
Formuler un problème d’ordonnancement juste-à-temps
grâce à des inégalités de non-chevauchement

Anne-Elisabeth FALQ
encadrée par Pierre Fouilhoux et Safia Kedad-Sidhoum

18 Novembre 2020, en ligne avec le Gscop de Grenoble

slides et tapuscrit disponibles sur
http://perso.eleves.ens-rennes.fr/~afalq494/recherche-these.html

http://perso.eleves.ens-rennes.fr/~afalq494/recherche-these.html

Outline

1. Introduction
Scheduling around a common due date
Known results about UCDDP and CDDP
How to encode schedules?

2. A formulation for UCDDP using natural variables

3. How to manage this kind of formulations in practice

4. How to extend this formulation

5. Conclusion

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

31 24

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10

• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

31 24

4.5

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2

• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

31 24

↓
4, 5× 2 =9

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2

• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 24 3

↓
4× 2 =8

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2

• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 24 3

↓
4× 2 =8

↓
4

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2

• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 4 2 3

↓
3

↓
7

↓
2.5

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 4 2 3

↓
3

↓
7

↓
2.5

3.5↓
3, 5× 2 =7

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

4 2 3

↓
3

↓
7

↓
2.5

1

↓
5 → 17.5

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2

A schedule :

p p p p p p p p p p p p p p p

0

|

d

1 2 34

↓
2

↓
6

↓
0

↓
6 → 14F

1 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

j

j

j ′

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

2 / 25

1- Introduction • 1.1 Scheduling around a common due date

The Unrestrictive Common Due Date Problem (CDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• a unrestrictive common due-date d

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

j

j ′

j ′′

A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties

3 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

• T is a dominant set if it contains at least one optimal solution
• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded

4 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.
• T is a dominant set if it contains at least one optimal solution

• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded

4 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.
• T is a dominant set if it contains at least one optimal solution
• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded

4 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.
• T is a dominant set if it contains at least one optimal solution
• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded

4 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity

∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity

∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity

∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity ∀j∈J , αj =βj =ω → P

∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly

Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity ∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity ∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj → weakly NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time

• without idle time

• one on time task

• one on time task
or beginning at 0

(+ "V-shaped")

�����V-shaped

complexity ∀j∈J , αj =βj =ω → P

∀j∈J , αj =βj =ω → NP-hard

∀j∈J , αj =βj → weakly NP-hard

∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research

Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P

∀j∈J , αj =βj =ω → NP-hard

∀j∈J , αj =βj → weakly NP-hard

∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P ∀j∈J , αj =βj =ω → NP-hard
∀j∈J , αj =βj → weakly NP-hard

∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P ∀j∈J , αj =βj =ω → NP-hard
∀j∈J , αj =βj → weakly NP-hard ∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research

Sourd, 2009, Informs Journal on Computing

5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P ∀j∈J , αj =βj =ω → NP-hard
∀j∈J , αj =βj → weakly NP-hard ∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing 5 / 25

1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j pj general case

dominance
properties

• without idle time • without idle time

• one on time task • one on time task
or beginning at 0

(+ "V-shaped") �����V-shaped

complexity ∀j∈J , αj =βj =ω → P ∀j∈J , αj =βj =ω → NP-hard
∀j∈J , αj =βj → weakly NP-hard ∀j∈J , αj =βj → weakly NP-hard

arbitrary αj , βj → NP-hard
arbitrary αj , βj → Branch-and-Bound
can solve up to 1000-task instances

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing 5 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables
d

0
|

First let us discretize the time horizon

as T =[d−p(J), d +p(J)]

.

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t

0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

6 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
|

First let us discretize the time horizon

as T =[d−p(J), d +p(J)]

.

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

6 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p(J) p(J)
p p

d

0
|

First let us discretize the time horizon

as T =[d−p(J), d +p(J)]

.

