Formuler un problème d'ordonnancement juste-à-temps grâce à des inégalités de non-chevauchement

Anne-Elisabeth FALQ

encadrée par Pierre Fouilhoux et Safia Kedad-Sidhoum

18 Novembre 2020, en ligne avec le GSCOP de Grenoble

slides et tapuscrit disponibles sur http://perso.eleves.ens-rennes.fr/~afalq494/recherche-these.html

Outline

1. Introduction

Scheduling around a common due date Known results about UCDDP and CDDP How to encode schedules?

2. A formulation for UCDDP using natural variables

- 3. How to manage this kind of formulations in practice
- 4. How to extend this formulation
- 5. Conclusion

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

• common due date : *d* = 10

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

- common due date : d = 10
- unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

• common due date : d = 10

• unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

• common due date : d = 10

• unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

• common due date : d = 10

• unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad p_1=4 \qquad p_2=1 \qquad p_3=2 \qquad p_4=3$$

- common due date : d = 10
- unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$
- unit earliness penalties : $\forall j \in J, \alpha_j = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

- common due date : d = 10
- unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$
- unit earliness penalties : $\forall j \in J, \ \alpha_j = 2$

An instance = • a set of tasks : $J = \{1, 2, 3, 4\}$

$$\begin{array}{c|c} 1 \\ \hline p_1 = 4 \end{array} \begin{array}{c} 2 \\ \hline p_2 = 1 \end{array} \begin{array}{c} 3 \\ \hline p_3 = 2 \end{array} \begin{array}{c} 4 \\ \hline p_4 = 3 \end{array}$$

- common due date : *d* = 10
- unit tardiness penalties : $\beta_1 = \beta_4 = 5$, $\beta_2 = \beta_3 = 2$
- unit earliness penalties : $\forall j \in J, \alpha_j = 2$

An instance =

• a set of tasks J

- a set of tasks J
- their processing times $(p_j)_{j \in J} \in \mathbb{N}^J$

An instance =

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an unrestrictive common due-date d ≥ ∑_{i∈ J} p_j

d

0

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

An instance =

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties (α_j)_{j∈J}
- their unit tardiness penalties $(\beta_j)_{j \in J}$

A solution schedule = a family of pairwise disjoint processing intervals

An instance =

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- an **unrestrictive** common due-date $d \ge \sum_{j \in J} p_j$
- their unit earliness penalties $(\alpha_j)_{j \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

A solution schedule = a family of pairwise disjoint processing intervals

The objective
$$= \min \sum_{j \in J} \frac{\alpha_j E_j + \beta_j T_j}{T_j} =$$

minimize the sum of earliness and tardiness penalties

An instance =

- a set of tasks J
- their processing times $(p_j)_{j\in J} \in \mathbb{N}^J$
- a unrestrictive common due-date d
- their unit earliness penalties $(\alpha_i)_{i \in J}$
- their unit tardiness penalties $(\beta_j)_{j \in J}$

A solution schedule = a family of pairwise disjoint processing intervals

The objective
$$= \min \sum_{j \in J} \frac{\alpha_j}{\alpha_j} E_j + \beta_j T_j =$$

minimize the sum of earliness and tardiness penalties

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

• T is a dominant set if it contains at least one optimal solution

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

- T is a dominant set if it contains at least one optimal solution
- T is a strictly dominant set if it contains all the optimal solutions

In both cases,

- $\rightarrow\,$ the searching space can be reduced to $\,{\cal T}$
- $\rightarrow\,$ other solutions can be discarded

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance	
properties	

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance properties	 without idle time □□□

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	
dominance properties	• without idle time 💷	
	• one on time task	

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	
dominance properties	• without idle time 💷	
	• one on time task	
complexity	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P$	

Kanet, 1981, Naval Research Logistics Quaterly

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$
dominance properties	 without idle time III one on time task
complexity	$ \begin{array}{l} \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow & NP-hard \end{array} $

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	
dominance properties	 without idle time III one on time task 	
	(+ "V-shaped")	
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{ weakly NP-hard} $	

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	 without idle time III one on time task III 	
	(+ "V-shaped")	
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard $	

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	 without idle time III one on time task III 	 without idle time III one on time task or beginning at 0
	(+ "V-shaped")	V-shaped
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard $	

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research
Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	 without idle time III one on time task III 	 without idle time III one on time task
	(+ "V-shaped")	or beginning at 0 V-shaped
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard $	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow NP\text{-hard}$

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	without idle time □□□	without idle time □□□
	• one on time task	 one on time task or beginning at 0
	(+ "V-shaped")	V-shaped
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard $	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow \text{NP-hard}$ $\forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{weakly NP-hard}$

