
Potential NP-completeness of an approximate tree

compression problem

Clément Legrand-Duchesne

Univ Rennes, F-35000 Rennes, France

September 7, 2018

Abstract

A tree is said to be self-nested if all his subtrees of equal height are isomorphic. It has

been shown that self-nested trees are a natural and relevant model for the structure of a

plant. We are interested in approximating trees by self-nested trees. More precisely, given

a tree T, we try to find the self-nested tree S that minimizes the edit distance between S and

T. In this paper, we present our attempts to prove that this problem is NP-complete, as well

as polynomial algorithms when T is of height 2.

Reference: this internship has been carried out from May 28, 2018 to July 27, 2018, in

the MOSAIC team (MOrphogenesis Simulation and Analysis In siliCo) of the RDP

laboratory (Reproduction et Développement des Plantes) of the ENS de Lyon, under the

supervision of Christophe Godin.

Keywords: graph theory; NP-completeness; self-nested trees; edit distance; tree compres-

sion.

Contents

Introduction 1

1 Context 1

1.1 Self-nested trees and definitions . 1

1.2 DAG compression . 2

1.3 Avantages of self-nested trees . 3

1.4 Edit distance . 4

1.5 Approximation by self-nested trees . 5

2 Contribution 6

2.1 Belonging to the NP class . 6

2.2 First approach . 7

2.2.1 Trees of height 2 with height conservation 7

2.2.2 Trees of height 2 without preserving the height of the nodes 9

2.3 Second approach . 11

2.4 Last approach . 15

Conclusion 17

Introduction

The MOSAIC team develops mathematical models and tools to study the morphogenesis and

growth of animals and plants. In order to do that, the team designs mathematical models

and data structures able to describe efficiently and accurately the shapes and properties of the

plants or animals.

For example, it is natural to represent the branching structure of a plant by a tree. In

those trees representing plants, we realized that some ramifications patterns tend to repeat

themselves in many places. The MOSAIC team has thus designed a theoretical model of the

structure of a plant based on this idea of repeated patterns: self-nested trees, in which all the

subtrees of equal height are isomorphic [1].

Some biological or physical quantities (such as the flow of sap in the plant for example)

can be computed on these trees. Depending on the species, the size of the trees representing

the plants can be tremendous and lead to unreasonable computing time. They also developed

a compression algorithm for trees, based on the same idea of repeating patterns within the

tree [1]. Moreover, by eliminating this redundancy, the different patterns in the tree and

their organization are highlighted. For this reason, this compression helps to understand the

structure of the plant and its development.

Those compression algorithms return DAGs (Directed Acyclic Graph) and it is possible

to show that the tree having the best compression factor are the self-nested ones. Therefore,

it is beneficial to approximate trees by self-nested ones, in order to have an approximate yet

compact representation of them. There are several ways to do this and the MOSAIC team has

developed different algorithms for doing this [1, 2]. However, the approximations given by

those algorithms are not the best (either because these algorithms are heuristics or because

some additional conditions are imposed on the self-nested trees returned by the algorithm). In

fact no efficient algorithm has been found to compute the nearest self-nested tree to a tree.

Therefore, proving that there exists no polynomial algorithm solving this problem would

justify the use of the non-optimal algorithms previously developed by the team. More precisely,

the goal of this internship is to prove that this problem is NP-complete. NP-complete problems

are thehardest problemsof theNPclass andunder the assumption that thePandNPcomplexity

classes are different, this would prove there exists no polynomial algorithm able to find the

nearest self-nested tree to a tree in general.

The state of the art will be presented, along with definitions and notations prefacing the

detailed explanation of the different reasonings followed in order to prove this theorem, which

were unfortunately inconclusive.

1 Context

1.1 Self-nested trees and definitions

In this report, we will only consider rooted unordered trees, denoted by T . Unordered trees

are trees for which the order among the children of a same node is not significant. Let v be a

node of T, the complete subtree of T rooted in v will be denoted by T[v].

Two trees T1 � (V1 , E1) and T2 � (V2 , E2) are said to be isomorphic if there exists a bĳection

1

f from V1 to V2 such that for each pair of nodes (u , v) in V1, (u , v) ∈ E1 if and only if

(f (u), f (v)) ∈ E2.