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

6 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p(J) p(J)
p p

d

0
|

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

6 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

6 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1 t ′xi,t′ =0t ′′xi,t′′ =0

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

6 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1 t ′xi,t′ =0t ′′xi,t′′ =0

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

6 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1 t ′xi,t′ =0t ′′xi,t′′ =0

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

Constraints: • ∀i ∈J ,
∑
t∈T

xi,t = 1 task i is placed

• ∀t∈T ,
∑
i∈J

∑
s∈T

s∈[t,t+pi [

xi,s 6 1 at most 1 task is in progress at t

• ∀i ∈J , ∀t∈T , xi,t ∈Z integrity constraint
6 / 25

1- Introduction • 1.3 How to encode schedules?

Time-indexed variables

p p

d

0
| i

t
xi,t =1 t ′xi,t′ =0t ′′xi,t′′ =0

First let us discretize the time horizon as T =[d−p(J), d +p(J)].

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t
0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance

+ easy to formulate as a MIP
+ good relaxation value
− 2n p(J) binary variables = a pseudo polynomial number
− n + n p(J) inequalities = a pseudo polynomial number

6 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

7 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

7 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Ci

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

7 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

7 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − d

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

7 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − d

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

7 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − d

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+ not linear!

7 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − dCj

Ci

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+ not linear!

7 / 25

1- Introduction • 1.3 How to encode schedules?

Completion time variables
d

0 j

Cj

i

Cid−Cj Ci − d

Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+ not linear!

7 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj

← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj

← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

C1 =8
C3 =10

C2 =11 C4 =15

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
1 43 2

C3 =10
C2 =11 C4 =15d−2

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 43 2

C3 =10
C2 =11 C4 =15d−2

↓
e1 =2
t1 =0

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 43 2

C2 =11 C4 =15d−2
d

↓
e1 =2
t1 =0

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 433 2

C2 =11 C4 =15d−2
d

↓
e1 =2
t1 =0

↓
e3 =0
t1 =0

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 433 2

C4 =15d−2
d

d +1
↓

e1 =2
t1 =0

↓
e3 =0
t1 =0

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 433 22

C4 =15d−2
d

d +1
↓

e1 =2
t1 =0

↓
e3 =0
t1 =0

↓
e2 =0
t1 =1

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 433 22

d−2
d

d +1 d +4
↓

e1 =2
t1 =0

↓
e3 =0
t1 =0

↓
e2 =0
t1 =1

d

8 / 25

1- Introduction • 1.3 How to encode schedules?

Earliness–Tardiness variables
d

0

|
j

Cj

i

Ci
ej ti

Variables: ∀j∈J , ej =[d − Cj]+ and tj =[Cj − d]+

Objective function:
∑
j∈J

αj ej + βj tj ← linear function of variables e and t

On the first example:

0

| p p p p p p p p p p p p p p p
11 4433 22

d−2
d

d +1 d +4
↓

e1 =2
t1 =0

↓
e3 =0
t1 =0

↓
e2 =0
t1 =1

↓
e4 =0
t1 =4

d

8 / 25

Outline

1. Introduction

2. A formulation for UCDDP using natural variables
Describing the solution set for (e, t) variables
Non-overlapping inequalities
Validity

3. How to manage this kind of formulations in practice

4. How to extend this formulation

5. Conclusion

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:

- linear inequalities

that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

9 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities

that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

9 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities that define a polyhedron P

if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)
- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈P

gα,β(e, t)

9 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈P

gα,β(e, t)

9 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints

- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈int(P)

gα,β(e, t)

9 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:
- linear inequalities that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈int(extr P)

gα,β(e, t)

9 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What do we need for describing the solution set?

An instance =
• a set of tasks J

• the processing times of these tasks (pj)j∈J

• an unrestrictive common due-date d >
∑

pj

• a unitary earliness penalty for each task (αj)j∈J

• a unitary tardiness penalty for each task (βj)j∈J

10 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What do we need for describing the solution set?

An instance =
• a set of tasks J

• the processing times of these tasks (pj)j∈J

• an unrestrictive common due-date d >
∑

pj

• a unitary earliness penalty for each task (αj)j∈J

• a unitary tardiness penalty for each task (βj)j∈J

10 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What do we need for describing the solution set?

