Evaluation of Genetic Improvement Tools for
Improvement of Non-functional Properties of
Software
Shengjie Zuo  Aymeric Blot  Justyna Petke

University College London

GIGGECCO'22 — 09 July 2022

http://www0.cs.ucl.ac.uk/staff/a.blot/files/zuo_gi-gecco_2022_slides.pdf


http://www0.cs.ucl.ac.uk/staff/a.blot/files/zuo_gi-gecco_2022_slides.pdf

Genetic Improvement (Gl)

[ Software ]\
[ £ Evolution ]—»[ Software ]
[ Inputs/Spec. ]/

Challenges: Automated refactorisation, performance improvement
Motivation: Hidden flaws, specification changes, code rot, ...

Functional properties (FP) Non-functional properties (NFP)
» Automated bug fixing » Execution time
» Code transplantation » Memory/energy usage

» Qutput quality

» Code size, attack surface

S http://geneticimprovementofsoftware.com/


http://geneticimprovementofsoftware.com/

Motivation

Gl tools for non-functional properties?

RQ1 Availability — Can we find them?
RQ2 Usability — Can they run?

RQ3 Generalisability — Can we recommend them?

— literature review
— experimental study



Existing Gl Surveys

Petke et al. (2018)!
» Genetic Improvement of Software: A Comprehensive Survey
» |EEE Transactions on Evolutionary Computation 22, 3
» 66 Gl core papers (1995-2015)

Living Survey on GI?
» Based on Bill Langdon’s GPBIB
> 468 Gl-related papers (1985-2022)

1h‘ttps ://doi.org/10.1109/TEVC.2017.2693219
*https://geneticimprovementofsoftware.com/learn/survey


https://doi.org/10.1109/TEVC.2017.2693219
https://geneticimprovementofsoftware.com/learn/survey

Survey Results

Methodology
» Paper should focus on NFP
» Paper should propose, implement, or reuse a Gl tool

» Paper should include experimental results

Literature review

Source Dates Papers On NFP  With code
Petke et al. (2018)  (1995-2016) 66 27 19
Living survey on GI  (2016-2022) 264 63 45
ACM Digital Library (2016-2022) 35 15 4
IEEE Xplore (2016-2022) 57 10 9

RQ1: 63 unique relevant Gl papers on NFP



Gl of NFP in Practice

[ Execution time (42)

@ Application-specific (9)
O Accuracy (6)

O Code size (4)

@ Energy consumption (4)
@ Memory usage (3)

[ Readability (1)

— execution time is the most targeted NFP



Gl Tools for NFP

The quest for source code...
» 63 Gl papers on NFP with empirical results
» only 31 with available code
» only 13 distinct tools

Validation
» No application-specific NFP (2 excluded: unnamed)
» No hard hardware requirement (1 fail: GEVO)
» Dependencies should be available (1 fail: Optmizer)
» Tools should run with provided examples (1 fail: HOMI)

RQ2: 13 distinct Gl tools for NFP; 8 that we could run: GGGP, Gin,
GISMO, locoGP, PowerGauge, PyGGI (42 unnamed)



Tool Cross-Evaluation

TS

?
\ \

[ Software B ]4=>[ Software A ]

?

Methodology
We test every tool on a new software, using an experimental setup lifted from a
previous work involving a different tool (but same NFP).



Empirical Study

Gin PyGGl

» Tested on SAT4J — OK » Tested on GSON — OK
LocoGP Unnamed tool (shader)

» Tested on GSON — gave up » Tested on MiniSAT — fail

» Far too much manual work » Designed to only work with shaders
GISMO Unnamed tool (OpenCV)

» Tested on RNAfold — fail » Tested on MiniSAT — fail

» Unable to generate BNF grammar  » Unable to expose deep parameters
GGGP PowerGauge

» Tested on MiniSAT — fail » Tested on MiniSAT — fail

» Unable to modify example » Designed for assembly pipelines



Conclusion

RQ1 (Availability) 63 unique Gl papers on NFP (mainly execution time)
RQ2 (Usability) 8 Gl tools we could easily run
RQ3 (Generalisability) 2 Gl tools we could easily reuse (Gin, PyGGl)

Observations:
» Poor availability
» Poor documentation
» Poor reusability
» (Public) Gl tools are not industry-ready

Take-home message: Release better (documented) code!

10



Selected References

@ Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward.

Genetic improvement of software: A comprehensive survey.
IEEE Trans. Evol. Comput., 22(3):415-432, 2018.

+1



	Motivation
	Availability
	Usability
	Generalisability
	Final Words
	Appendix

