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Abstract—This document presents our group’s research work
on the subject of sparse representation applied to gesture recog-
nition. This representation primary aims at reducing the dimen-
sionality of gestural inputs. The obtained results are promising:
they show that sparse representation offers valid answers to the
challenges brought by gestural recognition, among which the
segmentation of the movement into meaningful gestures. Finally,
it provides solid solutions to the input variability issue.

I. INTRODUCTION

The perpetual improvements of computers’ processing
power and of machine learning techniques have allowed the
development of news areas of Human Computer Interaction
(HCI). Gestural recognition is one of these. It already has
applications in the fields of video gaming and computer
assisted surgery, to cite a few. But a lot of challenges are still
to be overcome before computers can successfully interpret
complex gestures.

A. Gesture recognition

Gesture recognition is a process that aims at extracting
meaningful information from a 3D human motion stream,
which can be acquired with a lot of different sensors, such as
accelerometers and gyroscopes (for example a Nintendo Wii-
mote), or motion-tracking cameras (like a Microsoft Kinect
device). The meaningful parts in a motion stream are called
gestures, and must be interpreted by the computer as orders.
Different processes are involved here: segmentation, that is rec-
ognizing a gesture inside a motion stream, and classification,
that is differentiating types of gestures (a collection of gestures
is shown in Figure 5), resulting in different kinds of orders.

Several issues make gestural recognition very complex to
study. Firstly, the high dimensionality of the input: a point in
space is represented by a 3D vector (x, y, z) and motion sensors
provide a minimal acquisition frequency of 60 Hz, leading to
a 120 by 3 vector to process for a gesture that would only last
2 seconds. Secondly, gestures are prone to a very high degree
of variability: inter-users, meaning that two different persons
will not perform the same gesture the same way, and intra-
user, that is the same person will never reproduce the same
exact gesture twice. Thirdly, segmentation is a challenge on
its own, because the computer has to determine whether the
user is trying to accomplish a gesture, or if he is just making
irrelevant moves.

Some algorithms already bring satisfying solutions for both
the segmentation and classification of 3D gestures [1] [2],
but they remain very specific to their application, and do
not provide a compliant basis that could be extended as the
application needs evolve.

B. Sparse representation

The approach that we will now present tries to answer these
issues in a novel way, by representing every gesture as a com-
position of elementary gestures, called atoms, precomputed
and stored in a dictionary. Thus, a gesture will be represented
as a set of atoms associated with various meta-data: a sparse
representation of the original movement.

The generation of such a dictionary of atoms is a supervised
machine learning process. It is composed of two main steps:
the creation of the dictionary from a training set (a set of
gestures of which we know the types), and the representation
of any new gesture with our dictionary. To be efficient, a
dictionary should be composed of the least possible number
of atoms, and still provide a good sparse representation (a
measure for a representation’s fitness is presented below).

Because we want a minimal number of atoms, they should
be usable for a gesture representation regardless of their posi-
tion, rotation, and scale. Quentin Barthelemy, in his thesis on
the sparse representation of multivariate signals [3], addresses
this issue by introducing several techniques to provide atoms
rotation and scale invariants. To handle the atom’s shift in a
gesture, we create, in the dictionary, one atom per possible
position of it. This way, a single line atom, saved at different
shifts, could be efficient in the representation of any kind of
Swipe gesture (see Figure 5), for example.

So, given D a dictionary of atoms φ and a gesture G:

D = [φm ∈ RN×3]Mm=1, G ∈ RN×3

The so called Matching Pursuit (or MP) algorithm will produce
g, the sparse representation of G, composed of a set of patterns
ψ, containing, for each atom used in the sparse representation,
its rotation matrix R and scale x:

g = MP(D,G) = [ψp]
P
p=1 where ψ = [x, φ,R]

From g, we can build the reconstruction G′ of G, leading to
a residual (also called reconstruction) error ε:

G′ =

P∑
p=1

xpφpRp ∈ RN×3 → G = G′ + ε

Such a representation, empowered by a good dictionary,
should be able to represent any kind of gesture sparsely
and efficiently. The classification and segmentation using this
representation still need to be studied before sparse coding can
be used as a production solution, which was the topic of our
research. In Section II, we will present the classification of pre-
segmented gestures using our approach, the topic on which we
focused the most; Section III will then present our attempts to
segment a movement stream into meaningful gestures; finally,
we will conclude our article in Section IV.



II. GESTURE CLASSIFICATION

Classification is the problem of identifying to which of a
set of categories a new observation belongs. Mathematically, it
comes back to finding the closest group of elements to which a
data vector might belong in a space with many dimensions. In
the field of gesture recognition, different approaches already
exist to tackle the problem, providing satisfying results, but
they remain very specific to their application. The sparse
representation offers promising results to extend the capacity
of the other approaches.

