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1- Introduction • 1.1 Scheduling around a common due date

Scheduling around a common due-date on a single machine
An instance = • a set of tasks : J ={1, 2, 3, 4}

1 2 3 4
p1 =4 p2 =1 p3 =2 p4 =3

• common due date : d =10
• unit tardiness penalties : β1 =β4 =5, β2 =β3 =2
• unit earliness penalties : ∀j∈J , αj = 2
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The Unrestrictive Common Due Date Problem (UCDDP)

An instance =
• a set of tasks J

• their processing times (pj)j∈J ∈NJ

• an unrestrictive common due-date d>
∑
j∈J

pj

• their unit earliness penalties (αj)j∈J

• their unit tardiness penalties (βj)j∈J

d

0
|

αj

1

βj

1

jj
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A solution schedule = a family of pairwise disjoint processing intervals

The objective = min
∑
j∈J

αjEj +βjTj =
minimize the sum of
earliness and tardiness penalties
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The Unrestrictive Common Due Date Problem (CDDP)
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1- Introduction • 1.2 Known results about UCDDP and CDDP

What are dominance properties?

Let T be a solution subset of an arbitrary optimization problem.

• T is a dominant set if it contains at least one optimal solution
• T is a strictly dominant set if it contains all the optimal solutions

In both cases,
→ the searching space can be reduced to T

→ other solutions can be discarded
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1- Introduction • 1.2 Known results about UCDDP and CDDP

Dominance properties and complexity
unrestrictive case d>

∑
j∈J pj

dominance
properties

• without idle time

• one on time task

(+ "V-shaped")

complexity

∀j∈J , αj =βj =ω → P
∀j∈J , αj =βj →

weakly

NP-hard

Kanet, 1981, Naval Research Logistics Quaterly
Hall and Posner, 1991, Operations research
Hoogeveen and van de Velde, 1991, European Journal of Operational research
Sourd, 2009, Informs Journal on Computing
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1- Introduction • 1.3 How to encode schedules?

Time-indexed variables
d

0
|

First let us discretize the time horizon

as T =[d−p(J), d +p(J)]

.

Variables: ∀i ∈J , ∀t∈T : xi,t =
{
1 if i completes at t

0 otherwise

Objective function:
∑
j∈J

∑
t∈T

ci ,t xi ,t
where ci,t are pre-computed
from the instance
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Completion time variables
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Variables: ∀j∈J , Cj ∈R+ is the time when task j completes

Objective function:
∑
j∈J

αj [d−Cj ]+ + βj [Cj−d ]+
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Earliness–Tardiness variables
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Variables: ∀j∈J , ej =[d − Cj ]+ and tj =[Cj − d ]+

Objective function:
∑
j∈J

αj ej + βj tj

← linear function of variables e and t

On the first example:
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1 43 2
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What is the goal?

We already have: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)

where : → gα,β is linear
(

gα,β = (e, t) 7→
∑
j∈J

αjej +βjtj

)
→ S is the set of (e, t) vectors that describe a schedule

We want to describe S with:

- linear inequalities

that define a polyhedron P
if P 6=NP, it cannot be sufficient (LP-solving∈P and UCDDP∈NP)

- integrity constraints
- extremality constraints

in order to obtain: UCDDP ⇐⇒ min
(e,t)∈S

gα,β(e, t)
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

What do we need for describing the solution set?

An instance =
• a set of tasks J

• the processing times of these tasks (pj)j∈J

• an unrestrictive common due-date d >
∑

pj

• a unitary earliness penalty for each task (αj)j∈J

• a unitary tardiness penalty for each task (βj)j∈J
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2- A formulation for UCDDP using natural variables • 2.1 Describing the solution set for (e, t) variables

How to describe the solution set?

