
A Simple Heuristic for Finding 𝑘-Nowhere Zero Flows

Arnaud Lequen
Ecole Normale Supérieure de Rennes

arnaud.lequen@ens-rennes.fr

ABSTRACT

This papers focuses on finding a Z/𝑘Z-nowhere-zero flow on
a given graph. To achieve that, we propose several heuristics
that rely on graph algorithms, to find such a flow as efficiently
as possible, but not deterministically.

CCS CONCEPTS

� Mathematics of computing � Graph algorithms.

KEYWORDS

Nowhere-zero-flows, Graphs, Solver, Heuristic

ACM Reference Format:
Arnaud Lequen. 2018. A Simple Heuristic for Finding 𝑘-Nowhere

Zero Flows.

1 INTRODUCTION

The common notion of flows in N or R+ can be generalized
to any finite abelian group Γ, in some respect. Informally,
a Γ-flow over the graph 𝐺 is an assignation of a value of Γ
to every edge of 𝐺, such that, for every vertex 𝑣, the added
value of the edges out of 𝑣 is equal to the added value of the
edges into 𝑣.

As no order can be found on finite groups, the problem
of maximizing a flow over a flow network is irrelevant. Yet,
another interesting problem emerges: for a given graph 𝐺, is
there a Γ-flow over 𝐺 such that no edge is assigned the value
0?

A Γ-flow that never takes the value 0 is called a Γ-nowhere-
zero flow (Γ-NZF). Various results on the existence of such a
flow on a given graph have been proven in the second half
of the 19𝑡ℎ century, and the NP-hardness of the problem of
computing a Γ flow for certain groups has been proven.

In this paper, we will focus on Z/𝑘Z flows, for 𝑘 ≥ 2.
Indeed, we present an algorithm that is based on several
heuristics, whose aim is to find a Z/𝑘Z-NZF for a given
graph 𝐺 and a given 𝑘.

Firstly, we give a few formal definitions, as well as some
results that help understands some of our choices and the in-
terest of the paper. Then, we present our algorithm, detailing

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SPA Project, December 2018,

© 2018 Association for Computing Machinery.

the various heuristics that we use. After that, we present the
results of the experimental evaluation of an implementation
of our algorithm. Then, we mention further ideas to improve
the program.

2 STATE OF THE ART

For a start, let us define formally what a Γ-NZF is.

Definition 1. Let Γ a finite abelian group and 𝐺(𝑉,𝐸)
a graph. A Γ-Nowhere-Zero-Flow is a function Φ : 𝐸 ↦−→
Γ ∖ {0Γ} such that, for every vertex 𝑣 ∈ 𝐸,∑︁

𝑒∈𝛿+(𝑣)

Φ(𝑒) =
∑︁

𝑒∈𝛿−(𝑣)

Φ(𝑒)

where 𝛿+(𝑣) denotes the edges into 𝑣 and 𝛿−(𝑣) the edges
out of 𝑣. Such a constraint is called the Kirchoff’s law for 𝑣.

We have several interesting results about Γ-NZFs. Tutte
proved, in 1953, that the orientations of the edges of 𝐺
don’t have an incidence on the existence of a Γ-NZFs over
that graph. In particular, if we can find a Γ-NZF for some
orientation of 𝐺, then every orientation of 𝐺 admits a Γ-flow.
A seminal idea to show that lies in the fact that, if we find
a Γ-flow for some orientation of 𝐺, then we can change the
orientation of 𝑒 ∈ 𝐸, and the flow remains correct if we
replace Φ(𝑒) by −Φ(𝑒).

Tutte also proved that the existence of a Γ-NZF doesn’t
depend on the structure of the group Γ. Indeed, it has been
shown that if Γ and Γ′ are two finite abelian groups such that
|Γ| = |Γ′|, then 𝐺 admits a Γ-NZF iff it admits a Γ′-NZF.
This is why we have choosen to develop a solver for Z/𝑘Z-
NZF: such a family of groups is easy to work with, and the
existence of a Z/𝑘Z-NZF solely depends on 𝑘. A constructive
demonstration of the result relies on the existence of a bijec-
tion between Z/𝑘Z and every group of the form

∏︀
𝑖 Z/𝑘𝑖Z,

with
∏︀

𝑖 𝑘𝑖 = 𝑘.
A few properties can help us decide whether a graph 𝐺

admits a Z/𝑘Z-NZF or not. A direct consequence of the
definition allows us to say that if there is a bridge in 𝐺, then
the graph admits no NZF, whatever the graph. A bridge is
an edge such that, when removed, a new connex component
is created.