A. General classification process

Classification is a very common task in computer sciences,
notably in data mining. A simple and yet efficient algorithm
is k-NN (for k Nearest Neighbours).

In a N-dimensions space, provided with existing labelled
points (the training set), the algorithm locates the k nearest
neighbours of the new point that we want to classify, and
sets its category to which is the most frequent among its
neighbours. In Figure 1, the test point is the green circle. If
k = 3, it will be set to the red triangles category; if k = 5, it
will be set to the blue squares one.

Fig. 1. An example of a KNN search with k=3 (solid line) and k=5 (dashed
line) in a 2D space

To be efficient, such an algorithm must be provided with
a training set where the points of the same category are as
close to each other as possible. Besides, classical classifiers
like k-NN can take as input any kind of data vector, whatever
their size.

B. Existing approaches

The most straight-forward approach we could think of
is called Pattern Matching: by associating a typical gesture
(the pattern) to each category, one could try to match a new
gesture with each pattern, and conclude that it belongs to
the category to which it fits the most. The crucial point,
here, is to find an efficient fitness operator. Because of the
input’s variability, Pattern Matching is very error prone, and
is only acceptable for single-user applications with few very
distinguishable categories.

Another solution, with far better results, is to use features.
Features are numeric values, extracted from a gesture, that
provide meaningful information on it. We could think of the
movement amplitude, its duration, extrema of speed, acceler-
ation, curvature, or any other value that could give relevant

information on the gesture. In the end, the movement is only
represented as a vector of features, which can be used as-
is in a statistical classifier (like k-NN), or passed to other
classification algorithms. This approach has been covered by
Chen et al. in [2], with both a statistical classifier and a
Hidden Markov Model (HMM) classifier [4]. While this kind
of solution can provide excellent recognition rates, it depends
entirely on the choice of the features. For this reason, it is still
very application-specific.

C. Classification using sparse representation

Gesture classification using sparse representation can be
solved by two main approaches [5]:

A first approach, called the multi dictionaries approach,
consists in using several dictionaries to recognize a gesture, as
shown in Figure 2. At first, we build a different dictionary for
each category using the training set. To classify a new gesture,
we compute its sparse representation with each dictionary and
compare each reconstruction error. In the end, the selected
category is the one for which this error is minimal.

Fig. 2. The multi dictionaries approach workflow

Another approach, called the single dictionary approach
(see Figure 3), consists in using a single dictionary for all the
gestures: first, we build a dictionary for each gesture set, then,
we combine the atoms of each dictionary into a single one. We
can now classify gestures by looking at the patterns of their
reconstruction, instead of using only the reconstruction error.
In addition, the Matching Pursuit algorithm will only be called
once, and not for each gesture type.

Fig. 3. The single dictionary approach workflow

The first multi dictionaries approach used to select the cate-
gory which had the dictionary with the smallest reconstruction
error, but it occurred that the decision rules were often more
complicated.

As we can see on Figure 4, the error rates probabilities
tend to overlap, even though the first error curve should
correspond to the gesture we try to recognize, which makes
the classification error-prone.



Fig. 4. Repartition of the reconstruction errors of a Swipe gesture set against
all the dictionaries

Our idea was to help the algorithm make a decision, by
giving him other features than just the smallest error. Using
a supervised learning algorithm like k-NN, and the vector of
the recognition error of our gesture against each dictionary as
the classifier input, the decision rule takes into account the
relationship between the errors against each dictionary.

However, the multi dictionaries approach was not quite
satisfactory, as it requires the building of a dictionary per
gesture type and as many Matching Pursuit runs to compute
the recognition errors. On the other hand, the single dictionary
approach is far more interesting, as it takes as a classifier
input all the data from the patterns (atom’s label, rotation
matrix (or quaternion), and scale), which makes it more robust
and flexible. A new gesture type could be incorporated to
the classifier without the need to rebuild the dictionary: even
though the reconstruction might not be optimal, the patterns
signature might still be unique. This makes the single dictio-
nary approach extendible, and thus, far more independent from
the application context, and close to the sparse representation
goal.

D. Results

In this section, we present our comparison of the two
approaches, that we implemented and tested with the Matlab
environment.

To test gesture classifiers without the need to bother about
the segmentation issue, some researchers have compiled some
pre-segmented and labelled gesture data sets, such as the
6DMG (for 6D Motion Gesture) database, provided by Chen
et al. [2], that we used extensively. Furthermore, it has been
widely used in research papers since it came out in 2013, which
makes it a very good comparison database.