To encode a feasible schedule, a vector (e, t) must satisfy :
[consistancy] ej and tj are not simultaneously strictly positive
[non-overlapping] processing intervals are pairwise disjoints
[positivity] processing intervals don’t begin before time 0

• decomposing non-overlapping for a schedule :

the early tasks the tardy tasks
• are entirely processed before d • are entirely processsed after d
�

• do not overlap each other

�

• do not overlap each other
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• do not overlap each other
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2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities
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• these inequalities describe the convex hull of such vectors C
• all extreme points of the polyhedron encode feasible schedules
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2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

The set of vectors (C1,C2) encoding a 2-task schedule
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2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP

Queyranne’s
non-overlapping

inequalities

p p p p p p p p p
i j k

0
|

Ci

|
Cj

|
Ck

|

∀S⊆J ,
∑

i∈S pi Ci︸ ︷︷ ︸
p∗C(S)

> g(S) where g(S)= 1
2

[∑
j∈S

p2
j + (

∑
j∈S

pj)2]

A first idea :
{
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2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Non-overlapping inequalities for UCDDP
∀S⊆J , p ∗ t(S) > g(S) Are these inequalities valid?

For S ={i , j} with ti =0, p∗t(S)>g(S)⇔ pi ti+pjtj > p2
i +p2

j +pipj ⇔ tj > pj

This inequality is not valid for i j

tjd

↪→ So we consider:

∀S⊆J , p ∗ [p + e](S∩E ) > g(S∩E )

∀S⊆J , p ∗ t(S∩T ) > g(S∩T )

Using δj variables E =
{

j∈J | δj =1
}
and T =

{
j∈J | δj =0

}
I the right-hand side term is no more a constant
I variables δ appear on both side to express the intersection
I products δi δj appear

↪→ linearisation variables are needed

Falq, Fouilhoux, Kedad-Sidhoum, 2020, Discrete Applied Maths (to appear)
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2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Formulation F 3 for UCDDP

F 3 : min
{ ∑

j∈J
αj ej +βj tj

∣∣∣∣∣ (e, t, δ,X )∈extr(P3) and δ∈{0, 1}J

}
where:

P3 =



(e, t, δ,X )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j∈J , 0 6 δj 6 1 (δ)

∀j∈J , ej > 0
ej 6 M δj

(e.0)
(e.1)

∀j∈J , tj > 0
tj 6 M (1−δj)

(t.1)
(t.2)

∀(i , j)∈J<, Xi,j > 0
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Xi,j > δi−δj
Xi,j > 2− δi−δj
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(x .2)
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∀S∈P(J),
∑
i∈S

pi ei >
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pi pj
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i∈S

p2
i (1−δi )

(S1)

(S2)



R. Fortet, 1959, Cahiers du centre d’études en recherche opérationnelle 16 / 25



2- A formulation for UCDDP using natural variables • 2.2 Non-overlapping inequalities

Formulation F 3 for UCDDP
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2- A formulation for UCDDP using natural variables • 2.3 Validity

Validity of F 3

I validity proof
- is not based on a geometrical proof
- must be compatible with additional
inequalities

I we provide 2 key lemmas to use
non-overlapping inequalities combined
with additional inequalities

0

C2

0
C1

Conv(Q)

_p2
Cσ′
•

p
p1+p2

p
p1

Cσ
•_p1+p2

Kσ

Kσ′

M

M

•
(M, M)

•

•
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2- A formulation for UCDDP using natural variables • 2.3 Validity

Two key lemmas for non-overlapping inequalities
Let y ∈RJ satisfying ∀S⊆J ,

∑
j∈S

pjyj > g(S) (Q).

Lemma 1

to use with extremality of y

If there exists (i , j)∈J2 s.t. i 6= j and yi6yj <yi +pj ,

then there exists ε∈R∗+ s.t.
{

y+−=y + ε
pi
Ii− ε

pj
Ij

y−+ =y− ε
pi
Ii + ε

pj
Ij

also satisfy ineq. (Q).

i j

yi yj pjε/pi

i j

ε/pi ε/pj

i j

ε/pi ε/pj

Lemma 2

to use with minimality of y

If there exists (i , j)∈J2 s.t. i 6= j , yj <yi +pj and yj>pj ,

then there exists ε∈R∗+ s.t. y− ε
pj
Ij also satisfies ineq. (Q).
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3- How to manage this kind of formulations in practice

What are the particularities of our formulations?

