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Abstract. In the window mean-payoff objective, given an infinite path,
instead of considering a long run average, we consider the mean-payoff
over a finite length window that slides over the path. In fact, we consider
a function that, given a path, returns the supremum value of the mean-
payoff that can be ensured over all windows either from the very begin-
ning of the path – that is the prefix dependent version – or from some
position on – that is the prefix independent version. Then, we compute
the expected value of that function in the context of (weighted) Markov
decision process (MDP in short) and in the special case of Markov chain
(MC in short). In the case of the prefix independent version, we show
that the problem of computing the expected value in MDPs can be done
by solving a two-player game, and that this problem is at least as hard as
solving that two-player game. When a specific window length is given,
we have pseudo-polynomial algorithm (polynomial in the window size
that is given in binary), when we consider the supremum over all possi-
ble lengths, the algorithm we have is in NP ∩ coNP. As for the prefix
dependent version we have an algorithm that is exponential in the win-
dow length l to compute the expected value in MDPs, but we also have
a PP-hardness result for that problem, even when l is given in unary.
We also provide algorithms for the special case of MCs.

1 Introduction

Markov Decision Processes (MDPs) are a classical model for decision-making
inside stochastic environments [14,1]. In that context, a stochastic model of the
environment is formalized and we aim at finding strategies that maximize the
expected performance of the system with that stochastic environment. This per-
formance in turn is formalized by a function that maps each infinite path in the
MDP to a value. One classical such function is the mean-payoff function that
maps an infinite path to the limit of the means of the payoffs obtained on its
prefixes. While this measure is classical, alternatives to the mean-payoff measure
have been studied in the literature, e.g. one of the most studied alternative no-
tion is the notion of discounted sum [14]. The main drawback of the mean-payoff
value is that it does not guarantee local stability of the values along the path:
if the limit mean-value of an infinite path converges towards a value v, it may
be the case that for arbitrarily long infixes of the infinite path, the mean payoff
of the infix is largely away from v. There have been several recent contribu-
tions [7,4,8,5] in the literature to deal with these possible fluctuations from the
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mean-payoff value along a path. In this paper, we study the notion of window
mean-payoff that was introduced in [7,8] for two-player games in the context of
MDPs, and we provide algorithms and prove computational complexities for the
expected value of window mean-payoff objectives.

As introduced in [8], in a window mean-payoff objective instead of the limit
of the mean-payoffs along the whole sequence of payoffs, we consider payoffs over
a local finite length window sliding along the infinite sequence: the objective asks
that the mean-payoff must always reach a given threshold within the window
length l. This objective is clearly a strengthening of the mean-payoff objective:
for all length l, all infinite sequences π of payoffs that satisfy the window mean-
payoff objective for threshold λ implies that π has a mean-payoff value larger
than or equal to λ.

In this paper, we study how to maximize the expected value of the win-
dow mean-payoff function f lWMP in MDPs. The value of an infinite sequence of
integer values π : N→ Q for this function is defined as follows:

f lWMP (π) = sup{λ ∈ R | ∀i ≥ 0 : max
1≤j≤l

1

j

j−1∑
m=0

π(i+m) ≥ λ}

i.e., it returns the supremum of all window mean-payoff thresholds that are
enforced by the sequence of payoffs π. As in [12], we study natural variants of
this measure: (i) when the size of the window is fixed or when it is left unspecified
but needs to be finite, and (ii) when the window property needs to be true from
the beginning of the path, or a prefix independent version which asks the window
property to eventually hold from some position in the path.

Main contributions Our results are as follows. First, for the prefix independent
version of the measure f lWMP and for a fixed window length l, we provide an
algorithm to compute the best expected value of f lWMP with a time complexity
that is polynomial in the size of the MDP Γ and in l (Theorem 1). It is worth
to note that, since the main motivation for introducing the window mean-payoff
objective is to ensure strong stability over reasonable period of time, it is very
natural to assume that l is bounded polynomially by the size of the MDP Γ . This
in turn implies that our algorithm is fully polynomial for the most interesting
cases. We also note that this complexity matches the complexity of computing
the value of the function f lWMP for two-player games [8], and we provide a rela-
tive hardness result: the problem of deciding the existence of a winning strategy
in a two-player window mean-payoff game can be reduced to the problem of de-
ciding if the maximal expected mean-payoff value of a MDP for f lWMP is larger
than or equal to a given threshold λ (Theorem 2).