In 6DMG, the positions of the users’ hands are captured
with an optical tracking system at 60 Hz, coupled with a
Nintendo Wiimote to gather additionally the acceleration and
orientation. As we can see it in Figure 5, the database defines
a total of 16 gestures, including swiping motions in eight
directions, poke gestures that swipe rapidly forth and back
in four directions, a V shape, an X shape, and clockwise

Fig. 5. The different types of gestures in the 6DMG database [2]

and counter clockwise circles in both vertical and horizontal
planes. Because sparse representation is rotation invariant, we
started by merging all the rotated gesture datasets, resulting
in 5 gesture type: swipe, V-shape, X-shape, poke (forth &
back), and circle. Each gesture being performed several times
by different users, we can efficiently test the inter-users and
intra-user adaptability of our framework.

In a classification task, the quality measure for a class is
the number of true positives (i.e. the number of items correctly
labelled as belonging to the class) divided by the total number
of elements labelled as belonging to the class, in percent.

Our experimental protocol is the following: we randomly
select gestures to split them into two groups: a train dataset,
and a test dataset. We use the train dataset to build the
dictionary (or the dictionaries) and use the test dataset to test
the classification.

To ensure that our results were truthful, we applied a k-
fold cross validation protocol on our data. Cross-validation is
a model validation technique for assessing how the results of
a classification task will generalize to any dataset. In k-fold
cross-validation, the original sample (the gestures database)
is randomly partitioned into k equal size subsamples. Of the
k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k−1 subsamples
are used as training data.

Gesture Minimum Multiple Unique Rotation
Poke 98.47% 100% 100% 99.38%
Swipe 99.45% 99.4% 99% 98.62%
X-shape 95.56% 96.1% 93.3% 97.24%
V-shape 98.33% 98.9% 94.4% 95.58%
Circle 99.72% 100% 99.4% 98.47%

TABLE I. CLASSIFICATION RESULTS WITH OUR FOUR
CONFIGURATIONS

We have tested our data sets in 4 configurations, with the
results shown in Table I. The first one (labelled Minimum)
is the one described by Duccoffe in [5]: we built several test
samples sing the k-fold cross validation protocol, and chose the
gesture type whose dictionary had the smallest representation
error. In the second configuration (labelled Multiple), we
did the same as in Minimum, but added a machine learning



classifier with the error vector as input. The third configuration
(labelled Unique) implemented the single dictionary approach
without the rotation matrices. Finally, the last configuration
(labelled Rotation) used the unique dictionary approach with
the 5 gestures and the rotation matrices.

Those results are not perfect: the 6DMG database has only
5 different gestures, which might be too small to test the
potential of the unique dictionary approach. Furthermore, such
a database comes with noiseless and pre-segmented gestures,
which does not correspond to a production reality.

Despite that fact, the results still allowed us with interesting
observations. The first one is that for 5 gestures, the addition
of a machine learning classifier to the multiple dictionary
approach improves the results, which seems perfectly logical,
as it is the purpose of machine learning algorithms to solve
that kind of problems. We even reach 100% for the poke and
the swipe, which is quite impressive. The second observation
is that the unique dictionary approach (without the orientation)
does not perform better than the multiple dictionaries. We
can emit the hypothesis that it is due to the fact that the
reconstruction errors adds more significant information on the
data than the parts of the patterns we gave to the algorithm.

However, when we add the rotation of the gestures to the
unique dictionary approach, the score is again very high. For
the X-shape and the V-shape, which were only performed
in one orientation, the rotation matrix adds information, as
the classification rate is better. Thus, the unique dictionary
approach seems more suited for complex gesture alphabet.

To conclude on this part, we can state that sparse repre-
sentation seems to be a very promising approach for gesture
recognition. Indeed, it drastically reduces the dimensionality
of segmented gestures, while providing very decent features
for classification (as reads the Rotation column of Table I),
empowering classification with a very good execution speed,
once a good dictionary has been crafted. It also shows inter-
esting results in the variability issue, wiping out the distinction
between rotations of the same gestures (while providing a
rotation matrix on which we could also work to differentiate a
left swipe from a right one, for example). Still, this approach
is very new, and still needs a lot of work before it can achieve
the ambitions it carries. Optimizing the differentiation between
the patterns of different gestures (to improve classification),
allows the extension of a learning algorithm with new gestures
by crafting a stronger dictionary and can be a very interesting
extension of our algorithm.

III. GESTURE SEGMENTATION

Our two approaches, as they efficiently solve the dimen-
sionality issue, can be used to solve the other big problematic
of gesture recognition: segmentation. It consists in cutting
a complex motion stream into the only relevant parts: the
gestures. Compared to a pre-segmented database as 6DMG,
gesture intentions might be noisy, poorly done, or even a
combination of the expected gestures.