Let us consider the equivalence relation ≡ on T defined by T1 ≡ T2 if and only if T1 and T2

are isomorphic. More generally, we will say that two nodes v1 and v2 of T , are equivalent if

the subtrees T[v1] and T[v2] are isomorphic. We will denote the equivalence class of v by C(v).

A self-nested tree is a tree whose subtrees of identical height are isomorphic one to another.

An example of tree that is not self-nested is given in Figure 1a, an example of a self-nested tree

is given in Figure 1b. We will denote S the set of self-nested trees.

(a) Example of regular tree. (b) Example of self-nested tree.

Figure 1 – Difference between regular trees and self-nested trees.

1.2 DAG compression

For T � (V, E) ∈ T , let Q(T) � (VQ , TQ) be the quotient graph of T by the equivalence

relation ≡. In concrete terms, VQ � {C(v)|v ∈ V} is the quotient set of V by ≡ and

EQ � {(C(u), C(v))|(u , v) ∈ T}. Let δ be the weighting function on Q(T) defined by

δ(C(u), C(v)) � #{v′ ∈ Child(u)|C(v) � C(v′)}

The Subfigure 2a shows the quotient graph corresponding to the tree represented in Sub-

figure 1a. The equivalent nodes are represented in the same color.

(a) DAG compression of the tree in Subfigure

1a.

(b) DAG compression of the tree in Subfigure

1b.

Figure 2 – Example of DAG compression.

2

Let T ∈ T , C. Godin and P. Ferraro showed in [1] that Q(T) is a weighted directed acyclic

graph (DAG) and that for each DAG Q with a weighting function δ, there exists a single tree

T ∈ T such as Q(T) � Q.

The trees whose quotient graph is a linear DAG (DAG for which there exists a Hamiltonian

path) are exactly the self-nested trees. Since the nodes of equal height in a self-nested tree

are isomorphic one to another, there is a single vertex in the DAG for each height: the tree in

Subfigure 2b is the quotient graph of the self-nested tree represented in Subfigure 1b. As a

result, the number of vertices in the DAG is equal to the height of the initial tree.

1.3 Avantages of self-nested trees

Self-nested trees have a linear quotient graph, as a result they are cheaper to store, but there

are other advantages...

Let T ∈ T and f be a recursive function (f (u) depends only on the values (f (ui))i∈I where

(ui)i∈I are the children of u). For example, f can be the height or the number of vertices of the

subtree rooted in u. Since f is recursive, f takes the same value on all isomorphic subtrees of T,
and computing f on T leads to making the same computation several times. Thus, computing

f (T) directly on the DAG corresponding to T is more efficient than computing it on T itself.

For example on Figure 3 we can compute the number of nodes directly on the DAG: the

number of nodes under a leaf (red node) is equal to one, the number of nodes under the orange

nodes in T is equal to three times the number of nodes under a leaf plus one, that is four. We

can carry on the computation, at the end the number of recursive calls will be equal to the

number of nodes in the DAG instead of the number of nodes in the tree (as it would have been

if we had computed f on the tree). Thus, the computation of recursive functions is particularly

efficient on self-nested trees because of the small size of their DAG.

(a) Example of tree.

(b) Computation of the number of nodes

directly on its DAG.

Figure 3 – Example of computation on the DAG.

Self-nested trees are a particularly relevantmodel of the structure of a plant and are therefore

useful for the study of their growth. Meristems are the tissues responsible for the growth and

some studies support the idea that themeristems of a plant go through successive development

stages during their lives [3]. Furthermore, the transitions from one stage to another occur in the

same way for all the meristems of a same plant and are specific to the species. We can indeed

observe that the way plants grow, the branching structure of their stems and branches seem

to follow some regular pattern repeated in several places in the plant. Thus, representing the

structure of the plant by a self-nested tree which nodes are the plant nodes and which edges

3

are the stems or branches of the plant is natural and appropriate.

Unfortunately, a real plant has few chances to have exactly the structure of a self-nested

tree. Indeed, environmental conditions (such as light and nutrition for example) also impact

the growth of the plant. This is one of the reasons why we are interested in approximating

trees by self-nested ones.