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research

Dominance properties and complexity

	unrestrictive case $d \ge \sum_{j \in J} p_j$	general case
dominance properties	• without idle time 💷	• without idle time 💷
	• one on time task	 one on time task or beginning at 0
	(+ "V-shaped")	V-shaped
complexity	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{weakly NP-hard} $	$ \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow \text{NP-hard} \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{weakly NP-hard} $
		arbitrary $\alpha_j, \beta_j \rightarrow Branch-and-Bound$ can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research Sourd, 2009, Informs Journal on Computing

5/25

Dominance properties and complexity

	unrestrictive case $d \ge \sum_j p_j$	general case
dominance properties	• without idle time 💷	• without idle time 🖽
	• one on time task	 one on time task or beginning at 0
	(+ "V-shaped")	V-shaped
complexity	$ \begin{array}{l} \forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow P \\ \forall j \in J, \ \alpha_j = \beta_j \rightarrow weakly NP-hard \end{array} $	$\forall j \in J, \ \alpha_j = \beta_j = \omega \rightarrow \text{NP-hard}$ $\forall j \in J, \ \alpha_j = \beta_j \rightarrow \text{weakly NP-hard}$
	arbitrary $\alpha_j, \beta_j ightarrow NP ext{-hard}$	arbitrary $lpha_j, eta_j ightarrow$ Branch-and-Bound can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly Hall and Posner, 1991, Operations research Hoogeveen and van de Velde, 1991, European Journal of Operational research Sourd, 2009, Informs Journal on Computing

Time-indexed variables

First let us discretize the time horizon

•

Time-indexed variables

First let us discretize the time horizon

•

Time-indexed variables

First let us discretize the time horizon

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables: $\forall i \in J, \forall t \in \mathcal{T}$: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables: $\forall i \in J, \forall t \in \mathcal{T}$: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables:
$$\forall i \in J, \forall t \in \mathcal{T}$$
: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

Objective function: $\sum_{i \in J} \sum_{t \in T} c_{i,t} x_{i,t}$

where $c_{i,t}$ are pre-computed from the instance

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables:
$$\forall i \in J, \forall t \in \mathcal{T}$$
: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

Objective function:

$$\sum_{j\in J}\sum_{t\in \mathcal{T}} C_{i,t} X_{i,t}$$

where $c_{i,t}$ are pre-computed from the instance

Constraints: • $\forall i \in J, \sum x_{i,t} = 1$

•
$$\forall t \in \mathcal{T}, \sum_{\substack{i \in J \\ s \in [t, t+p_i[}} \sum_{s \in \mathcal{T}} x_{i,s} \leq 1$$

• $\forall i \in J, \forall t \in \mathcal{T}, x_{i,t} \in \mathbb{Z}$

task i is placed

at most 1 task is in progress at t

integrity constraint

First let us discretize the time horizon as T = [d - p(J), d + p(J)].

Variables:
$$\forall i \in J, \forall t \in \mathcal{T}$$
: $x_{i,t} = \begin{cases} 1 \text{ if } i \text{ completes at } t \\ 0 \text{ otherwise} \end{cases}$

Objective function:

$$\sum_{j\in J}\sum_{t\in \mathcal{T}} C_{i,t} X_{i,t}$$

where $c_{i,t}$ are pre-computed from the instance

- + easy to formulate as a MIP
- + good relaxation value
- -2np(J) binary variables = a pseudo polynomial number
- n + n p(J) inequalities = a pseudo polynomial number

Completion time variables

0

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes

d

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task *j* completes

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task *j* completes

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{j \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{j \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{j \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{i \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$ not linear!

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{i \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$ not linear!

Completion time variables

Variables: $\forall j \in J, C_j \in \mathbb{R}_+$ is the time when task j completes Objective function: $\sum_{i \in J} \alpha_j [d - C_j]^+ + \beta_j [C_j - d]^+$ not linear!

Earliness-Tardiness variables

Variables: $\forall j \in J, e_j = [d - C_j]^+$ and $t_j = [C_j - d]^+$

Earliness-Tardiness variables

Variables: $\forall j \in J$, $e_j = [d - C_j]^+$ and $t_j = [C_j - d]^+$ Objective function: $\sum_{j \in J} \alpha_j e_j + \beta_j t_j$

Earliness-Tardiness variables

Earliness–Tardiness variables

Earliness–Tardiness variables

Earliness–Tardiness variables

Earliness–Tardiness variables

Earliness–Tardiness variables

Earliness–Tardiness variables

Earliness-Tardiness variables

Earliness-Tardiness variables

Earliness–Tardiness variables

Outline

1. Introduction

- A formulation for UCDDP using natural variables Describing the solution set for (e, t) variables Non-overlapping inequalities Validity
- 3. How to manage this kind of formulations in practice
- 4. How to extend this formulation
- 5. Conclusion

What is the goal?