This part is certainly the hardest to overcome in the vast
topic of gesture recognition. Indeed, an algorithm that could
recognize effortlessly complex successions of gestures, or even
a combination of different ones (a swipe and a circle, for

example) would allow a really seamless interface between the
human and the computer. Alas, at the time of writing, the most
efficient way to segment a gesture is still to add a button to
the user controller, so that he can tell when his gesture starts,
and when it ends. Not quite impressing.

A. Approach

The idea of our approach is to use a supervised learning
classifier to recognize whether a segment of the motion stream
is a gesture or not. In order to achieve this task, we add a new
prediction class to our machine learning system: the zero class,
that is non-recognized gestures. To recognize a gesture as a
non-significant move, we look at the probability that a new
gesture belongs to each category. If this probability is below
50% for every gesture type, then, we consider the studied
gesture irrelevant.

In order to segment gestures, we have to define how to
extract potential gestures for the stream. A naive approach is
to create a moving window, moving along the input data and
calculating the probability for each segment to be a gesture.
If this probability is high enough, then we have a segmented
gesture. The problem with this approach is that we have a fixed
window size for different gestures length. It does not work.

Thus, we have chosen another approach: determining key
points in the motion stream, such as a brutal change in
direction or velocity. We then compute the gesture probability
for every segment between two key points that has a credible
length (a gesture should not last less than 1/2 second nor
more than 2 seconds). Finally, we only keep the segments that
have been recognized as proper gestures. The advantage of
this approach is that we can see if a gesture is composed of
several sub-gestures (a poke is the combination of two swipes
in opposite direction, for example), and thus segment more
complex gestures.

Fig. 6. Segmentation workflow

B. Results

Testing our segmentation framework has been quite chal-
lenging. The first challenge was the lack of a pre-definite
dataset. Because segmentation is still a prominent issue, there
is no dataset or metric to compare our results with a different
method. We had to come up with our own test dataset.
Unfortunately, creating an artificial motion stream to segment
is complicated. We came up with two methods: a concatenation



of 6DMG gestures, separated by credible noise (a white
noise would have been unrealistic), and real-life experiments
generated by us with a Razer hydra (a magnetic device, which
can record 3D positions while being held like a Nintendo
Wiimote).

We tested our framework on those gestures. Because we
lack proper experiment metrics, we cannot provide quantitative
results. However, the 6DMG concatenated gestures were suc-
cessfully recognized by a single dictionary trained with the
same types of gestures. Still, we cannot really believe our
results, as the separation between gestures in the stream was
crafted by ourselves. A white noise separation would not be
realistic, while drawing a line between two gestures could be
misinterpreted as a swipe.

Our experiments with the Razer Hydra were not conclusive
either, because the key points rising was hard to fine-tune. If we
put too much sensitivity, key points could be detected due to
measure noise. If we put less sensitivity, our gestures beginning
and ending were then hard to catch for the algorithm, leading in
a poor recognition rate. Still, we managed to interpret some of
our moves correctly, so we believe that such an approach could
give promising results, if studied thoroughly. In particular,
we believe that the detection of gestures and sub-gestures
could provide a very good starting point to recognize complex
gestures (a X gesture can be interpreted as 3 consecutive
swipes).

IV. CONCLUSION

During this research project, we have experimented dif-
ferent methods to apply sparse representation to gesture
recognition, working on the two main aspects of this topic:
classification, and segmentation. Our results were not always
positive, but, it appears that this approach is really innovative,
and that it could empower gesture recognition with brilliant
solutions to the difficult challenges it embodies.

Classification, on which we focused the most, has already
given very promising results, with the recognition rate of
certain gestures (swipe and poke) rising up to 100%, despite
the multi-users component of our test database. This rare result
proves that sparse coding is a right way to follow to get rid of
the issue of the variability of the input, besides the fact that it
already solves the dimensionality one.

Despite these results, it is clear that sparse representation
of the movement is still a work in progress, as a lot of aspects
are still to be covered: the generation of dictionaries could
be critically enhanced, for example. At this time, the atoms
contained in the dictionary are more than half the length of a
gesture. Their atomicity could be greatly enhanced by reducing
this size, but it brings out a lot of other issues.

Where the rubber hits the road is obviously on the segmen-
tation part. This problematic is really the hardest to overcome
in gesture spotting. We believe that our key points approach
could offer promising results, but the lack of a common re-
search ground on this point can only be a brake. Most industrial
gesture recognition frameworks today use the application’s
context (in a video game, an algorithm can guess when the
player is supposed to accomplish a particular gesture) or a
push-button to segment pertinent gestures. A lot of research

would be needed to perfect the estimation of key points in a
motion stream. The choice of features, the adaptivity of the
gesture window, there would be a lot to enhance.
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