In the general case, it is NP-hard to decide the existence of
and compute a Γ-NZF on a random graph 𝐺. But Seymour
showed in 1981 that, if a graph is bridgeless, then for every
𝑘 ≥ 6, it admits a Z/𝑘Z-NZF. Although it is the best result
we have so far, Tutte conjectued, in 1954, that every bridgeless
graph admits a Z/5Z-NZF. This conjecture remains an open
question to this day.

When 𝐺 is planar, there is an interesting way to compute
a 𝑍/4Z-NZF (and thus a Z/5Z-NZF). In 1954, Tutte showed

SPA Project, December 2018, A. Lequen

that the dual problem of computing a Z/𝑘Z-NZF on 𝐺 is to
color its faces using 𝑘 colors. It has also been showed that
converting a 𝑘-coloration of the dual to a Z/𝑘Z-NZF on 𝐺
can be made in 𝑂(𝑚). Using the four-colors theorem, we can
deduce that every planar graph admits a Z/𝑘Z-NZF.

As the problem can be easily reduced to a set of linear
equations and passed to a finite fields solver, no solver for
this particular problem exists. Nevertheless, we decided to
focus on this problem, and to solve it using graph algorithms.

3 APPROACH

Let 𝐺 a graph without asymetric edges (for the sake of
simplicity) and 𝑘 ≥ 2 a natural number. The outline of the
algorithm is to start from an initial valuation of the edges,
and then to refine it so much so that it becomes a Z/𝑘Z-NZF.
For the later part, many different heuristics are combined,
and they try to satisfy both Kirchoff’s law and the non-zero
constraints.

3.1 Eliminating unsolvable graphs

Previous results showed that in some cases, it is fairly easy
to conclude that a graph admits no Z/𝑘Z-NZF. If a bridge is
found in a graph 𝐺, the we can directly prune out the exis-
tence of any Z/𝑘Z-NZF. Thus, the first step of the algorithm
is to check for the existence of bridges in 𝐺.

A naive algorithm is in 𝑂(|𝐸| · |𝑉 |). For every edge, we
remove it from the graph and then check if the number of
connex components of the graph is greater than before. If
not, then we put it back and proceed to do so for every other
edge. A better, yet more complex, algorithm exists, as found
by Tarjan. Deciding whether a bridge exists in a graph can
be done in 𝑂(𝑛).

In the particular case where 𝑘 = 2, it is easy to check if a
bridgeless graph admits a Z/2Z-NZF. In 𝑂(𝑛), we compute
the in and out degrees of every vertex. If the out degree of
any vertex is of a different parity than its in degree, then
the graph admits no Z/2Z-NZF. Else, there is only one NZF,
that can easily be found by putting 1 on every edge.

3.2 Finding an initial flow

The algorithm requires an initial valuation of the edges be
found. Even though, at first, we opted for a naive idea, where
random numbers would be put on every edge, we rather chose
to implement an algorithm that would give us a valuation
that is as close as possible to being a Z/𝑘Z-NZF.

We chose to reduce our problem to a set intersection one,
with the aim of passing it to the difference map algorithm.
We need to describe the solutions of our problem as the
intersection between two sets, named 𝐴 and 𝐵, onto which
we can easily find a projection. As we have two kinds of
constraints to satisfy, both sets will roughly describe one of
those types of constraints.

We define the problem as follows. Let 𝐺(𝑉,𝐸) a graph,

and let us consider the vector 𝜈 ∈ R2·|𝐸|, that we denote,
for convenience, (𝑒−1 𝑒+1 𝑒−2 𝑒+2 . . . 𝑒−|𝐸| 𝑒

+
|𝐸|)

𝑇 . Intuitively, 𝑒−𝑖

represents the flow at the tail of edge 𝑖, and 𝑒+𝑖 represents
the flow at the end of edge 𝑖.

We try to define 𝐴 as the set of points of R2·|𝐸| that
describe correct nowhere-zero valuations of the edges of 𝐺.
It is easy to see that, for such a representation to describe
a valuation of the edges, we need to have, for every 𝑖 ∈
{1, . . . , |𝐸|}, 𝑒+𝑖 = 𝑒−𝑖 . If it is the case, then 𝑒+𝑖 = 𝑒−𝑖 is the
value that we would associate to edge 𝑒𝑖 ∈ 𝐸. The values that
we allow for 𝑒+𝑖 are every integer in {−𝑘+1, . . . ,−1, 1, . . . , 𝑘−
1}. Thus, we formally define 𝐴 as the following subset of

R2·|𝐸|.