Second, we consider the case where the length l in the measure f lWMP is not
fixed but only required to be finite. In that case, we provide an algorithm which
is in NP ∩ coNP (Theorem 4). In addition, we show that providing a polynomial
time solution to our problem would also provide a polynomial time solution to
the value problem in mean-payoff games (Theorem 5), this is a long-standing
open problem in the area [17].



Expected Window Mean-Payoff 3

Third, we consider the case where the good window property needs to be
imposed from the start of the path (for a fixed length). In that case, surprisingly,
the problem of computing if there is a strategy to obtain an expected value above
a threshold λ is harder than for two-player games unless P=PP. Indeed, while
the threshold problem for the worst-case value can be solved in time polynomial
in the size of the game and in l, we show that for the expected value in an MDP,
the problem is PP-Hard even if l is given in unary (Theorem 8). To solve the
problem, we provide an algorithm that executes in time which is polynomial in
the size of the MDP, polynomial in the largest payoff appearing in the MDP,
and exponential in the length l (Theorem 7).

Finally, while our main results concentrate on MDPs, we also systematically
provide results for the special case of MCs.

Related Works As already mentioned, the window mean-payoff objective was
introduced in [7] for two-player games. We show in this paper that the complexity
of computing maximal expected value for the window mean-payoff function is
closely related to the computation of the worst-case value of a game inside the
end-components of the MDP (see Lemma 1 and 3) for the prefix independent
version of our objective. The window mean-payoff objectives were also considered
in games with imperfect information in [12], and in combination with omega-
regular constraints in [6].

Stability issues of the mean-payoff measure have been studied in several con-
tributions. In [4], the authors study MDP where the objective is to optimize
the expected mean-payoff performance and stability. They propose alternative
definitions to the classical notions of statistical variance. The notion of stability
offered by window mean-payoff objective and studied in this paper is stronger
than one proposed in that paper. The techniques needed to solve the two prob-
lems are very different too as they mainly rely on solving sets of quadratic
constraints.

In [5], window-stability objectives have been introduced. Those objective are
inspired from the window mean-payoff objective of [4] but they are different
in that they do not enjoy the so called inductive window property because of
the stricter stability constraints that those objectives impose. The authors have
considered the window-stability objectives in the context of games (2 players)
and graphs (1 player) but they did not consider the case of MDPs (1 1

2 players).
MDP with classical mean-payoff objectives have been extensively studied

both for the probabilistic threshold and the expectation payoff problem, see
e.g. [14]. Combination of both type of constraints have been considered in [3].

Due to lack of space, we only provide sketches of the proofs in this paper. A
complete version of this work with full proofs appears in [2].

2 Preliminaries

For k ∈ N, we denote by [k]0 and [k] the set of natural numbers {0, . . . , k} and
{1, . . . , k} respectively. Given a finite set A, a (rational) probability distribution
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over A is a function P : A→ [0, 1]∩Q such that
∑
a∈A P (a) = 1. We denote the

set of probability distributions on A by D(A).

2.1 Weighted Markov decision processes and Markov chains

Markov chains A finite weighted Markov chain (MC, for short) is a tuple M =
〈S,E, sinit, w,P〉, where S is the finite set of states, sinit ∈ S is the initial state
of this Markov chain, E ⊆ S × S is the set of edges, the function w : E 7→ Q
defines the weights (or payoff s) of the edges, and P : S → D(E) is a function
that assigns a probability distribution – on the set E(s) of outgoing edges from
s – to all states s ∈ S. In the following, P(s, (s, s′)) is denoted P(s, s′), for all
s, s′ ∈ S. The size of M is the number of states |S|, and will be denoted |M|.

For a state s ∈ S, we define the set of infinite paths inM starting from s as
PathsM(s) = {π = s0s1 . . . ∈ Sω | s0 = s,∀n ∈ N, P(sn, sn+1) > 0}. The set
of all the paths in M is PathsM =

⋃
s∈S Paths

M(s). For a path π = s0 . . . ∈
PathsM, by π(i, l) we denote the sequence of l+ 1 states (or l edges) si . . . si+l.
The infinite path of π starting in sn is denoted π(n,∞) ∈ PathsM.