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

ightarrow $\mathscr S$ is the set of (e,t) vectors that describe a schedule
We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t) \in \mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

ightarrow $\mathscr S$ is the set of (e,t) vectors that describe a schedule

We want to describe $\mathscr S$ with:

- linear inequalities

 $\text{ in order to obtain: } \mathsf{UCDDP} \Longleftrightarrow \min_{(e,t) \in \mathscr{S}} g_{\alpha,\beta}(e,t)$

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t) \in \mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

 $\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P

in order to obtain:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in P} g_{lpha,eta}(e,t)$$

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t) \in \mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow g_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

 $\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

linear inequalities that define a polyhedron P
if P≠NP, it cannot be sufficient (LP-solving ∈P and UCDDP ∈NP)

in order to obtain:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in P} g_{lpha,eta}(e,t)$$

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathscr{S}} g_{\alpha,\beta}(e,t)$$

where :
$$\rightarrow \mathbf{g}_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

 $\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if P≠NP, it cannot be sufficient (LP-solving ∈ P and UCDDP ∈ NP)
- integrity constraints

in order to obtain:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathsf{int}(P)} g_{\alpha,\beta}(e,t)$$

We already have:
$$\mathsf{UCDDP} \Longleftrightarrow \min_{(e,t)\in\mathscr{S}} g_{lpha,eta}(e,t)$$

where :
$$\rightarrow g_{\alpha,\beta}$$
 is linear $\left(g_{\alpha,\beta} = (e,t) \mapsto \sum_{j \in J} \alpha_j e_j + \beta_j t_j\right)$

 $\rightarrow \mathscr{S}$ is the set of (e, t) vectors that describe a schedule

We want to describe \mathscr{S} with:

- linear inequalities that define a polyhedron P if P≠NP, it cannot be sufficient (LP-solving ∈ P and UCDDP ∈ NP)
- integrity constraints
- extremality constraints

in order to obtain: UCDDP

$$P \iff \min_{(e,t)\in \mathsf{int}(\mathsf{extr}\, P)} g_{\alpha,\beta}(e,t)$$

What do we need for describing the solution set?

An instance =

- a set of tasks J
- the processing times of these tasks (p_j)_{j∈J}
- an unrestrictive common due-date $d \ge \sum p_j$
- a unitary earliness penalty for each task $(\alpha_j)_{j \in J}$
- a unitary tardiness penalty for each task $(\beta_j)_{j \in J}$

What do we need for describing the solution set?

An instance =

- a set of tasks J
- the processing times of these tasks (p_j)_{j∈J}
- an unrestrictive common due-date $d \ge \sum p_j$
- a unitary earliness penalty for each task $(\alpha_j)_{j \in J}$
- a unitary tardiness penalty for each task $(\beta_j)_{j \in J}$

What do we need for describing the solution set?

An instance =

- a set of tasks J
- the processing times of these tasks (p_j)_{j∈J}
- an unrestrictive common due-date $d \ge \sum p_j$
- a unitary earliness penalty for each task $(\alpha_j)_{j \in J}$
- a unitary tardiness penalty for each task $(\beta_j)_{j \in J}$

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_j and t_j are not simultaneously strictly positive [non-overlapping] processing intervals are pairwise disjoints [positivity] processing intervals don't begin before time 0

To encode a feasible schedule, a vector (e, t) must satisfy : [consistancy] e_j and t_j are not simultaneously strictly positive [non-overlapping] processing intervals are pairwise disjoints [positivity] processing intervals don't begin before time 0

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_j and t_j are not simultaneously strictly positive

[non-overlapping] processing intervals are pairwise disjoints

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_j and t_j are not simultaneously strictly positive

• Adding disjunctive variables $(\delta_j)_{j \in J}$ such that $\delta_j = \begin{cases} 1 \text{ if } j \text{ is early} \\ 0 \text{ if } j \text{ is tardy} \end{cases}$

$$\begin{array}{c|c} \forall j \in J, \ e_j \ge 0 & (e.0) \\ e_j \leqslant M \ \delta_j & (e.1) \end{array} \quad \begin{array}{c} \forall j \in J, \ t_j \ge 0 & (t.1) \\ t_j \leqslant M (1 - \delta_j) & (t.2) \end{array} \text{ where } \boldsymbol{M} = \sum_{j \in J} p_j$$

[non-overlapping] processing intervals are pairwise disjoints

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_i and t_i are not simultaneously strictly positive

• Adding disjunctive variables $(\delta_j)_{j \in J}$ such that $\delta_j = \begin{cases} 1 & \text{if } j \text{ is early} \\ 0 & \text{if } j \text{ is tardy} \end{cases}$

$$\begin{array}{c|c} \forall j \in J, \ e_j \geqslant 0 & (e.0) \\ e_j \leqslant M \ \delta_j & (e.1) \end{array} \quad \begin{array}{c} \forall j \in J, \ t_j \geqslant 0 & (t.1) \\ t_j \leqslant M (1 - \delta_j) & (t.2) \end{array} \text{ where } \boldsymbol{M} = \sum_{j \in J} p_j \end{array}$$