The two proposed formulations are linear formulations with:

• integer variables
↪→ Branch-and-Bound algorithm → branching on δ variables

• exponential number of inequalities
↪→ Branch-and-Cut algorithm → polynomial separation algorithm

• extremality constraints
↪→ ensuring the solutions extremality in spite of the branching scheme
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3- How to manage this kind of formulations in practice • 3.1 Non-overlapping inequalities’ separation

Inequalities to separate

∀S∈P(J),
∑
i∈S

pi ei >
∑

(i,j)∈S<

pi pj
δi+δj−Xi,j

2∑
i∈S

pi ti >
∑

(i,j)∈S<

pi pj
2−(δi+δj )−Xi,j

2 +
∑
i∈S

p2
i (1−δi )

(S1)

(S2)

2 families of inequalities
↪→ 2 independent separation problems

but also 2 similar separation problems

separation of
(S2) inequalities

maximization
of Γ2

separation of
(S1) inequalities

maximization
of Γ1 max

S⊂[1..n]

( ∑
(i,j)∈S<

qi,j +
∑
i∈S

ci
)∈R∗+ ∈R

20 / 25
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but also 2 similar separation problems

separation of
(S2) inequalities

maximization
of Γ2

separation of
(S1) inequalities

maximization
of Γ1 max

S⊂[1..n]

( ∑
(i,j)∈S<

qi,j +
∑
i∈S

ci
)∈R∗+ ∈R
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3- How to manage this kind of formulations in practice • 3.1 Non-overlapping inequalities’ separation

Reduction to a min-cut problem

max
S⊂[1..n]

∑
(i,j)∈S<

qi,j +
∑
i∈S

ci

∈R∗+ ∈R

∀(i , j)∈ [1..n], wi,j =qi,j

0

∀j∈ [1..n]
w0,j =2ci +

∑
i�=j

qi,j

•

n+1

∀i ∈ [1..n]
wi,n+1 =

(
2cj +

∑
i�=j

qi,j
)−

•

•

••

••

Picard et Ratliff, 1975, Networks
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3- How to manage this kind of formulations in practice • 3.2 Extremality constraints and Branch-and-Bound

How to ensure extremality during a Branch-and-Bound?

each node is solved
by an extreme point =⇒ the solution of the Branch-and-Bound

is an extreme point

Counter-example:

x

y

objective : max y

·

·

·

·

·

·

·

·

·

·

·
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·
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4- How to extend this formulation

How to adapt the formulation for the general case ?

I unrestrictive case: d-blocks are dominant

I general case: d-or-left-blocks are dominant

↪→ new variable a for a new reference point: d−a

0

ki j

straddling task

d

d−a a

e′i t ′k
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4- How to extend this formulation

Interest of a flexible reference point?
Common due window problem:
→ a due window [d @, d A] instead of a due date d

Cj

d @ d A

0
|

→ block with a task completing at d @ or d A are not dominant
↪→ a straddling task can occur over d @ (resp. over d A)
↪→ two half-axes with flexible reference point

i j

a1 a2e′i +pi t ′j{
k∈J

∣∣ δ1
k =1

} {
k∈J

∣∣ 1−(δ1
k +δ2

k)=1
} {

k∈J
∣∣ δ2

k =1
} Cj

d @ d A

0
|
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5- Conclusion

Conclusion on natural variable formulations

This kind of formulation with natural variables and non-overlapping
inequalities allows to:
→ formulate both UCDDP and CDDP

→ solve UCDDP instances up to size 40 within one hour
→ solve CDDP instances up to size 20 or 30 within one hour
→ formulate other similar problems

(e.g. common due window, multi-machine common due date...)
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