Consider some measurable function f : PathsM(sinit) → R associating a
value to each infinite path starting from sinit. For an interval I ⊂ R, we de-
note by f−1(M, sinit, I) the set {π ∈ PathsM(sinit) | f(π) ∈ I}, and for
r ∈ R, f−1(M, sinit, r) refers to f−1(M, sinit, [r, r]). Since the set of paths
PathsM(sinit) forms a probability space, measured by a function Pr, and f is
a random variable, we denote by EMsinit(f) =

∫
x∈R Pr(f

−1(M, sinit, x)) · x the
expected value of f over the set of paths starting from sinit.

The bottom strongly connected components (BSCCs for short) in a Markov
chain M are the strongly connected components from which it is impossible to
exit (for all s ∈ B and t ∈M, we have P(s, t) > 0 implies that t ∈ B). We denote
by BSCC(M) the set of BSCCs of the Markov chain M. Every infinite path
eventually ends up in one of the BSCCs almost surely. Formally:

Proposition 1. For all state s ∈ S, we have: Pr(π ∈ PathsM(s) | ∃B ∈
BSCC(M), π |= ♦�B) = 1.

Markov decision process A finite weighted Markov decision process (MDP, for
short) is a tuple Γ = 〈S,E,Act, sinit, w,P〉, where S is the set of states, sinit ∈ S
is the initial state of this Markov decision process, Act is the set of actions,
and E ⊆ S × Act × S is set of edges. The function w : E 7→ Q defines the
weights of the edges, and P : S × Act → D(E) is a function that assigns a
probability distribution – on the set E(s, a) of outgoing edges from s – to all
states s ∈ S if action a ∈ Act is taken in s. Given s ∈ S and a ∈ Act, we define
Post(s, a) = {s′ ∈ S | P(s, a, s′) > 0}. Then, for all state s ∈ S, we denote
by Act(s) the set of actions {a ∈ Act | Post(s, a) 6= ∅}. We assume that, for
all s ∈ S, Act(s) 6= ∅. The size of Γ will be denoted |Γ |, and will refer to the
number of states of Γ times the number of actions, that is |S| · |Act|.

A strategy in Γ is a function σ : S+ 7→ Act such that σ(s0 . . . sn) ∈ Act(sn),
for all s0 . . . sn ∈ S+. We denote by strat(G) the set of strategies available in Γ .
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Once we fix a strategy σ in an MDP Γ = 〈S,E,Act, sinit, w,P〉, we obtain an
MC Γ [σ]. Consider a measurable function f that associates a value to infinite
paths in Markov chains. Then, the expected value of f in an MDP Γ , that is

EΓsinit(f) is equal to supσ∈strat(Γ ) EΓ
[σ]

sinit(f).

An end component (EC for short) M = (T,A) ⊆ S×Act is a sub-MDP of Γ
(that is, that ensures that, for all s ∈ T, a ∈ Act(s)∩A, we have Post(s, a) ⊆ T )
that is strongly connected. A maximal EC (MEC for short) is an EC that is not
included in any other EC. We denote by MEC(Γ ) the set of all maximal end
components of Γ . Any infinite path will eventually end up in one maximal end
component almost surely, whatever strategy is considered. That is stated in the
following proposition:

Proposition 2. For all strategy σ ∈ strat(Γ ), for all state s ∈ T , we have:

Pr(π ∈ PathsΓ [σ]

(s) | ∃M ∈MEC(Γ ), π |= ♦�M) = 1.

2.2 Weighted Two-Player Games

We consider weighted two-player games G = 〈S1, S2, sinit, E, w〉 where the set
of vertices S = S1 ] S2 is partitioned into the vertices belonging to Player 1,
that is S1, and the vertices belonging to Player 2, that is S2, and sinit ∈ S1

is the initial vertex. The set of edges E ⊆ S1 × S2 ∪ S2 × S1 is such that
for all s ∈ S, there exists s′ ∈ S such that (s, s′) ∈ E. For all s ∈ S, we
denote by Succ(s) = {s′ ∈ S | (s, s′) ∈ E}. The weight function3 w is such
that w : E ∩ S2 × S1 → Q. An MDP Γ = 〈S,E,Act, sinit, w,P〉 can be
transformed into a two-player game GΓ = 〈S1, S2, sinit, E, w

′〉 where S1 = S,
S2 = {(t, a) ∈ S×Act | a ∈ Act(t)}, E = E1∪E2 with E1 = {(t, (t, a)) ∈ S1×S2}
and E2 = {((t, a), t′) ∈ S2 × S1 | t′ ∈ Post(t, a)}. Further, w′ : E2 7→ Q with
w′((t, a), t′) = w(t, a, t′).