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule

the early tasks \leftarrow the tardy tasks

• are entirely processed before d • are entirely processed after d

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_i and t_i are not simultaneously strictly positive

• Adding disjunctive variables $(\delta_j)_{j \in J}$ such that $\delta_j = \begin{cases} 1 & \text{if } j \text{ is early} \\ 0 & \text{if } i \text{ is tardy} \end{cases}$

$$\begin{array}{c|c} \forall j \in J, \ e_j \geqslant 0 & (e.0) \\ e_j \leqslant M \ \delta_j & (e.1) \end{array} \quad \begin{array}{c} \forall j \in J, \ t_j \geqslant 0 & (t.1) \\ t_j \leqslant M (1 - \delta_j) & (t.2) \end{array} \text{ where } \boldsymbol{M} = \sum_{j \in J} p_j \end{array}$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule
 - the early tasks the tardy tasks

 - do not overlap each other
 - are entirely processed before d are entirely processed after d

To encode a feasible schedule, a vector (e, t) must satisfy :

[consistancy] e_j and t_j are not simultaneously strictly positive

• Adding disjunctive variables $(\delta_j)_{j \in J}$ such that $\delta_j = \begin{cases} 1 & \text{if } j \text{ is early} \\ 0 & \text{if } i \text{ is tardy} \end{cases}$

$$\begin{array}{c|c} \forall j \in J, \ e_j \geqslant 0 & (e.0) \\ e_j \leqslant M \ \delta_j & (e.1) \end{array} & \begin{array}{c} \forall j \in J, \ t_j \geqslant 0 & (t.1) \\ t_j \leqslant M (1 - \delta_j) & (t.2) \end{array} where \ \mathbf{M} = \sum_{j \in J} p_j \end{array}$$

[non-overlapping] processing intervals are pairwise disjoints

- decomposing non-overlapping for a schedule
 - \circlearrowright the early tasks \longleftrightarrow the tardy tasks \circlearrowright
 - are entirely processed before d
 - do not overlap each other

- are entirely processed after d
- do not overlap each other

scheduling problem without due-date

- scheduling problem without due-date
- encoding schedules by their completion times (C_j)_{j∈J}

- scheduling problem without due-date
- encoding schedules by their completion times (C_j)_{j∈J}
- these inequalities describe the convex hull of such vectors C

- scheduling problem without due-date
- encoding schedules by their completion times $(C_j)_{j \in J}$
- these inequalities describe the convex hull of such vectors C
- all extreme points of the polyhedron encode feasible schedules

The set of vectors (C_1, C_2) encoding a 2-task schedule

 C_1

 C_2 , 0

n

The set of vectors (C_1, C_2) encoding a 2-task schedule

The set of vectors (C_1, C_2) encoding a 2-task schedule

The set of vectors (C_1, C_2) encoding a 2-task schedule

 C_2 $= p_1 \qquad C_2^{\sigma} = p_1 + p_2$ 0 C_1 n

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S) \ge g(S) \end{cases}$$

$$\begin{array}{c|c} & i & j \\ & & \vdots \\ & & \vdots \\ & & & \\ d & & t_j \end{array}$$

A first idea :
$$\begin{cases} \forall S \subseteq J, \ p * t(S) \ge g(S) \\ \end{cases}$$

$$p_i \star e_i$$

 $\forall S \subseteq J, p * t(S) \ge g(S)$ Are these inequalities valid?

 $\forall S \subseteq J, \ p * t(S) \ge g(S)$ Are these inequalities valid? For $S = \{i, j\}$ with $t_i = 0, \ p * t(S) \ge g(S) \Leftrightarrow p_i t_i + p_j t_j > p_i^2 + p_i^2 + p_i p_j \Leftrightarrow t_j > p_j$

 $\forall S \subseteq J, p * t(S) \ge g(S)$ Are these inequalities valid? For $S = \{i, j\}$ with $t_i = 0, p * t(S) \ge g(S) \Leftrightarrow p_i t_i + p_j t_j > p_i^2 + p_j^2 + p_i p_j \Leftrightarrow t_j > p_j$

 $\forall S \subseteq J, p * t(S) \ge g(S)$ Are these inequalities valid? For $S = \{i, j\}$ with $t_i = 0, p * t(S) \ge g(S) \Leftrightarrow p_i t_i + p_j t_j > p_i^2 + p_j^2 + p_i p_j \Leftrightarrow t_j > p_j$

 $\forall S \subseteq J, p * t(S) \ge g(S)$ Are these inequalities valid? For $S = \{i, j\}$ with $t_i = 0, p * t(S) \ge g(S) \Leftrightarrow p_i t_i + p_j t_j > p_i^2 + p_j^2 + p_i p_j \Leftrightarrow t_j > p_j$