𝐴 =

{︃
(𝑒−1 𝑒+1 . . . 𝑒−|𝐸| 𝑒

+
|𝐸|)

𝑇

⃒⃒⃒⃒
⃒ ∀𝑖, 𝑒

+
𝑖 = 𝑒−𝑖

𝑒+𝑖 ∈ {−𝑘 + 1, . . . , 𝑘 − 1} ∖ {0}

}︃

We note 𝑃𝑎 : R2·|𝐸| ←− 𝐴 the projection of any point to
𝐴. Computing computing such a function is fairly easy, and
the main difficulty lies in finding a way to make sure no zero
appear during the projection.

The valuation of the edges associated to a point in set 𝐴
doesn’t necessarily satisfy Kirchoff’s law. This is why set 𝐵
focuses on the vertices of the graph, and makes sure that
this set of constraints is satisfied. Thus, set a set is easily
computed:

𝐵 =

⎧⎪⎨⎪⎩(𝑒−1 𝑒+1 . . . 𝑒−|𝐸| 𝑒
+
|𝐸|)

𝑇

⃒⃒⃒⃒
⃒⃒⃒ ∀𝑎 ∈ {1, . . . , |𝑉 |},∑︁

∃𝑏,𝑒𝑖=(𝑎,𝑏)

𝑒−𝑖 =
∑︁

∃𝑏,𝑒𝑖=(𝑏,𝑎)

𝑒+𝑖

⎫⎪⎬⎪⎭
Computing the projection is fairly easy, yet interesting as
it is a common constraints optimization problem. Using the
Karush-Kuhn-Tücker theorem, we have an explicit expression
of the projection.

Using two seemingly unrelated values to describe an edge
is a way to make the projection onto 𝐵 easier. Indeed, such a
choice allows us to relax slightly Kirchoff’s constraints. This
way, we have a set of linear equations, such that every variable
appears only once. Thus, we can independently satisfy every
equation without interfering with the others, making the
computation easier.

It is important to notice that both sets are not convex. It
makes it harder to compute a point that belongs to both sets.
If both sets were, recursively applying 𝑃𝐴 ∘ 𝑃𝐵 would ensure
that we find a solution to our problem, at one moment.

Instead, we need to use a slightly more complex formula,
that we apply recursively. Let 𝛽 ̸= 0 :

𝑆𝑡𝑒𝑝 : 𝑥 ↦−→ 𝑥+ 𝛽[𝑃𝐴(𝑓𝐵(𝑥))− 𝑃𝐵(𝑓𝐴(𝑥))]

where

𝑓𝐴 : 𝑥 ↦−→ 𝑃𝐴(𝑥)−
1

𝛽
(𝑃𝐴(𝑥)− 𝑥)

𝑓𝐵 : 𝑥 ↦−→ 𝑃𝐵(𝑥)−
1

𝛽
(𝑃𝐵(𝑥)− 𝑥)

If, for any 𝑥, 𝑆𝑡𝑒𝑝(𝑥) = 𝑥, then it means that 𝑃𝐴(𝑓𝐵(𝑥))−
𝑃𝐵(𝑓𝐴(𝑥)) = 0, which means that 𝑥 belongs to both sets.

A Simple Heuristic for Finding 𝑘-Nowhere Zero Flows SPA Project, December 2018,

The algorithm proceeds as follows: first, we randomly select
an initial point in 𝐴. Then, we recursively apply 𝑆𝑡𝑒𝑝 to it,
until we find a fixed point for 𝑆𝑡𝑒𝑝, or until the allocated
computation time is exceeded.

If no correct NZF exists, the algorithm will not be able to
find out by itself. Even so, the difference map algorithm is
not guaranteed to terminate, even if a correct NZF actually
exists, hence the time limit on its execution. Its goal is only
to find an initial valuation of the edges that is fairly close to
being a correct NZF, so that the heuristics that we use after
can refine the valuation and find an NZF.

3.3 Fixing edges

Both following techniques choose a vertex 𝑎 and try to find
a way to change the valuation of one of its vertices to satisfy
its Kirchoff’s law, as well as the one of one or more of its
adjacent vertices.