The strategies available for the two players are defined in the same way that
we defined strategies in MDPs. The set of strategies for Player 1 and Player 2
are denoted strat1(G) and strat2(G) respectively.

In the following, we will denote the size of G by |G| the number of states of
G, that is |S1 ] S2|.

3 We do not consider weight on the edges coming from states belonging to Player 1 so
that a two-player game can be seen as an MDP where the actions are states belonging
to Player 2, who is not a stochastic adversary (that is, Player 2 uses deterministic
strategy, analogous to the strategy defined in MDPs). That definition of two-player
games is not exactly the one used in the previous paper dealing with window mean-
payoff (that is [7]). However, their definition of games (where the weight function
is defined on every edges, not only the edges chosen by Player 2) can be easily
translated into the one we use by doubling the number edges. That does not affect
the asymptotic complexity of the algorithms considered.
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3 Window mean-payoff

Let M = 〈S,E, sinit, w,P〉 be a finite Markov chain. Consider a window length
lmax ≥ 1 and a sequence of edges ρ = e1 . . . elmax in M. We define the window

mean-payoff of ρ, that is WMP (ρ), by WMP (ρ) = maxk∈[lmax]
1
k

∑k
i=1 w(ei).

The value WMP (ρ) is the maximum mean-payoff one can ensure over a
window of length k ∈ [lmax]. For a given infinite path π = s0 . . ., a threshold
λ ∈ Q, a position i ∈ N and l ∈ [lmax], we say that the window si is closed in
si+l with respect to λ if WMP (π(i, l)) ≥ λ. Otherwise, the window is open.

We define the fixed window mean-payoff function f lmax

FixWMP : PathsM 7→ R
such that, for every path π = s0 . . . ∈ PathsM:

f lmax

FixWMP (π) = sup{λ ∈ R | ∃k ∈ N, ∀i ≥ k : WMP (π(i, lmax)) ≥ λ} (1)

The value f lmax

FixWMP (π) corresponds to the supremum over all threshold λ that
are above every window mean-payoff for length lmax from some position on. This
function is prefix independent, that is, for every path π ∈ PathsM, for all n ≥ 1,
f lmax

FixWMP (π) = f lmax

FixWMP (π(n,∞)).

Then, we define the bounded window mean-payoff function fBWMP : PathsM 7→
R such that, for every path π = s0 . . . ∈ PathsM:

fBWMP (π) = sup{λ ∈ R | ∃l, k ≥ 1,∀i ≥ k : WMP (π(i, l)) ≥ λ} (2)

The value fBWMP (π) corresponds to the supremum over all threshold λ that en-
sures that there is a length l for which every window mean-payoff for that length
l are above λ from some position on. That function is also prefix independent.

Finally, we define the direct fixed window mean-payoff function f lmax

DirFixWMP :
PathsM 7→ R such that, for every path π = s0 . . . ∈ PathsM:

f lmax

DirFixWMP (π) = sup{λ ∈ R | ∀i ≥ 0 : WMP (π(i, lmax)) ≥ λ} (3)

The value f lmax

DirFixWMP (π) corresponds to the supremum over all threshold λ that
are above every window mean-payoff for length lmax from the very beginning
of the path. That function is not prefix independent. Note that for any path
π ∈ PathsM, f lmax

DirFixWMP (π) ≤ f lmax

FixWMP (π).

We also define the mean-payoff function fMean : PathsM 7→ R such that,
for π = s0 . . . ∈ PathsM, we have fMean(π) = lim inf

n→∞
1
n

∑n−1
k=0 w(sk, sk+1).

In the following, in the two-player games, MCs and MDPs w.l.o.g. we consider
only non-negative integer weights4.

4 Note that if the weights belong to Q, then one can multiply them with the LCM d
of their denominators to obtain integer weights. Among the resultant set of integer
weights, if the minimum integer weight κ is negative, then we add -κ to the weight
of each edge so as to obtain weights that are natural numbers. In that case, if the
expected value of some function defined above is equal to x before the change, then
the new expected value is equal to d · x− κ.
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4 Fixed Window Mean-Payoff

Expected value in an MDP We first consider the expected value of the fixed
window mean-payoff function for some length lmax, that is f lmaxFixWMP , in an
MDP Γ = 〈S,E,Act, sinit, w,P〉.