This inequality is not valid for
$$i j$$

 $d t_j$
 $d t_j$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

 $\forall S \subseteq J, p * t(S) \ge g(S)$ Are these inequalities valid? For $S = \{i, j\}$ with $t_i = 0, p * t(S) \ge g(S) \Leftrightarrow p_i t_i + p_j t_j > p_i^2 + p_j^2 + p_i p_j \Leftrightarrow t_j > p_j$

This inequality is not valid for

$$i \quad j$$

 $d \quad t_j$
 $d \quad t_j$
 $\forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E)$
 $\forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T)$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

the right-hand side term is no more a constant

 $\forall S \subseteq J, p * t(S) \ge g(S)$ Are these inequalities valid? For $S = \{i, j\}$ with $t_i = 0, p * t(S) \ge g(S) \Leftrightarrow p_i t_i + p_j t_j > p_i^2 + p_j^2 + p_i p_j \Leftrightarrow t_j > p_j$

This inequality is not valid for

$$i \quad j$$

 $d \quad t_j$
 $d \quad t_j$
 $\forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E)$
 $\forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T)$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

the right-hand side term is no more a constant

• variables δ appear on both side to express the intersection

 $\forall S \subseteq J, p * t(S) \ge g(S)$ Are these inequalities valid? For $S = \{i, j\}$ with $t_i = 0, p * t(S) \ge g(S) \Leftrightarrow p_i t_i + p_j t_j > p_i^2 + p_j^2 + p_i p_j \Leftrightarrow t_j > p_j$

This inequality is not valid for

$$i \quad j$$

 $d \quad t_j$
 $d \quad t_j$
 $\forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E)$
 $\forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T)$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

- the right-hand side term is no more a constant
- \blacktriangleright variables δ appear on both side to express the intersection
- products $\delta_i \delta_j$ appear

 $\forall S \subseteq J, p * t(S) \ge g(S)$ Are these inequalities valid? For $S = \{i, j\}$ with $t_i = 0, p * t(S) \ge g(S) \Leftrightarrow p_i t_i + p_j t_j > p_i^2 + p_j^2 + p_i p_j \Leftrightarrow t_j > p_j$

This inequality is not valid for

$$i \quad j$$

 $d \quad t_j$
 $d \quad t_j$
 $\forall S \subseteq J, \ p * [p + e](S \cap E) \ge g(S \cap E)$
 $\forall S \subseteq J, \ p * t(S \cap T) \ge g(S \cap T)$

Using δ_j variables $E = \{j \in J \mid \delta_j = 1\}$ and $T = \{j \in J \mid \delta_j = 0\}$

- the right-hand side term is no more a constant
- \blacktriangleright variables δ appear on both side to express the intersection
- products $\delta_i \, \delta_j$ appear
 - \hookrightarrow linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)

Formulation F^3 for UCDDP

$$\begin{array}{c} \forall (i,j) \in J^<, \ X_{i,j} \geqslant 0 & (x.1) \\ X_{i,j} \leqslant \delta_i + \delta_j & (x.2) \\ X_{i,j} \geqslant \delta_i - \delta_j & (x.3) \\ X_{i,j} \geqslant 2 - \delta_i - \delta_j & (x.4) \end{array}$$

R. Fortet, 1959, Cahiers du centre d'études en recherche opérationnelle

Formulation F^3 for UCDDP

Formulation F^3 for UCDDP

$$P^{3} = \begin{cases} (e, t, \delta, X) & \forall j \in J, 0 \leq \delta_{j} \leq 1 \ (\delta) \\ \forall j \in J, e_{j} \geq 0 \ (e.0) \\ e_{j} \leq M \delta_{j} \ (e.1) & \forall j \in J, t_{j} \geq 0 \ (t.1) \\ t_{j} \leq M (1-\delta_{j}) \ (t.2) \end{cases} \\ \forall (i, j) \in J^{<}, X_{i,j} \geq 0 \ (x.1) \\ X_{i,j} \leq \delta_{i} + \delta_{j} \ (x.2) \\ X_{i,j} \geq \delta_{i} - \delta_{j} \ (x.3) \\ X_{i,j} \geq 2 - \delta_{i} - \delta_{j} \ (x.4) \end{cases} \\ \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geq \sum_{i \in S} p_{i} p_{j} \frac{\delta_{i} + \delta_{j} - X_{i,j}}{2} \ (S1) \\ \sum_{i \in S} p_{i} t_{i} \geq \sum_{i \in S} p_{i} p_{j} \frac{2 - (\delta_{i} + \delta_{j}) - X_{i,j}}{2} + \sum_{i \in S} p_{i}^{2} (1 - \delta_{i}) (S2) \end{cases}$$