First, we define the excess of a vertex as the function
∆, which indicates how much there is to substract to the
total flow passing by 𝑎 so that its Kirchoff’s law is satisfied.
Formaly, if Φ is the current valuation, it is defined as follows:

∆ : 𝑎 ↦−→
∑︁

𝑒∈𝛿−(𝑎)

Φ(𝑒)−
∑︁

𝑒∈𝛿+(𝑎)

Φ(𝑒)

The first function, that we named simpleFixVertex(a),
takes as an input a vertex 𝑎 whose Kirchoff’s law is not
satisfied. It then computes its excess ∆(𝑎). After that, it
selects an adjacent vertex 𝑏: if ∆(𝑏) = −∆(𝑎), it substracts
∆(𝑎) from the edge (𝑎, 𝑏), or ∆(𝑏) from the edge (𝑏, 𝑎), de-
pending on which one exists. This way, both 𝑎 and 𝑏 see that
their Kirchoff’s law is satisfied. If it is not possible to find
such a 𝑏, the routine fails.

Note that calling simpleFixVertex may cause a zero to
appear on an edge. This is something that is fixed later
during the algorithm.

Even though such cases do occur when trying to compute
an NZF, fixing them is not enough to find a correct NZF.
Thus, a slightly more elaborated way of fixing vertex 𝑎 Kir-
choff’s law is to see if there is a set of edges in or out of 𝑎,
whose valuation can be changed to fix not only 𝑎’s, but also
its neighbors’ Kirchoff’s laws.

The function that does so is called multipleFixVertex(a).
It is similar to the previous function, except that it computes,
beforehand, for every subset of vertices adjacent to 𝑎, the
sum of the excess of its vertices, and then tries to find a
subset whose total excess is equal to −∆(𝑎). It then proceeds
to change the valuations of the associated edges, to satisfy 𝑎
and its selected neighbors’ Kirchoff’s laws.

Computing that many values is quadratic in the degree of
𝑎, and there is no approach more efficient than the dynamic
programming one that we implemented. Still, calling that
function is more costly than calling simpleFixVertex, which
is why the later is still relevant. This is discussed in the last
part of this paper.

3.4 Finding paths

The above heuristics are powerless in greater graphs, in which
it often happens that the last few vertices whose Kirchoff’s
laws are left unsatistied are far apart. This is why we gen-
eralized simpleFixVertex, so that it is able to fix distance
vertices.

The main idea of PathFixVertex is to find two vertices, 𝑎
and 𝑏, such that ∆(𝑎) = −∆(𝑏). Then, we proceed to find a
path between 𝑎 and 𝑏, such that it passes by no edge whose
valuation is ∆(𝑎). This way, we can substract ∆(𝑎) from
every edge on the path, without changing the excess of any
vertex on the path, but 𝑎 and 𝑏, whose Kirchoff’s laws are
now satisfied.

An important remark is that the orientation of the edges
can be changed at will. Thus, when looking for a path from 𝑖,
when can hop to 𝑗 using the edge (𝑗, 𝑖) by considering that it
is the edge (𝑖, 𝑗), but with valuation −Φ((𝑗, 𝑖)). This almost
doubles the number of paths that can be considered.

To avoid, as much as possible, deadlocks, and to try to
generalize multipleFixVertex to sets of distant vertices, we
do the following. When, and only when, there is no pair of
vertices whose excess correlate, we fix only one of them, by
reporting the excess of 𝑎 to 𝑏, by finding a path between
them. If this can not be done, then we randomly choose a
number to substract along a path from 𝑎 to 𝑏. The values of
the excess of 𝑎 and 𝑏 are consequently changed, although it
don’t fix any of the vertices. Yet, it can be seen as a way to
exit a deadlock.

Finding a path in itself can be done efficiently using Di-
jkstra’s algorithm. Switching the orientation of an edge, if
needed, is done during the phase where edges are added
into the stack. Moreover, during that same phase, before
adding an edge to the stack, we check if its current valua-
tion is not ∆(𝑎). Using a heap, the complexity of this step
is 𝑂(|𝑉 | · 𝑙𝑜𝑔(|𝐸|)), which makes it the most costly of the
heuristics to fix edges. This is why this step is only done after
and fewer times than the others.

We chose not to let this method create new zeros, because
the paths that are found can be surprisingly long, and many
zeros could be created if allowed. This would greatly com-
plicate the next step, and we chose to make this step longer
and slightly more complex to prevent this.

