begin{array}{l}y^{+-}=y+\frac{\varepsilon}{p_{1}} \mathbb{I}_{i}-\frac{\varepsilon}{p_{j}} \mathbb{I}_{j} \\ y^{-+}=y-\frac{\varepsilon}{p_{i}} \mathbb{I}_{i}+\frac{\varepsilon}{p_{j}} \mathbb{I}_{j}\end{array}\right.$
also satisfy ineq. (Q).

Lemma 2
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j, y_{j}<y_{i}+p_{j}$ and $y_{j} \geqslant p_{j}$, then there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ s.t. $y-\frac{\varepsilon}{p_{j}} \mathbb{I}_{j}$ also satisfies ineq. (Q).

Two key lemmas for non-overlapping inequalities

Let $y \in \mathbb{R}^{J}$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_{j} y_{j} \geqslant g(S)(Q)$.
Lemma 1 to use with extremality of y
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j$ and $y_{i} \leqslant y_{j}<y_{i}+p_{j}$,
then there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ s.t. $\left\{\begin{array}{l}y^{+-}=y+\frac{\varepsilon}{p_{1}} \mathbb{I}_{i}-\frac{\varepsilon}{p_{j}} \mathbb{I}_{j} \\ y^{-+}=y-\frac{\varepsilon}{p_{j}} \mathbb{I}_{i}+\frac{\varepsilon}{p_{j}} \mathbb{I}_{j}\end{array}\right.$
also satisfy ineq. (Q).

Lemma 2 to use with minimality of y
If there exists $(i, j) \in J^{2}$ s.t. $i \neq j, y_{j}<y_{i}+p_{j}$ and $y_{j} \geqslant p_{j}$,
then there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ s.t. $y-\frac{\varepsilon}{p_{j}} \mathbb{I}_{j}$ also satisfies ineq. (Q).

Outline

1. Introduction
2. A formulation for UCDDP using natural variables
3. How to manage this kind of formulations in practice Non-overlapping inequalities' separation Extremality constraints and Branch-and-Bound
4. How to extend this formulation
5. Conclusion

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables
- exponential number of inequalities

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables
- exponential number of inequalities
\hookrightarrow Branch-and-Cut algorithm

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables
- exponential number of inequalities
\hookrightarrow Branch-and-Cut algorithm \rightarrow polynomial separation algorithm

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables
- exponential number of inequalities
\hookrightarrow Branch-and-Cut algorithm \rightarrow polynomial separation algorithm
- extremality constraints

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

- integer variables
\hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables
- exponential number of inequalities
\hookrightarrow Branch-and-Cut algorithm \rightarrow polynomial separation algorithm
- extremality constraints
\hookrightarrow ensuring the solutions extremality in spite of the branching scheme

Inequalities to separate

$$
\begin{aligned}
\forall S \in \mathcal{P}(J), & \sum_{i \in S} p_{i} e_{i} \underset{(i, j) \in S<}{\geqslant} p_{i} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \\
& \sum_{i \in S} p_{i} t_{i} \underset{(i, j) \in S<}{\geqslant} p_{i} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-X_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)
\end{aligned}
$$

2 families of inequalities
$\hookrightarrow 2$ independent separation problems but also 2 similar separation problems

Inequalities to separate

$$
\begin{aligned}
\forall S \in \mathcal{P}(J), & \sum_{i \in S} p_{i} e_{i} \underset{(i, j) \in S^{<}}{\geqslant \sum_{i}} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \\
& \sum_{i \in S} p_{i} t_{i} \underset{(i, j) \in S^{<}}{\geqslant \sum_{i}} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-x_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)
\end{aligned}
$$

2 families of inequalities
$\hookrightarrow 2$ independent separation problems but also 2 similar separation problems

| separation of |
| :---: | :---: |
| $(S 1)$ inequalities |\longrightarrow| maximization |
| :---: |
| of Γ_{1} |

Inequalities to separate

$$
\begin{aligned}
\forall S \in \mathcal{P}(J), & \sum_{i \in S} p_{i} e_{i} \underset{(i, j) \in S^{<}}{\geqslant \sum_{i}} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \\
& \sum_{i \in S} p_{i} t_{i} \underset{(i, j) \in S^{<}}{\geqslant \sum_{i}} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-x_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)
\end{aligned}
$$