Formulation F^3 for UCDDP

$$F^{3}:\min\left\{\sum_{j\in J}\alpha_{j}\,e_{j}+\beta_{j}\,t_{j}\ \left|\ (e,t,\delta,X)\in\operatorname{extr}(P^{3})\ \text{and}\ \delta\in\{0,1\}^{J}\right\}\right\}$$

where:

$$P^{3} = \begin{cases} (e, t, \delta, X) & \forall j \in J, 0 \leqslant \delta_{j} \leqslant 1 \ (\delta) \\ \forall j \in J, e_{j} \geqslant 0 \ (e.0) \\ e_{j} \leqslant M \delta_{j} \ (e.1) \\ & \forall j \in J, t_{j} \geqslant 0 \ (t.1) \\ t_{j} \leqslant M (1-\delta_{j}) \ (t.2) \\ & \forall (i,j) \in J^{<}, X_{i,j} \geqslant 0 \ (x.1) \\ & X_{i,j} \leqslant \delta_{i} + \delta_{j} \ (x.2) \\ & X_{i,j} \geqslant \delta_{i} - \delta_{j} \ (x.3) \\ & X_{i,j} \geqslant 2 - \delta_{i} - \delta_{j} \ (x.4) \\ & \forall S \in \mathcal{P}(J), \sum_{i \in S} p_{i} e_{i} \geqslant \sum_{j \in S} p_{i} p_{j} \frac{\delta_{i} + \delta_{j} - X_{i,j}}{2} \ (S1) \\ & \sum_{i \in S} p_{i} t_{i} \geqslant \sum_{j \in S} p_{i} p_{j} \frac{2 - (\delta_{i} + \delta_{j}) - X_{i,j}}{2} + \sum_{i \in S} p_{i}^{2} (1 - \delta_{i}) \ (S2) \end{cases}$$

Validity of F^3

- validity proof
 - is not based on a geometrical proof
 - must be compatible with additional inequalities

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)

Validity of F^3

- validity proof
 - is not based on a geometrical proof
 - must be compatible with additional inequalities
- we provide 2 key lemmas to use non-overlapping inequalities combined with additional inequalities

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)

Let $y \in \mathbb{R}^J$ satisfying $\forall S \subseteq J, \sum_{j \in S} p_j y_j \ge g(S)$ (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18/25

Let
$$y \in \mathbb{R}^J$$
 satisfying $\forall S \subseteq J$, $\sum_{j \in S} p_j y_j \ge g(S)$ (Q).

Lemma 1

If there exists $(i,j) \in J^2$ s.t. $i \neq j$ and $y_i \leqslant y_j < y_i + p_j$,

Let
$$y \in \mathbb{R}^J$$
 satisfying $\forall S \subseteq J, \sum_{j \in S} p_j y_j \ge g(S)$ (Q).

Lemma 1

If there exists $(i,j) \in J^2$ s.t. $i \neq j$ and $y_i \leqslant y_j < y_i + p_j$,

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18/25

Let
$$y \in \mathbb{R}^J$$
 satisfying $\forall S \subseteq J$, $\sum_{j \in S} p_j y_j \ge g(S)$ (Q).

Lemma 1

If there exists $(i,j) \in J^2$ s.t. $i \neq j$ and $y_i \leq y_i < y_i + p_j$,

then there exists $\varepsilon \in \mathbb{R}^*_+$ s.t. $\begin{cases} y^{+-} = y + \frac{\varepsilon}{p_i} \mathbb{I}_i - \frac{\varepsilon}{p_j} \mathbb{I}_j \\ y^{-+} = y - \frac{\varepsilon}{n} \mathbb{I}_i + \frac{\varepsilon}{n} \mathbb{I}_i \end{cases}$ also satisfy ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

Let
$$y \in \mathbb{R}^J$$
 satisfying $\forall S \subseteq J$, $\sum_{j \in S} p_j y_j \ge g(S)$ (Q).

Lemma 1 to use with extremality of y If there exists $(i,j) \in J^2$ s.t. $i \neq j$ and $y_i \leq y_j < y_i + p_j$,

then there exists $\varepsilon \in \mathbb{R}^*_+$ s.t. $\begin{cases} y^{+-} = y + \frac{\varepsilon}{p_i} \mathbb{I}_i - \frac{\varepsilon}{p_j} \mathbb{I}_j \\ y^{-+} = y - \frac{\varepsilon}{p_i} \mathbb{I}_i + \frac{\varepsilon}{p_i} \mathbb{I}_j \end{cases}$ also satisfy ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18/25

Let
$$y \in \mathbb{R}^J$$
 satisfying $\forall S \subseteq J$, $\sum_{j \in S} p_j y_j \ge g(S)$ (Q).

Lemma 1 to use with extremality of y If there exists $(i, j) \in J^2$ s.t. $i \neq j$ and $y_i \leq y_i < y_i + p_i$,

then there exists $\varepsilon \in \mathbb{R}^*_+$ s.t. $\begin{cases} y^{+-} = y + \frac{\varepsilon}{p_i} \mathbb{I}_i - \frac{\varepsilon}{p_j} \mathbb{I}_j \\ y^{-+} = y - \frac{\varepsilon}{\varepsilon} \mathbb{I}_i + \frac{\varepsilon}{\varepsilon} \mathbb{I}_i \end{cases}$ also satisfy ineq. (Q).