An instance =
• a set of tasks J

• the processing times of these tasks (pj)j∈J

• an unrestrictive common due-date d >
∑

pj

• a unitary earliness penalty for each task (αj)j∈J

• a unitary tardiness penalty for each task (βj)j∈J

10 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive
[non-overlapping] processing intervals are pairwise disjoints
[positivity] processing intervals don’t begin before time 0

• decomposing non-overlapping for a schedule :

the early tasks the tardy tasks
• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

11 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive
[non-overlapping] processing intervals are pairwise disjoints
[positivity] processing intervals don’t begin before time 0

• decomposing non-overlapping for a schedule :

the early tasks the tardy tasks
• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

11 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :

the early tasks the tardy tasks
• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

11 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :
the early tasks the tardy tasks

• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

11 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :
the early tasks the tardy tasks

• are entirely processed before d • are entirely processsed after d

�

• do not overlap each other

�

• do not overlap each other

11 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :
the early tasks the tardy tasks

• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

11 / 25

2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?
To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive

• Adding disjunctive variables (δj)j∈J such that δj =
{
1 if j is early
0 if j is tardy

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2) where M =

∑
j∈J

pj

[non-overlapping] processing intervals are pairwise disjoints

• decomposing non-overlapping for a schedule :
the early tasks the tardy tasks

• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other

11 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]
• scheduling problem without due-date

• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C
• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming

12 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]
• scheduling problem without due-date
• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C
• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming

12 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]
• scheduling problem without due-date
• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C

• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming

12 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for 1 | − | min∑ωjCj

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑
j∈S

pjCj > g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]
• scheduling problem without due-date
• encoding schedules by their completion times (Cj)j∈J

• these inequalities describe the convex hull of such vectors C
• all extreme points of the polyhedron encode feasible schedules

Queyranne, 1993, Mathematical Programming
12 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

σ 1 2
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

σ 1 2
0Cσ

1 =p1

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

σ 1 2
0Cσ

1 =p1 Cσ
2 =p1+p2

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0Cσ

1 =p1 Cσ
2 =p1+p2

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

σ 1 2
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

σ 1 2
0

σ′ 2 1
0

Queyranne, 1993, Mathematical Programming
13 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]

A first idea :
{

14 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]

A first idea :
{

i j

ti
tjd

14 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]

A first idea :
{
∀S⊆J , p ∗ t(S) > g(S)

i j

ti
tjd

14 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]

A first idea :
{
∀S⊆J , p ∗ t(S) > g(S)

i |
eipi

d

14 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]

A first idea :
{
∀S⊆J , p ∗ t(S) > g(S)

i |
eipi

d

i |
Ci =pi +ei

0

14 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]

A first idea :
{
∀S⊆J , p ∗ t(S) > g(S)
∀S⊆J , p ∗ [p + e](S) > g(S)

i |
eipi

d

i |
Ci =pi +ei

0

14 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?

For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2
i +p2

j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)

15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?
For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2

i +p2
j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?
For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2

i +p2
j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?
For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2

i +p2
j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?
For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2

i +p2
j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}

I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?
For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2

i +p2
j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant

I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?
For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2

i +p2
j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection

I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?
For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2

i +p2
j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?
For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2

i +p2
j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E) > g(S∩E)

∀S⊆J , p ∗ t(S∩T) > g(S∩T)

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear) 15 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X)∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)



R. Fortet, 1959, Cahiers du centre d’études en recherche opérationnelle 16 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X)∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)



16 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X)∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)


16 / 25

2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X)∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
Xi,j 6 δi +δj
Xi,j > δi−δj
Xi,j > 2− δi−δj

(x .1)
(x .2)
(x .3)
(x .4)

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)


16 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I we provide 2 key lemmas to use
non-overlapping inequalities combined
with additional inequalities

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)
17 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I we provide 2 key lemmas to use
non-overlapping inequalities combined
with additional inequalities