Recall that, by Proposition 2, we have that for every strategy σ, each path

π ∈ PathsΓ
[σ]

almost surely ends up in an MEC. Since f lmaxFixWMP is prefix
independent, the value of a path only depends on the MEC in which it ends up.
Now, consider an MEC M = (T,A) ∈ MEC(Γ ) of Γ and a state s ∈ T . Since
M is strongly connected (since it is an MEC), for every pair of states s, s′ ∈ T ,
there exists a reaching strategy σ(s,s′) ∈ strat(M) such that every path starting

from s reaches s′ almost surely, in the Markov chain M [σ(s,s′)]. Therefore, for all
s, s′ ∈ T , we have EΓs (f lmax

FixWMP ) = EΓs′(f
lmax

FixWMP ). Let us denote by λlmaxM the

expected value of f lmax

FixWMP among all the paths that and up in M . In that case,
we have the following lemma:

Lemma 1. Let M = (T,A) be an MEC of Γ . Then we have:

λlmaxM = max
s∈T

sup
σ1∈strat1(GM )

inf
σ2∈strat2(GM )

f lmax

DirFixWMP (π(GM ,s,σ1,σ2))︸ ︷︷ ︸
denoted g(s)

Proof (sketch). Let v ∈ T be a state that maximizes the outcome of the two-
player game (that is, that ensures that g(v) = maxs∈T g(s)). Then, once a strat-
egy σ in the MDP is fixed, because we consider infinite paths in the induced
MC Γ [σ], every possible (with respect to the strategy σ) finite sequence of states
will be visited infinitely often almost surely. In particular, the worst sequence
of transitions in terms of maximizing the fixed window mean-payoff (that is the
sequence that Player 2 chooses in the two-player game GM ) is visited infinitely
often almost surely. Therefore, what happens in the MEC M is analogous to
what happens in the two-player game GM . Then, the maximum over all states
of the outcome of the two-player game for the fixed or direct fixed window mean-
payoff function are identical. The lemma follows. ut

Once the expected value inside every MEC is computed, we construct a new
MDP ΓMEC that is equal to Γ except that we replace the weight of the edges
in each MEC M by λlmaxM . Then we run an expected mean-payoff algorithm on
ΓMEC and the value obtained is equal to the expected window mean-payoff
over the whole MDP Γ . Further, the expected mean-payoff in ΓMEC can be
computed in time that is polynomial in the size of the MDP ΓMEC . Therefore,
we have the following theorem (since |ΓMEC | = |Γ |):

Theorem 1. Computing the expected value of f lmax

FixWMP in an MDP Γ can be
done in time O(p1(|Γ |, lmax)) where p1 is a polynomial function.

Since lmax is given in binary, the complexity we have is in fact exponential in
the binary length encoding of lmax.
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Note that the best algorithm we know (see [7]) to solve a two-player game G
for the direct fixed window mean-payoff objective for length lmax runs in time
O(p2(|G|, lmax)) where p2 is also a polynomial function. In fact, we can show that
solving the two-player game for the direct fixed window mean-payoff objective
can be reduced in polynomial time to computing the expected value of the fixed
window mean-payoff function. Formally:

Theorem 2. Computing the expected value of the fixed window mean-payoff
function in an MDP is at least as hard as solving a two-player game for the
direct fixed window mean-payoff objective (for polynomial reductions).

Proof (sketch). Consider a two-player game G = 〈S1, S2, sinit, E, w〉 that we
want to solve for the direct fixed window mean-payoff objective. We first modify
the game G into another game Greset by adding, from every state in S2, an edge
to sinit with a very high weight (for instance, (W + 1) · lmax, where W is the
maximum weight appearing in G). Now, the game Greset is strongly connected.
Moreover, if the weight on the new edges is high enough, such a new edge will
not be interesting for Player 2 to take infinitely often. However, it may be taken
finitely many times, by Player 2 if it is interesting to reach the state sinit. In
that way, the maximum outcome that be achieved over all starting state is done
in state sinit and the outcome of the game Greset from sinit is the same as the
outcome of the game G from sinit. Then, we conclude by using Lemma 1. ut