3.5 Removing zeros

Even though the projection onto set A guarantees us that,
at the end of the diff map algorithm, no zero remain, some-
times, new zeros appear, when calling simpleFixVertex or
multipleFixVertex.

In our case, they are fairly easy to remove, which is done by
the fixZeros(a, b) function, which takes, as an input, edge
(𝑎, 𝑏), whose valuation is zero. Because we have checked that
there is no bridge in the graph, (𝑎, 𝑏) belongs to at least one
cycle. The function finds a cycle where there exists a number
𝑙 ∈ {1, . . . , 𝑘 − 1} that never appears on any of the edges of
the cycle. Then, 𝑙 is substracted from every edge of the cycle:

SPA Project, December 2018, A. Lequen

this way, (𝑎, 𝑏) is assigned the value −𝑙 ̸= 0 and no other zero
has been created.

Algorithmically speaking, finding such a cycle can be done
using a breadth first search, in 𝑂(|𝐸| · |𝑉 |). Even though this
seems costly, fixZeros is called very few times, which makes
this step reasonable in time.

3.6 Full algorithm

For a start, we define the following higher-order function,
which helps us decide to cut a heuristic when we deem it
necessary.

Every function is called a bound amount of times. There
are also several cases where we will cut a step, if it is clear
that it fails to yield interesting results. For instance, if calling
simpleFixVertex fails |𝑉 | times in a row, we can proceed
directly to the next step.

def executeHeuristicVertex(heuristic, MAX,
MAXFAILS):

iterations = 0;

failsInARow = 0;
while iterations ≤ MAX and failsInARow ≤
MAXFAILS do

Choose vertex i not satisfied;

heuristic(i);

if heuristic(i) succeeded then
failsInARow = 0;

else
failsInARow++;

end

iterations += 1;

end
Algorithm 1: A helper function to cut a heuristic when
needed

A similar helper function is defined as executeHeuristicEdge,
which randomly chooses an edge instead of a vertex. Every
heuristic function changes the valuation 𝜈, although it is
not mentione everytime, for convenience. Putting these parts
together, we give the algorithm described in Algorithm 2.

It is important to notice that every arbitrary choice in the
algorithm is non-deterministic. For instances, the choice of
the vertex to fix, the edge to use to fix it, or even the path
from one vertex to another is randomly choosen. This way,
the algorithm can be run multiple times, and find a correct
solution where on instances on which it failed previously, be
cause of a poor choice that caused a deadlock.

The algorithm is not based on an exhaustive exploration
heuristic. Thus, it is possible that it inevitably fails to find a
correct NZF for a given instance, even though there is one.

4 EXPERIMENTAL EVALUATION

It seems mandatory to conduct an experimental evaluation
of the algorithm, given that it is based on a set of heuristics.

Data: A graph 𝐺, a group Z/𝑘Z
Result: A NZF 𝜈 over 𝐺
Check if the graph is bridgeless;

Choose a random valuation 𝜈;

Run the difference map algorithm;

if error(𝜈) == 0 then
return 𝜈

end
executeHeuristicVertex(simpleFixVertex,
MAXSIMP, MAXSIMPFAILS);
executeHeuristicVertex(multipleFixVertex,
MAXMULTI, MAXMULTIFAILS);
executeHeuristicVertex(pathFixVertex, MAXPATH,
MAXPATHFAILS);
executeHeuristicEdge(fixZero, MAXZEROS,
MAXZEROSFAILS)
if noZero(𝜈) and error(𝜈) == 0 then

return 𝜈;

end

return ”No valuation has been found”;
Algorithm 2: The outline of the main algorithm

4.1 Generating benchmarks

An instance of the problem we are condidering simply consists
of a directed graph, and of a number 𝑘, which will decide in
which Z/𝑘Z we are going to work. Yet, even though graphs
are fairly easy to generate randomly, it is a little harder to
make sure that it is interesting for our problem. For instance,
we found out that most of the graphs we generated were
either extremely dense or had a bridge. As the algorithm
prunes out right away graphs with bridges, they are of very
little interest.

The benchmark generator thus has an option to reduce the
probability with which a generated graph contains a bridge.
We found out that adding edges so that the degree of a vertex
is at least 3 reduces greatly the odds of the instance being
unsolvable.