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper)
17 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1

to use with extremality of y

If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2

to use with minimality of y

If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,

then there exists ε∈R∗+ s.t. y− ε
pj
Ij also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1

to use with extremality of y

If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2

to use with minimality of y

If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,

then there exists ε∈R∗+ s.t. y− ε
pj
Ij also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1

to use with extremality of y

If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2

to use with minimality of y

If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,

then there exists ε∈R∗+ s.t. y− ε
pj
Ij also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1

to use with extremality of y

If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2

to use with minimality of y

If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,

then there exists ε∈R∗+ s.t. y− ε
pj
Ij also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1 to use with extremality of y
If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2

to use with minimality of y

If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,

then there exists ε∈R∗+ s.t. y− ε
pj
Ij also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1 to use with extremality of y
If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2

to use with minimality of y

If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,

then there exists ε∈R∗+ s.t. y− ε
pj
Ij also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1 to use with extremality of y
If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2

to use with minimality of y

If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,
then there exists ε∈R∗+ s.t. y− ε

pj
Ij also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1 to use with extremality of y
If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2 to use with minimality of y
If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,
then there exists ε∈R∗+ s.t. y− ε

pj
Ij also satisfies ineq. (Q).

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (accepted paper) 18 / 25

Outline

1. Introduction

2. A formulation for UCDDP using natural variables

3. How to manage this kind of formulations in practice
Non-overlapping inequalities’ separation
Extremality constraints and Branch-and-Bound

4. How to extend this formulation

5. Conclusion

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

• integer variables
↪→ Branch-and-Bound algorithm → branching on δ variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables

↪→ Branch-and-Bound algorithm → branching on δ variables
• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm

→ branching on δ variables
• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ variables

• exponential number of inequalities

↪→ Branch-and-Cut algorithm → polynomial separation algorithm
• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm

→ polynomial separation algorithm
• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints

↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:
• integer variables
↪→ Branch-and-Bound algorithm → branching on δ variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme

19 / 25

3- How to manage this kind of formulations in practice • 3.1 Non-overlapping inequalities’ separation

Inequalities to separate

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)

2 families of inequalities
↪→ 2 independent separation problems

but also 2 similar separation problems

separation of
(S2) inequalities

maximization
of Γ2

separation of
(S1) inequalities

maximization
of Γ1 max

S⊂[1..n]

(∑
(i,j)∈S<

qi,j +
∑
i∈S

ci
)∈R∗+ ∈R

20 / 25

3- How to manage this kind of formulations in practice • 3.1 Non-overlapping inequalities’ separation

Inequalities to separate

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)

2 families of inequalities
↪→ 2 independent separation problems

but also 2 similar separation problems

separation of
(S2) inequalities

maximization
of Γ2

separation of
(S1) inequalities

maximization
of Γ1

max
S⊂[1..n]

(∑
(i,j)∈S<

qi,j +
∑
i∈S

ci
)∈R∗+ ∈R

20 / 25

3- How to manage this kind of formulations in practice • 3.1 Non-overlapping inequalities’ separation

Inequalities to separate

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)

2 families of inequalities
↪→ 2 independent separation problems

but also 2 similar separation problems

separation of
(S2) inequalities

maximization
of Γ2

separation of
(S1) inequalities

maximization
of Γ1

max
S⊂[1..n]

(∑
(i,j)∈S<

qi,j +
∑
i∈S

ci
)∈R∗+ ∈R

20 / 25

3- How to manage this kind of formulations in practice • 3.1 Non-overlapping inequalities’ separation

Inequalities to separate

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj)−Xi,j

2 +
∑
i∈S

p2
i (1−δi)

(S1)

(S2)

2 families of inequalities
↪→ 2 independent separation problems

but also 2 similar separation problems

separation of
(S2) inequalities

maximization
of Γ2

separation of
(S1) inequalities

maximization
of Γ1 max

S⊂[1..n]

(∑
(i,j)∈S<

qi,j +
∑
i∈S

ci
)∈R∗+ ∈R

20 / 25

3- How to manage this kind of formulations in practice • 3.1 Non-overlapping inequalities’ separation

Reduction to a min-cut problem

max
S⊂[1..n]

∑
(i,j)∈S<

qi,j +
∑
i∈S

ci

∈R∗+ ∈R

∀(i , j)∈ [1..n], wi,j =qi,j

0

∀j∈ [1..n]
w0,j =2ci +

∑
i�=j

qi,j

•

n+1

∀i ∈ [1..n]
wi,n+1 =

(
2cj +

∑
i�=j

qi,j
)−

•

•

••

••

Picard et Ratliff, 1975, Networks
21 / 25

3- How to manage this kind of formulations in practice • 3.1 Non-overlapping inequalities’ separation