Expected value in an MC Consider a Markov chain M = 〈S,E, sinit, w,P〉. The
techniques used here are very similar to the ones used in MDPs. By Proposition 1,
each path will almost surely end up in a BSCC. Therefore, we first consider a
BSCC B ∈ BSCC(M). By definition, B is strongly connected. Therefore, the
expected value of f lmaxFixWMP (that is prefix-independent) is the same from every

state. Let us denote by µlmaxB the expected value of f lmax

FixWMP over all paths that
are in B. Then:

Lemma 2. Let B ∈ BSCC(M). Then:

µlmaxB = min
s∈B

min
π∈PathsB

WMP (π(0, lmax))︸ ︷︷ ︸
denoted mB

Proof (sketch). Because B is strongly connected, every finite sequence of states
in B is visited infinitely often almost surely. In particular, the sequence that
minimizes the window mean-payoff in B (whose window mean-payoff is equal to
mB) is seen infinitely often. Hence the lemma. ut
Note that this also corresponds to the outcome of the game where every state
belongs to Player 2 for the direct fixed window mean-payoff function. Therefore,
by using the same algorithm that computed λlmaxM in an MEC M , µlmaxB can be
computed in time polynomial in lmax

The set of BSCCs and the probability of reaching each BSCC can be com-
puted in polynomial time. Moreover, we have the following equality: EMsinit(f

lmax
FixWMP ) =∑

B∈BSCC(M) Pr(Reachsinit(B)) ·mB.
Hence, the following theorem:
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Theorem 3. Finding the expected value of f lmax

FixWMP in an MC M can be done
in time O(q1(|M|, lmax)) where q1 is a polynomial function.

We did not find a truly polynomial algorithm to compute λlmaxM in an MEC M .
Hence the complexity. It is still an open problem to know if there exists a truly
polynomial algorithm that computes µlmaxB .

5 Bounded Window Mean-Payoff

Expected value in MDPs We are interested in the expected value of the bounded
window mean-payoff function fBWMP in an MDP Γ = 〈S,E,Act, sinit, w,P〉.
As in the case of the fixed window mean-payoff function, the bounded window
mean-payoff function too is prefix independent. Therefore, we will use techniques
very similar to the one we used in Section 4.

For an MEC M = (T,A) ∈ MEC(Γ ), we denote by λM the expected value
of the bounded window mean-payoff considering the paths that end up in M .
Recall that fMean is the mean-payoff function. Then:

Lemma 3. Let M = (T,A) be an MEC of Γ . Then we have:

λM = max
s∈T

sup
σ1∈strat1(GM )

inf
σ2∈strat2(GM )

fMean(π(GM ,s,σ1,σ2))︸ ︷︷ ︸
denoted ḡ(s)

Proof (sketch). Let s be the state that gives the maximum of the mean-payoff
value over all states. Since the bounded window mean-payoff is the supremum
of the window mean-payoff over all possible window lengths and there exists a
strategy such that almost-surely in M state s can be reached from the other
states, the result follows. ut

Solving a two-player game with the mean-payoff objective is known to be
in NP ∩ coNP and the existence of a polynomial algorithm is an open ques-
tion [17]. Once the expected value inside every MEC M is computed, we use the
same method as in the fixed window mean-payoff case (we construct a new MDP
in which we compute the expected mean-payoff), which requires a polynomial
time algorithm. Hence we have the following theorem:

Theorem 4. Deciding whether or not the expected value of fBWMP in an MDP
is above some threshold λ is in NP ∩ coNP.

Then, with the same reduction used to prove Theorem 2 and with Lemma 3,
we can show the following:

Theorem 5. Computing the expected value of the bounded window mean-payoff
in an MDP is at least as hard as solving a two-player game for the mean-payoff
objective.
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Expected value in MCs Consider a Markov chain M = 〈S,E, sinit, w,P〉. We
proceed in the same way as we did for the expected value of the fixed window
mean-payoff function, since the function fBWMP is prefix independent. Let B ∈
BSCC(M) be a BSCC and let µB be the expected value of fBWMP among all
the paths that are in B. We have the following lemma:

Lemma 4. Let B ∈ BSCC(M). Then:

µB = min
ρ=s0...sk∈ElemCycle(B)

1

k

k−1∑
i=0

w(si, si+1)︸ ︷︷ ︸
denoted MP (ρ)︸ ︷︷ ︸

denoted cB

where ElemCycle(B) denotes the (finite) set of simple cycles in B.