2 families of inequalities
$\hookrightarrow 2$ independent separation problems but also 2 similar separation problems

Inequalities to separate

$$
\begin{aligned}
\forall S \in \mathcal{P}(J), & \sum_{i \in S} p_{i} e_{i} \underset{(i, j) \in S<}{\geqslant} p_{i} p_{j} \frac{\delta_{i}+\delta_{j}-X_{i, j}}{2} \\
& \sum_{i \in S} p_{i} t_{i} \underset{(i, j) \in S<}{\geqslant} p_{i} p_{j} \frac{2-\left(\delta_{i}+\delta_{j}\right)-x_{i, j}}{2}+\sum_{i \in S} p_{i}^{2}\left(1-\delta_{i}\right)
\end{aligned}
$$

2 families of inequalities
$\hookrightarrow 2$ independent separation problems but also 2 similar separation problems

Reduction to a min-cut problem

Reduction to a min-cut problem

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point
the solution of the Branch-and-Bound is an extreme point

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point
the solution of the Branch-and-Bound is an extreme point

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point

the solution of the Branch-and-Bound is an extreme point

Counter-example:

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point
 the solution of the Branch-and-Bound is an extreme point

Counter-example:

How to ensure extremality during a Branch-and-Bound?

each node is solved by an extreme point
 the solution of the Branch-and-Bound is an extreme point

Counter-example:

Outline

1. Introduction

2. A formulation for UCDDP using natural variables
3. How to manage this kind of formulations in practice
4. How to extend this formulation
5. Conclusion

How to adapt the formulation for the general case ?

- unrestrictive case: d-blocks are dominant

How to adapt the formulation for the general case ?

- unrestrictive case: d-blocks are dominant
- general case: d-or-left-blocks are dominant

How to adapt the formulation for the general case ?

- unrestrictive case: d-blocks are dominant
- general case: d-or-left-blocks are dominant
\hookrightarrow new variable a for a new reference point: $d-a$

How to adapt the formulation for the general case ?

- unrestrictive case: d-blocks are dominant
- general case: d-or-left-blocks are dominant
\hookrightarrow new variable a for a new reference point: $d-a$

4- How to extend this formulation

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window [$d^{\sqsubset}, d^{\sqsupset}$] instead of a due date d

4- How to extend this formulation

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window [$d^{\sqsubset}, d^{\sqsupset}$] instead of a due date d

4- How to extend this formulation

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window $[d\ulcorner, d \sqsupset]$ instead of a due date d

\rightarrow block with a task completing at $d \sqsubset$ or $d \sqsupset$ are not dominant \hookrightarrow a straddling task can occur over $d \sqsubset$ (resp. over $d \sqsupset$)

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window [$d\ulcorner, d \sqsupset$] instead of a due date d

\rightarrow block with a task completing at $d \sqsubset$ or $d \sqsupset$ are not dominant \hookrightarrow a straddling task can occur over $d \sqsubset$ (resp. over $d \sqsupset$)
\hookrightarrow two half-axes with flexible reference point

Interest of a flexible reference point?

Common due window problem:
\rightarrow a due window $[d\ulcorner, d \sqsupset]$ instead of a due date d

\rightarrow block with a task completing at $d \sqsubset$ or $d \sqsupset$ are not dominant \hookrightarrow a straddling task can occur over $d \sqsubset$ (resp. over $d \sqsupset$)
\hookrightarrow two half-axes with flexible reference point

Outline

1. Introduction

2. A formulation for UCDDP using natural variables
3. How to manage this kind of formulations in practice
4. How to extend this formulation
5. Conclusion

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow solve UCDDP instances up to size 40 within one hour

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow solve UCDDP instances up to size 40 within one hour
\rightarrow solve CDDP instances up to size 20 or 30 within one hour

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow solve UCDDP instances up to size 40 within one hour
\rightarrow solve CDDP instances up to size 20 or 30 within one hour
\rightarrow formulate other similar problems
(e.g. common due window, multi-machine common due date...)

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping inequalities allows to:
\rightarrow formulate both UCDDP and CDDP
\rightarrow solve UCDDP instances up to size 40 within one hour
\rightarrow solve CDDP instances up to size 20 or 30 within one hour
\rightarrow formulate other similar problems
(e.g. common due window, multi-machine common due date...)