1.4 Edit distance

Let us consider the two following edit operations: the deletion and addition of a node. Deleting

a node u in a tree meansmaking the children of u children of the father of u, before removing u
from the tree (Figure 4b). Adding a node is the complementary operation, thus adding a node

u under v means making a subset of the children of v become children of u before placing u
under v (Figure 4c).

(a) Initial tree. (b) Deleting a node. (c) Adding a node.

Figure 4 – Example of edit operations.

Let T1 � (V1 , E1) and T2 � (V2 , E2) be two trees.

An edit sequence is a succession of edit operations. We can define the cost of an edit

sequence by the number of edit operations that were done.

An edit mapping between T1 and T2 is a bĳection Φ : V′
1
→ V′

2
where V′

1
⊆ V1 and V′

2
⊆ V2,

that preserves ancestrality among the nodes (in other words, u ∈ V′
1
is an ancestor of v ∈ V′

1
if

and only if Φ(u) is an ancestor of Φ(v)).

Given an edit mapping Φ between T1 and T2, there exists a natural edit sequence leading

from T1 to T2: every node belonging to V1 \ V′
1
is deleted and every node in V2 \ V′

2
is added.

Thus, we can define the cost of an edit mapping Φ as the number of nodes that were added or

deleted: #(V1 \ V′
1
) + #(V2 \ V′

2
).

More precisely, K.Zhang showed in [4] that for every edit mapping between T1 and T2

there exists an edit sequence of equal cost. He also showed that for every edit sequence of k
operations leading from T1 to T2, there exists an edit mapping of cost less than k.

It is also possible to define the edit distance between the treesT1 andT2 as theminimal cost of

an edit mapping between the two trees (the properties of symmetry, identity of indescernibles

and triangle inequality are satisfied). We will notice that the minimal cost of an edit mapping

between T1 and T2 is also the minimal cost of an edit sequence leading from T1 to T2 (result

from the preceding properties shown in [4]).

4

In [5] K. Zhang, R. Statman and D. Shahsha show that the problem of computing the edit

distance between two trees is NP-complete. There are several ways to overcome this difficulty:

one of them consists in restricting the set of instances to consider a set of trees in which the

distance is easier to compute. Another one consists in modifying slightly the distance, for

example by adding other constraints, in order to build a new edit distance easier to compute.

The article [4] presents an additional, sufficient and not very constraining condition on the

edit mapping along with a polynomial algorithm to compute the new distance. The condition

on the edit mapping is the following: for all u , v , w ∈ V′
1
, the least common ancestor of u and v

is a proper ancestor of w if and only if the least common ancestor of Φ(u) and Φ(v) is a proper

ancestor ofΦ(w). In other words,Φ preserves the sibling relation among the nodes: a node can

be deleted only if all its descendants are deleted as well or if all its siblings have been deleted;

during the addition of a new node u under v, either all or none of the children of v have to

become children of u.

In this article, we will use this edit distance with its new constraint.

1.5 Approximation by self-nested trees

As we explained before, a real plant has few chances to have an exact self-nested structure.

Therefore, approximating the trees of the structure of different plants by self-nested trees

could allow us to find the theorical growth model of each species and thereby lead to a better

understanding of the evolution of the meristems.

If the goal is to compute the value taken by a recursive function f on a tree T, approximating

T by a self-nested tree S allows us to compute very effectively f (S), which can, under certain

conditions, be an approximate value of f (T).

Several meanings can be given to the term “approximating a tree by a self-nested one”. For

example, C. Godin and P. Ferraro have proposed a polynomial algorithm [1] to compute the

NEST (Nearest Embedding Self-nested Tree) of a tree T. The NEST of T is the self-nested tree S
that minimizes the edit distance between S and T and that embeds T. It can also be described

as the minimal self-nested tree embedding T and it can be obtained only by applying adding

operations to T. For example, the NEST of T (Figure 5a) is given in Figure 5b. The black nodes

are the added ones. T is at distance 3 from its NEST.

R. Azais then presented an algorithm [2] computing in polynomial time the NeST (Nearest

embedded Self-nested Tree) of a tree T. The NeST of T is the self-nested tree S that minimizes

the edit distance between T and S and is embedded in T. It is the maximal self-nested tree

embedded in T and it can be obtained only by deleting nodes from T. For example, the NeST

of T (Figure 5a) is given in Figure 5c. The white nodes are the ones that are deleted. T is at

distance 3 from its NeST.