For any cycle ρ ∈ ElemCycle(B), the value MP (ρ) corresponds to the mean-
payoff of the cycle ρ. The value cB is the mean of a minimum mean cycle.

Proof (sketch). For every ε > 0, we can ensure cB − ε by considering an appro-
priate window length. Since fBWMP considers supremum over all cB − ε, the
bounded window mean-payoff cannot be below cB. Moreover, for every n ≥ 1,
the sequence of states that cycles n times around the minimum mean cycle ρ is
seen infinitely often almost surely, and its window mean-payoff is at most MP (ρ)
(if we start in the right point). In fact, for every length l ≥ 1, the fixed window
mean-payoff for length l is almost surely at most cB. Hence, almost surely, the
bounded window mean-payoff of a path is at most cB. ut

By using the Karp Algorithm (see [13]), it is possible to compute the mini-
mum mean cycle in time polynomial in the size of the BSCC B. Hence, we have
the following theorem:

Theorem 6. Finding the expected value of fBWMP in an MC M can be done
in time O(q2(|M|)) where q2 is a polynomial function.

6 Direct Fixed Window Mean-Payoff

Expected value in MDPs Consider now the function f lmax

DirFixWMP . We want to
compute its expected value in an MDP Γ . Since it is prefix-dependent, it is no
longer enough to consider the expected value only inside the MECs.

The algorithm we have consists in constructing a new MDP Γlmax , and then
computing the expected value of fMean in Γlmax . Let us denote by S the set
of states of the MDP Γ and let W be the maximum weight that appears in Γ .
Then, the set of states of Γlmax , that is S′, is equal to S′ = S× ([W ]0)lmax−1×Λ
where we have Λ = {pq | q ∈ [lmax], p ∈ [q ·W ]0}. Informally, the idea of this

construction is the following: Consider a state t = (s, [w1, . . . , wlmax−1], λt) ∈ S′.
This state corresponds to a finite path ρ = s0 . . . s in Γ . Moreover, the last



Expected Window Mean-Payoff 11

lmax− 1 weights encountered in ρ are w1, . . . , wlmax−1. Finally, λt keeps track of
the minimum window mean-payoff seen so far in ρ. Moreover, the MDP Γlmax is
constructed in a way so that every edge exiting t has a weight equal to λt. In this
way, for π ∈ PathsΓlmax , the sequence of weights seen in π is a non-increasing
series included in the finite set Λ. Therefore, eventually that series reaches a
fixed point that is the direct fixed window mean-payoff λ of the corresponding
path in Γ . Since the series reaches the fixed point λ, then the mean-payoff of
that series is equal to λ. In fact, we have the following lemma:

Lemma 5. For an MDP Γ , we have:

EΓsinit(f
lmax
DirFixWMP ) = EΓlmaxs′init

(fMean)

where s′init = (sinit, [W, . . . ,W ],W ).

We have |Γlmax | ≤ |S| ·W lmax · l2max. Since computing the expected value of
the mean-payoff in an MDP can be done in polynomial time (see [14]), we have
the following result:

Theorem 7. Computing the expected value of f lmax

DirFixWMP in an MDP Γ can
be done in time O(p3(|S| ·W lmax · l2max)) where p3 is a polynomial function and
W is the maximum weight appearing in the MDP Γ .

Although the algorithm we have is exponential in lmax, and therefore doubly
exponential in the binary encoding lmax, it has to be noted that it is fixed
parameter tractable, if we consider W and lmax to be parameters.

We now consider the hardness of the problem. We show that given an MDP Γ
with an initial state sinit, a length lmax and a threshold λ, checking if EΓsinit(f

lmax
DirFixWMP ) >

λ is PP-hard. Recall that PP is the class of languages L ⊆ Σ∗ recognized by a
probabilistic polynomial-time Turing machine M with access to a fair coin such
that for all w ∈ Σ∗, we have w ∈ L if and only if M accepts w with a proba-
bility above 1

2 . The class PP contains NP, is closed under complementation [15]
and hence also contains the class coNP. Further, the class PP is contained in
PSPACE.

Theorem 8. The direct fixed window mean-payoff problem for MDP is PP-hard.