A more interesting approach would have been to detect
components that are 1-edge-connected, and to add edges so
that they become, at least, 2-edge-connected. Unfortunately,
such an algorithm makes it longer to generate a single prob-
lem, and we had the idea too late to implement it and run
new tests.

4.2 Experimental protocol

We designed various sets of problems. Each set regroups a
variety of problems that have a property in common, and
each set comprises both small and bigger graphs.

The first set contains problems in Z/𝑘Z for 𝑘 ≥ 10. Its
aim is to see if working in greater groups makes it easier for
the algorithm to find a correct valuation. Every graph was
generated so that is has 40 vertices and 120 edges.

The second set of problems makes the algorithm work with
Z/5Z, but with graphs that can be especially sparse or dense.

A Simple Heuristic for Finding 𝑘-Nowhere Zero Flows SPA Project, December 2018,

Table 1: Variation of the success of the algorithm
when changing the group order

𝑘 10 15 20 50 150

𝐺1 0.9 0.9 0.9 0.9 0.9
𝐺2 0.6 0.9 0.8 0.8 0.8
𝐺3 0.8 0.7 0.6 0.7 0.7
𝐺4 0.6 0.8 0.8 0.8 0.8
𝐺5 1.0 0.8 0.8 0.9 0.9

Av. 0.78 0.82 0.78 0.82 0.82

Table 2: Variation of the success of the algorithm
with various graphs densities

|𝐸|/|𝑉 |2 0.1 0.4 0.6 0.8 1

𝐺 0.92 0.88 0.82 0.81 0.78

The tests were run on an Intel Core i5-7200U, using at
most 6Go of RAM.

4.3 Results

Table 1 presents the percentage of success of the algorithm
when run on graphs 𝐺𝑖, depending on which Z/𝑘Z the algo-
rithm is working with. As the algorithm is non-deterministic,
it is run ten times on each graph, for each value of 𝑘.

It is a little surprising to realize that allowing the algorithm
to work with higher order groups doesn’t make the problem
any easier for the algorithm, as its chances of success remain
more or less the same.

Table 2 shows the percentage of success of 10 tries on each
graph of a family of size 5, whose density follows the given
criterias.

Yet again, it is surprising that, even though extremely
sparse graphs seem to be easier for the algorithm, graphs
that are extremely dense, or even complete, don’t seem to be
significantly harder than graphs that are not especially dense.
An explaination that we would like to propose, is that the
increased number of edges makes it easier for the algorithm
to find certain paths and cycles.

5 DISCUSSION

5.1 Tests comparisons

No solver for this particular problem exists. This is mainly due
to the fact that the formalized problem is easily describable
by a set of constraints, and it would be faster to pass an
instance to a finite fields linear equations system solver, than
to design an algorithm specificaly for the problem, had the
actual need for such a solver arisen.

Nevertheless, developping our solver by reducing the prob-
lem to a set of equations would have been of little interest,
way less recreational, and a little technical. This is mainly
why we didn’t have the time to develop a program that would

convert an instance of our problem to a linear system for
which a finite fields solver would have found an answer.

Such a program would have been interesting, but we would
have expected it to outperform greatly our algorithm. As
there are as many equations to satisfy as vertices in the
graph, the biggest instances that our algorithm can solve -
with about 400 vertices - are easily solved by modern linear
systems solvers, even though our program struggled.

5.2 Finding correct parameters

As our algorithm relies on heuristics, there are a few different
parameters that will determine how the algorithm unfolds,
as well as its success.

Some parameters will affect how much time the algorithm
will allocate to a certain heuristic. For instance, the constant
MAXSIMPLEFIX puts a bound in the maximum number of
calls to simpleFixVertex that the algorithm can do before
proceeding to the next heuristic. Setting the threshold too
high will make the algorithm search for too long for a solution
that doesn’t exist, and setting it too low will prevent the
algorithm from finding a solution that could have been found
by an heuristic it implements.

The algorithm uses the thresholds MAXSIMPLEFIX, MAX-
MULTIFIX, MAXPATHFIX and MAXZEROFIX, which re-
spectively determine the maximum numbers of calls that can
be made to simpleFixVertex, multipleFixVertex, pathFixVer-
tex and fixZeros. Experimental tests show that using values
that are proportional to |𝐸| is a correct balance between
efficiency and correctness, in the cases that are considered in
the benchmarks. Still, assigning MAXSIMPLEFIX to a signif-
icantly lesser value than MAXMULTIFIX or MAXPATHFIX
seems to make the algorithm more efficient, without loosing
in correctness.