The NST (Nearest Self-nested Tree) of a tree T is the self-nested tree S that minimizes the

edit distance between T and S (authorizing this time both adding and deleting operations) [1].

For example, the NST of T (Figure 5a) is given in Figure 5d. The white node is the one that is

deleted and the black node is the one that is added. T is at distance 2 from its NST.

No polynomial algorithm able to compute the NST of a tree has been found yet. Thus, the

goal of the internship is to prove that there exists no such algorithm (more precisely that the

NST problem is NP-complete). This result would justify the use of approximation algorithms

such as the heuristic and the algorithms computing the NeST and the NEST.

5

(a) T (b) NEST(T)

(c) NeST(T) (d) NST(T)

Figure 5 – Different approximations of T by self-nested trees.

2 Contribution

We assume that the reader is familiar with complexity theory. In this article, we will denote

the set of instances by Ω and the set of positive instances by Y. See the appendix for further

reminders on complexity theory.

Definition 2.1 (NST Problem).
Input: T a tree and k an integer.

Output: Yes if and only if there exists a self-nested tree at distance less than k from T.

I did not manage to prove that the NST problem is NP-complete. We will present in

this section the different attempts we made and the reasons why they were relevant but not

conclusive.

2.1 Belonging to the NP class

We aim to prove that the NST decision problem is NP-complete, this means it would belong to

NP and be NP-hard. It clearly belongs to NP. Indeed, for every tree T � (V, E), for all integer
k, given a potential solution S, it is possible to ascertain whether or not S is self-nested, and to

compute the distance between S and T, both in polynomial time. Furthermore, since the NEST

of T is self-nested and can be computed in polynomial time, it is possible to restrict ourselves

to the set of trees that have a size polynomial in the size of T. For those two reasons, the NST

problem belongs to NP.

6

2.2 First approach

To help us build the reduction, a few conceptual remarks can be made, in order to guide

the research. First of all, the reduction has no obligation to be surjective; as a matter of

fact, it is quite often not surjective. Indeed, in order to be able to prove the equivalence

ωA ∈ YA ⇔ ωB � f (ωA) ∈ YB (where A is the initial NP-complete problem and B is the

problem we consider), the images of the reduction have often a very particular shape. Yet, the

image of ΩA by the reduction has to be big enough so that we are unable to find a polynomial

algorithm solving the problem on the set of images of the reduction. Indeed, finding such an

algorithm and a reductionwouldmeanwewould have solved the open question of the equality

of the P and NP classes, which is unreasonable.

In order to better understand the difficulty of the problem, I tried to find a way to compute

efficiently the NST in special cases. Indeed, as long as we find a polynomial algorithm solving

the NST problem on the set of trees considered, we are ensured that the difficulty leading to

the NP-hardness lies somewhere else. I also decided to start with very special cases where

polynomial algorithms could be found and add progressively some generality to identify the

trees and conditions that make the problem difficult.

I first considered the trees of height 2. In the NEST and NeST algorithms, C. Godin, P.

Ferraro and R. Azais consider only edit operations such that the height of any pre-existing

node is unchanged. For the sake of simplicity, I decided to first use these edit operations.

2.2.1 Trees of height 2 with height conservation

Let T be a tree of height 2 (see Figure 6). Let us denote NST(T) by S and an optimal edit

mapping between T and S by Φ. We will show in this section that it is possible to find Φ and S
in polynomial time.

We can first notice that if there are any leaves of depth 1, they do not require any edit

operations to obtain NST(T). For this reason we can assume that every node of depth 1 is of

height 1 (see Figure 6).

Figure 6 – Example of tree of height 2.

Let us denote the nodes of height 1 of T by (ui)16i6N and (ni)16i6N their respective number

of children. We will suppose that the sequence (ni)16i6N is sorted by ascending order. Each

ui can be either deleted or mapped on a node of height 1 in S, and since S is self-nested, all

the nodes of height 1 in S are isomorphic one to another. The complete subtree under each

node of height 1 of S is characterized by its number of leaves. As a result, the edit mapping

leading from T to S is characterized by I0 the set of indices of the deleted nodes and by ñ the

number of leaves under a node of height 1 in S. Thus, we will try to find I0 and ñ such that the

corresponding self-nested tree is a minimal distance from T.