Reduction to a min-cut problem

max
S⊂[1..n]

∑
(i,j)∈S<

qi,j +
∑
i∈S

ci

∈R∗+ ∈R

∀(i , j)∈ [1..n], wi,j =qi,j

0

∀j∈ [1..n]
w0,j =

(
2cj +

∑
i�=j

qi,j
)+

• n+1

∀i ∈ [1..n]
wi,n+1 =

(
2cj +

∑
i�=j

qi,j
)−

•

•

••

••

Picard et Ratliff, 1975, Networks
21 / 25

3- How to manage this kind of formulations in practice • 3.2 Extremality constraints and Branch-and-Bound

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

22 / 25

3- How to manage this kind of formulations in practice • 3.2 Extremality constraints and Branch-and-Bound

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• • • •

•

•

•

•

22 / 25

3- How to manage this kind of formulations in practice • 3.2 Extremality constraints and Branch-and-Bound

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• • • •

•

•

•

•

F

22 / 25

3- How to manage this kind of formulations in practice • 3.2 Extremality constraints and Branch-and-Bound

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• •

•

•

• •

•

•

x61 x>2

22 / 25

3- How to manage this kind of formulations in practice • 3.2 Extremality constraints and Branch-and-Bound

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• •

•

•

• •

•

•F F

x61 x>2

22 / 25

Outline

1. Introduction

2. A formulation for UCDDP using natural variables

3. How to manage this kind of formulations in practice

4. How to extend this formulation

5. Conclusion

4- How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant

I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

d

d−a a

e′i t ′k

23 / 25

4- How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant
I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

d

d−a a

e′i t ′k

23 / 25

4- How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant
I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

dd−a a

e′i t ′k

23 / 25

4- How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant
I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

dd−a a

e′i t ′k

23 / 25

4- How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1
k =1

} {
k∈J

∣∣ 1−(δ1
k +δ2

k)=1
} {

k∈J
∣∣ δ2

k =1
} Cj

d @ d A

0
|

24 / 25

4- How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

αj E ′j

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1
k =1

} {
k∈J

∣∣ 1−(δ1
k +δ2

k)=1
} {

k∈J
∣∣ δ2

k =1
} Cj

d @ d A

0
|

24 / 25

4- How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

αj E ′j
βj T ′j

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)

↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1
k =1

} {
k∈J

∣∣ 1−(δ1
k +δ2

k)=1
} {

k∈J
∣∣ δ2

k =1
} Cj

d @ d A

0
|

24 / 25

4- How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

αj E ′j
βj T ′j

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1
k =1

} {
k∈J

∣∣ 1−(δ1
k +δ2

k)=1
} {

k∈J
∣∣ δ2

k =1
} Cj

d @ d A

0
|

24 / 25

4- How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

αj E ′j
βj T ′j

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1
k =1

} {
k∈J

∣∣ 1−(δ1
k +δ2

k)=1
} {

k∈J
∣∣ δ2

k =1
} Cj

d @ d A

0
|

24 / 25

Outline

1. Introduction

2. A formulation for UCDDP using natural variables

3. How to manage this kind of formulations in practice

4. How to extend this formulation

5. Conclusion

5- Conclusion

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP

→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

25 / 25

5- Conclusion

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ solve UCDDP instances up to size 40 within one hour

→ solve CDDP instances up to size 20 or 30 within one hour
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

25 / 25

5- Conclusion

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour

→ formulate other similar problems
(e.g. common due window, multi-machine common due date...)

25 / 25

5- Conclusion

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

25 / 25

5- Conclusion

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP
→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)

25 / 25

	Introduction
	Scheduling around a common due date
	Known results about UCDDP and CDDP
	How to encode schedules?

	 A formulation for UCDDP using natural variables
	Describing the solution set for (e,t) variables
	Non-overlapping inequalities
	Validity

	How to manage this kind of formulations in practice
	Non-overlapping inequalities' separation
	Extremality constraints and Branch-and-Bound

	How to extend this formulation
	Conclusion