A few other thresholds set the maximum number of times
a heuristic can fail in a row. The idea was to prevent the
algorithm from trying to apply a heuristic in a state were it
is ineffective, due to some unpredicted property of the graph
or to previous choices. The main difference with the previous
thresholds is that, while the former will cut out the heuristic
if the progress is not fast enough, the later will only cut it if
no progress is struck.

Another choice that was seemingly arbitrary is the choice
of the 𝛽 factor in the difference-map algorithm. As it is hard
to interpret, or even hard to predict what a small change
will have for effect, finding a satisfying value can only be
done through experimentation. Sometimes, a good value will
make the difference map algorithm so efficient that it will be
enough to find a solution to the whole problem.

In general, we feel that too many arbitrary choices have
been done. The only arguments that we have to motivate
our changes are experimental results, which have made us
significantly change the values of various parameters. For
instance, as a first guess, we assigned MAXSIMPLEFIX to
|𝐸|2, while experience shows that a value of 3 · |𝐸| seems to
be a better fit.

SPA Project, December 2018, A. Lequen

5.3 Relative efficiencies of the heuristics

Studying more carefully the relative importances of each
heuristic, as well as the way into which they are combined,
would have been interesting.

A few trails have still been blazed during the testing phase.
Informally, we realized that removing the MultipleFixVertex
heuristic makes it significantly harder - but possible, given
enough time - for the algorithm to find a correct NZF.

Another interesting thing that we tried was to remove ev-
ery heuristic but fixZeros, and start from the null valuation.
Surprisingly, such a tweaked algorithm falls into a deadlock
tremenduously quick, and most of the problems that were,
once, easy to solve - even with only the difference map algo-
rithm and simpleFixVertex - become unsolvable. This seems
to be especially true for sparse graphs, although not enough
tests were made to provide statistical evidence.

6 FURTHER WORK

6.1 Planar graphs and duality

As said before, using the duality for planar graphs reduces
the problem to finding a k-coloration of the dual. Although
k-coloration is NP-complete in the general case, we still have
efficient heuristics to find a coloration that is, sometimes, sub-
optimal, although most often optimal or close to the optimal.
For instance, a greedy coloring algorithm is polynomial, in
𝑂(|𝐸| · |𝑉 |). Another less naive algorithm, DSATUR, as
described by Brélaz in 1979, is often suboptimal, but has
the property of finding, in the worst case, a 4-coloration for
planar graphs. It is also reasonably efficient, as it is quadratic
in the number of vertices of the graph.

A planar graph is not uniquely associated to a dual graph.
But computing a dual graph of a planar graph is not a trivial
problem. There are some heuristics that allow us to do so,
and some of them are polynomial or have an interesting com-
plexity. Then, using, for instance, a quad edge representation
would allow us to quickly and efficiently switch from the
primal graph to the dual graph, and thus, quickly converting
a 𝑘-coloration of the dual to find a 𝑘-flow on the primal graph.
The conversion of the coloration to a flow can be done in
𝑂(|𝐸|).

This means that it would result in a way to solve a specific
kind of linear systems more efficiently than by using a linear
systems solver.

6.2 Code availability

The code is available at https://gitlab.com/arnaudlequen/spa
Everything was developed in Python, and graphs are dis-

played using GraphViz, to make it visualy confortable to
check if the flow that has been computed is correct.

There are a few tests available on common graphs, such
as 𝐾5, 𝐾3,3, Petersen’s graph, etc. The generators have been
included in the repository.

7 CONCLUSION

We showed that, using only algorithms on graphs, we could
find a NZF. Even though the algorithm still needs to be
tinkered with, in order to find efficient parameters and to
refine the part each heuristic has to play, it seems to be fairly
complete, in the sense that it often finds a valuation when
there is one.

	Abstract
	1 Introduction
	2 State of the art
	3 Approach
	3.1 Eliminating unsolvable graphs
	3.2 Finding an initial flow
	3.3 Fixing edges
	3.4 Finding paths
	3.5 Removing zeros
	3.6 Full algorithm

	4 Experimental evaluation
	4.1 Generating benchmarks
	4.2 Experimental protocol
	4.3 Results

	5 Discussion
	5.1 Tests comparisons
	5.2 Finding correct parameters
	5.3 Relative efficiencies of the heuristics

	6 Further work
	6.1 Planar graphs and duality
	6.2 Code availability

	7 Conclusion

