Remédiation 2015-2016

TD5 : Topologie usuelle de R : propriété de Bolzano-Weierstrass, suites de Cauchy, valeurs d'adhérence d'une suite

Exercice 1 Soit $(u_n)_n$ une suite réelle. Montrer que si $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers une même limite l alors $(u_n)_n$ converge vers l. En déduire que si $(u_n)_n$ est croissante et $(u_{2n})_n$ converge, alors (u_n) converge.

Exercice 2 Soit $(u_n)_n$ une suite réelle. On veut montrer "convergente" \Leftrightarrow "être de Cauchy".

- 1. Montrer que si $(u_n)_n$ converge alors elle est de Cauchy
- 2. Réciproquement, soit $(u_n)_n$ une suite de Cauchy. Montrer que la suite est bornée et trouver un candidat pour être limite de la suite. Puis, prouver que la suite est convergente.

Exercice 3 Montrer que $(u_n)_n \in \mathbb{Z}^{\mathbb{N}}$ converge \Leftrightarrow elle est stationnaire (i.e constante à partir d'un certain rang)

Exercice 4 Justifier que la suite de terme général $\cos(n)$ diverge.

Exercice 5 Soit $(r_n)_{n\in\mathbb{N}}$ une suite de réels telle que $\exists \lambda \in]0,1[, \forall n \in \mathbb{N} | r_{n+1} - r_n| \leq \lambda^n$. Montrer que $(r_n)_{n\in\mathbb{N}}$ est de Cauchy.

Exercice 6 Vrai ou Faux? Justifier (preuve ou contre-exemple)

- 1. Toute suite positive divergente tend vers $+\infty$
- 2. Toute suite croissante divergente tend vers $+\infty$
- 3. Toute suite divergente vers $+\infty$ est croissante à partir d'un certain rang.
- 4. Toute suite positive décroissante est convergente de limite nulle
- 5. Toute suite positive de limite 0 est décroissante à partir d'un certain rang
- 6. Toute suite convergente vers une limite l > 0 est positive à partir d'un certain rang
- 7. Toute suite bornée est convergente
- 8. Toute suite bornée admet une sous-suite convergente
- 9. Si $(u_n)_n$ est une suite divergente alors toute sous-suite de $(u_n)_n$ diverge
- 10. La somme de deux suites divergentes diverge
- 11. La somme d'une suite convergente et d'une suite divergente diverge.

- 12. Toute suite convergente est bornée
- 13. Une suite qui admet une unique valeur d'adhérence converge

Exercice 7 Série harmonique : Soit $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$

- 1. Montrer que $\forall n > 0$, $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$
- 2. En déduire un encadrement de H_n et trouver sa limite
- 3. Montrer que $u_n = H_n \ln(n)$ est décroissante positive. Que peut-on conclure ?

Exercice 8 Théorème de Cesàro

- 1. Soit $(v_n)_n$ suite réelle convergente de limite l. Montrer que $\frac{1}{n}\sum_{k=1}^n v_k \to l$
- 2. Soient $(v_n)_n$ suite réelle convergente de limite l et (λ_n) suite de réels positifs telle que $\sum_{k=1}^n \lambda_k \to +\infty$. Montrer que $\frac{\sum_{k=1}^n \lambda_k v_k}{\sum_{k=1}^n \lambda_k} \to l$
- 3. Avons-nous la réciproque suivante : $\frac{1}{n}\sum_{k=1}^n v_k \to l \Rightarrow v_n \to l$?
- 4. Montrer que si $v_n \to +\infty$ alors $\frac{1}{n} \sum_{k=1}^n v_k \to +\infty$
- 5. Si (u_n) est une suite de période p, montrer que $\frac{1}{n}\sum_{k=1}^n u_k \to \frac{u_1+\dots+u_p}{p}$.
- 6. Montrer que si $(u_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$ et $\frac{u_{n+1}}{u_n} \to l$ alors $(u_n^{1/n})$ converge vers l.