We show a reduction from k-th largest subset which has recently been shown to
be PP-complete [11]. The k-th largest subset problem is stated as given a finite
set of positive integer A = {a1, . . . , an}, and two naturals K,L ∈ N, decide if
there exist nB ≥ K distinct subsets Sj ⊆ A, such that, for all j ∈ [nB ] we have∑
a∈Sj a ≤ L.

Proof (sketch). The MDP Γ that is constructed from an instanceA = {a1, . . . , an},
K, L of the k-th largest subset problem is drawn in Figure 1. We have lmax =
n + 1. The construction is such that, if the sum of the weights visited from s0

to sn is at most L for a path π, then action β should be taken in sn so that
f lmaxDirFixWMP (π) = an + 1 − 1

n+1 . Otherwise, action α should be taken, which
leads to a direct fixed window mean-payoff equal to an+ 1. In fact, we have that
there exists at least K subsets of sum lower than or equal to L if and only if
EΓs0(f lmaxDirFixWMP ) ≤ 1

2n [(2n −K) · (an + 1) +K(an + 1− 1
n+1 )]. ut
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s0 s1 · · · sn−1 sn

sα

sβ

0.5, a1

0.5, 0

0.5, an

0.5, 0

α, 1, N − (L+ 1)

β, 1, N

1, an + 1

1, an + 1− 1
n+1

Fig. 1. The MDP that is constructed from the instance of the k-th largest subset
problem A = {a1, . . . , an},K, L. The probabilities appear in black, the weights in red.
In the construction, we have N = (n + 1) · (an + 1), where we assume that an is the
maximum of all integer (ai)i∈[N ].

Since lmax = n + 1, the reduction is still polynomial when lmax is given in
unary. Thus, we cannot expect to have an algorithm that is polynomial in the
value of lmax unless P = PP .

Expected value in MCs Consider a Markov chain M = 〈S,E, sinit, w,P〉. Let
f = f lmaxDirFixWMP . Then, for every path π ∈ PathsM, we have f(π) ∈ Λ
with Λ = {pq | q ∈ [lmax], p ∈ [q · W ]0} and W = max

e∈E
w(e). Then, if

we denote the finite set Λ by the sequence of thresholds λ0 < . . . < λn, we
have, for all i ≤ n − 1, Pr(f−1(M, sinit, λi)) = Pr(f−1(M, sinit, [λi,∞[)) −
Pr(f−1(M, sinit, [λi+1,∞[)). Therefore, if Pr(f−1(M, sinit, [λi,∞[)) is computed
for all 1 ≤ i ≤ n, the expected value EMsinit(f) can be computed. For all i ≤ n, we

construct a new Markov chainMλi
lmax

so that the probability Pr(f−1(M, sinit, [λi,∞[))

is equal to the probability of not reaching some state (trap) in Mλi
lmax

. To do
that, we first consider the inductive property of windows (see [7]).

Inductive property of windows. Let π = s0 . . . ∈ PathsM. Assume that
there are j ≤ j′ < n such that the window opened at sj is still open at sj′ and
it is closed at sj′+1 (with respect to λi). Then, any window opened between sj
to sj′ (included) are also closed at sj′+1 (with respect to λi).

This implies that we only have to remember the location of the largest window
that is still opened, as well as the ’amount of payoff’ that is required for it to
be closed. If that window could not be closed within lmax steps, then the state
trap is reached. That is why, in the Markov chain Mλi

lmax
, the state space S′ is

equal to S′ = (S × [lmax − 1]0 × [W · (lmax − 1)]0) ∪ {trap}. Then, we have the
following lemma:

Lemma 6. Let 1 ≤ i ≤ n. Then:

Pr((f)−1(M, sinit, [λi,∞[)) = Pr(π ∈Mλi
lmax

| π |= ¬♦{trap})

Computing the probability of reaching some state in a Markov chain can be done
in polynomial time. Moreover, we have that |Mλi

lmax
| ≤ |M| · lmax ·W · lmax + 1

and |Λ| ≤ lmax ·W · lmax. Hence, the theorem:

Theorem 9. Computing the expected value of f lmax

DirFixWMP in an MC M can
be done in time O(q3(|S|,W, lmax)) where q3 is a polynomial function.

If W and lmax are given in binary, the algorithm we have is pseudo-polynomial
in W and lmax.
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