Lemma 2

If there exists $(i, j) \in J^2$ s.t. $i \neq j$, $y_i < y_i + p_i$ and $y_i \ge p_i$,

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

Let
$$y \in \mathbb{R}^J$$
 satisfying $\forall S \subseteq J$, $\sum_{j \in S} p_j y_j \ge g(S)$ (Q).

Lemma 1 to use with extremality of y If there exists $(i, j) \in J^2$ s.t. $i \neq j$ and $y_i \leq y_i < y_i + p_i$,

then there exists $\varepsilon \in \mathbb{R}^*_+$ s.t. $\begin{cases} y^{+-} = y + \frac{\varepsilon}{p_i} \mathbb{I}_i - \frac{\varepsilon}{p_j} \mathbb{I}_j \\ y^{-+} = y - \frac{\varepsilon}{\varepsilon} \mathbb{I}_i + \frac{\varepsilon}{\varepsilon} \mathbb{I}_i \end{cases}$ also satisfy ineq. (Q).

Lemma 2

If there exists $(i,j) \in J^2$ s.t. $i \neq j$, $y_i < y_i + p_i$ and $y_i \ge p_i$, **then** there exists $\varepsilon \in \mathbb{R}^*_+$ s.t. $y - \frac{\varepsilon}{\rho_i} \mathbb{I}_j$ also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

Let
$$y \in \mathbb{R}^J$$
 satisfying $\forall S \subseteq J$, $\sum_{j \in S} p_j y_j \ge g(S)$ (Q).

Lemma 1 to use with extremality of y If there exists $(i,j) \in J^2$ s.t. $i \neq j$ and $y_i \leq y_j < y_i + p_j$,

also satisfy ineq.
$$(Q)$$
.

Lemma 2 to use with minimality of yIf there exists $(i, j) \in J^2$ s.t. $i \neq j$, $y_j < y_i + p_j$ and $y_j \ge p_j$, then there exists $\varepsilon \in \mathbb{R}^*_+$ s.t. $y - \frac{\varepsilon}{p_i} \mathbb{I}_j$ also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18/25

Outline

1. Introduction

- 2. A formulation for UCDDP using natural variables
- 3. How to manage this kind of formulations in practice Non-overlapping inequalities' separation Extremality constraints and Branch-and-Bound
- 4. How to extend this formulation
- 5. Conclusion

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
The two proposed formulations are linear formulations with:

• integer variables

- integer variables
 - $\hookrightarrow \mathsf{Branch}\mathsf{-and}\mathsf{-}\mathsf{Bound} \mathsf{ algorithm}$

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables
- exponential number of inequalities

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables
- exponential number of inequalities
 - $\, \hookrightarrow \, \, \mathsf{Branch}\text{-and-Cut algorithm}$

- integer variables
 - \hookrightarrow Branch-and-Bound algorithm \rightarrow branching on δ variables
- exponential number of inequalities
 - $\,\hookrightarrow\,$ Branch-and-Cut algorithm $\,\rightarrow\,$ polynomial separation algorithm

- integer variables
 - $\hookrightarrow \text{ Branch-and-Bound algorithm} \to \text{branching on } \delta \text{ variables}$
- exponential number of inequalities
 - $\,\hookrightarrow\,$ Branch-and-Cut algorithm $\,\rightarrow\,$ polynomial separation algorithm
- extremality constraints

- integer variables
 - $\hookrightarrow \text{ Branch-and-Bound algorithm} \to \text{branching on } \delta \text{ variables}$
- exponential number of inequalities
 - $\,\hookrightarrow\,$ Branch-and-Cut algorithm $\,\rightarrow\,$ polynomial separation algorithm
- extremality constraints
 - $\,\hookrightarrow\,$ ensuring the solutions extremality in spite of the branching scheme

$$\forall S \in \mathcal{P}(J), \sum_{i \in S} p_i e_i \geq \sum_{(i,j) \in S^{<}} p_i p_j \frac{\delta_{i+\delta_j-X_{i,j}}}{2}$$
(S1)
$$\sum_{i \in S} p_i t_i \geq \sum_{(i,j) \in S^{<}} p_j p_j \frac{2 - (\delta_i + \delta_j) - X_{i,j}}{2} + \sum_{i \in S} p_i^2 (1 - \delta_i)$$
(S2)

- 2 families of inequalities
- $\hookrightarrow \ 2 \ \text{independent separation problems} \\ \text{but also } 2 \ \text{similar separation problems}$

$$\forall S \in \mathcal{P}(J), \sum_{i \in S} p_i e_i \geq \sum_{(i,j) \in S^{<}} p_i p_j \frac{\delta_{i+\delta_j-X_{i,j}}}{2}$$
(S1)
$$\sum_{i \in S} p_i t_i \geq \sum_{(i,j) \in S^{<}} p_j p_j \frac{2-(\delta_i+\delta_j)-X_{i,j}}{2} + \sum_{i \in S} p_i^2 (1-\delta_i)$$
(S2)

- 2 families of inequalities
- $\hookrightarrow \ 2 \ \text{independent separation problems} \\ \text{but also } 2 \ \text{similar separation problems}$

$$\forall S \in \mathcal{P}(J), \sum_{i \in S} p_i e_i \geq \sum_{(i,j) \in S^{<}} p_i p_j \frac{\delta_{i+\delta_j-X_{i,j}}}{2}$$
(S1)
$$\sum_{i \in S} p_i t_i \geq \sum_{(i,j) \in S^{<}} p_j p_j \frac{2 - (\delta_i + \delta_j) - X_{i,j}}{2} + \sum_{i \in S} p_i^2 (1 - \delta_i)$$
(S2)

- 2 families of inequalities
- \hookrightarrow 2 independent separation problems but also 2 similar separation problems

$$\forall S \in \mathcal{P}(J), \sum_{i \in S} p_i e_i \geq \sum_{(i,j) \in S^{<}} p_i p_j \frac{\delta_{i+\delta_j - X_{i,j}}}{2}$$
(S1)
$$\sum_{i \in S} p_i t_i \geq \sum_{(i,j) \in S^{<}} p_j p_j \frac{2 - (\delta_i + \delta_j) - X_{i,j}}{2} + \sum_{i \in S} p_i^2 (1 - \delta_i)$$
(S2)

- 2 families of inequalities
- \hookrightarrow 2 independent separation problems but also 2 similar separation problems

Reduction to a min-cut problem

Picard et Ratliff, 1975, Networks

Reduction to a min-cut problem

Picard et Ratliff, 1975, Networks

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

Counter-example:

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

Counter-example:

each node is solved by an extreme point the solution of the Branch-and-Bound is an extreme point

Counter-example:

Outline

1. Introduction

- 2. A formulation for UCDDP using natural variables
- 3. How to manage this kind of formulations in practice
- 4. How to extend this formulation
- 5. Conclusion

unrestrictive case: d-blocks are dominant

unrestrictive case: d-blocks are dominant

general case: d-or-left-blocks are dominant

unrestrictive case: d-blocks are dominant

▶ general case: *d*-or-left-blocks are dominant
→ new variable *a* for a new reference point: *d*-*a*

unrestrictive case: d-blocks are dominant

▶ general case: *d*-or-left-blocks are dominant
→ new variable *a* for a new reference point: *d*-*a*

Interest of a flexible reference point?

Common due window problem:

 $\rightarrow\,$ a due window $[d^{\,\sqsubset}, d^{\,\square}]$ instead of a due date d

Interest of a flexible reference point?

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

Interest of a flexible reference point?

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

→ block with a task completing at d^{\square} or d^{\square} are not dominant \hookrightarrow a straddling task can occur over d^{\square} (resp. over d^{\square})

Interest of a flexible reference point?

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

→ block with a task completing at d^{\square} or d^{\square} are not dominant \hookrightarrow a straddling task can occur over d^{\square} (resp. over d^{\square}) \hookrightarrow two half-axes with flexible reference point

Interest of a flexible reference point?

Common due window problem:

 \rightarrow a due window $[d^{\Box}, d^{\Box}]$ instead of a due date d

→ block with a task completing at d^{\Box} or d^{\Box} are not dominant \hookrightarrow a straddling task can occur over d^{\Box} (resp. over d^{\Box}) \Leftrightarrow two half-axes with flexible reference point

Outline

1. Introduction

- 2. A formulation for UCDDP using natural variables
- 3. How to manage this kind of formulations in practice
- 4. How to extend this formulation
- 5. Conclusion

This kind of formulation with natural variables and non-overlapping inequalities allows to:

 $\rightarrow\,$ formulate both UCDDP and CDDP

- $\rightarrow\,$ formulate both UCDDP and CDDP
- $\rightarrow\,$ solve UCDDP instances up to size 40 within one hour

- $\rightarrow~$ formulate both UCDDP and CDDP
- ightarrow solve UCDDP instances up to size 40 within one hour
- $\rightarrow\,$ solve CDDP instances up to size 20 or 30 within one hour

- $\rightarrow\,$ formulate both UCDDP and CDDP
- ightarrow solve UCDDP instances up to size 40 within one hour
- $\rightarrow\,$ solve CDDP instances up to size 20 or 30 within one hour
- \rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)

- $\rightarrow\,$ formulate both UCDDP and CDDP
- ightarrow solve UCDDP instances up to size 40 within one hour
- $\rightarrow\,$ solve CDDP instances up to size 20 or 30 within one hour
- \rightarrow formulate other similar problems (e.g. common due window, multi-machine common due date...)