7

Because of Zhang’s constraint, before deleting one of the nodes ui of height 1 in T, it is
necessary to delete all of its children except one. Therefore, deleting ui costs ni where ni is the

number of children of ui .

If ui is not deleted, we have to adjust the number of children it has to ñ, which costs |ni − ñ |.
As a result, ui has to be deleted if and only if ni is closer to 0 than to ñ. Figure 7 shows fi the

minimum cost for each u in function of ñ.

We will denote by I1 the complement of I0 in the set of indices ~1; N�. I1 is composed of

the indices i such that Φ(ui) is of height 1.
Remark. The distance between T and S is equal to

∑
i∈I0

ni +
∑

i∈I1

|ni − ñ |.

Figure 7 – Optimal cost of the transforation for ui in function of ñ.

By summing the functions fi on every ui , we obtain f theminimal cost of amapping leading

from T to a self-nested tree of height 2, with N nodes of depth 1, in function of ñ the number

of children of the nodes of height 1. We can observe that the resulting function is a piecewise

linear function and that every break in its differentiability has for abscissa one of the ni or 2 ∗ni .

Therefore, the minimum of this function is reached in one of those points. Since every fi is

increasing just before 2 ∗ ni and constant after and that the derivative of the other f j are equal

before and after 2 ∗ ni , 2 ∗ ni cannot be a minimum of f .

Thus, by evaluating f on every ni , it is possible to find the minimum of f and thereby find

the NST of T.

It is possible to show that every f (ni) can be computed in constant time by using the value

of f (ni−1). f (n1) can be computed in linear time. For this reason, NST(T) can be computed in

O(N ∗ log(N)) (it is necessary to sort the (ni)16i6N in ascending order) where N is the number

of nodes of height 1 in T.

Since the NST (with only height preserving operations) can be computed in polynomial

time on the trees of height 2, this proves that if the NST problem (with only height preserving

operations) is NP-complete, the set of images of the reduction cannot be the trees of height 2,

otherwise we would have found a way to solve any NP-complete problem in polynomial time,

which is unreasonable.

We can make two more remarks that will help us later.

Remark. For every i ∈ I0, for every j ∈ I1, ni < n j .

Intuitively, if ni < n j it costs less to delete all the children of ui than the ones of u j .

Remark. Furthermore, ñ is one of the medians of the (ni)i∈I1
.

Indeed, the median minimizes

∑
i∈I1

|ni − ñ |.

8

We will keep in mind that the solution that we proposed here is a brute-force search, we

didn’t manage to find any strategy that would help us understand why computing the NST of

a tree of height 2 seems to be easier than in the general case. The main reason that explains

why this special case is easy to solve is that the trees of height 2 are simple enough to have a

NST described by only 2 parameters.

2.2.2 Trees of height 2 without preserving the height of the nodes

The NST problem is solved easily on the trees of height 2 if we authorize only edit operations

preserving the height. It can either be due to the set of trees considered or to the restriction

on the edit operations. To gain in generality, I decided to look at the problem without the

restriction on the edit operations, in order to use the work done in the previous section. Once

again, I couldn’t find any global strategy that would give us a polynomial algorithm so I tried to

find as many properties on the NST of T as I could, in order to reduce the space of possibilities

that we have to explore.

Since the proofs are quite fastidiouswewill only present the resultswe found in this section.

We will use the same notations as in the preceding paragraph. We will denote by Ik the set

of indices i of ~1; N� such that Φ(ui) is of height k. Let us denote by ñk
the number of children

of the nodes of height k in S.

It is possible to show that S has the shape depicted Figure 8 and that S is characterized

by (Ik)06k6H−1
and (ñk)

16k6H−1
where H is the height of S. Therefore, the goal is to find the

families (Ik)06k6H−1
and (ñk)

16k6H−1
such that the corresponding self-nested trees is at minimal

distance from T.

Figure 8 – General shape of the NST S.

The remarks of the previous section can be adapted.

Lemma 2.2. For every k > 0, for every i ∈ Ik and j ∈ Ik+1
, ni < n j .

Lemma 2.3. The distance between T and S is equal to

D(S, T) �
∑
i∈I0

ni +

H∑
k�1

(∑
i∈Ik

|ni − ñk | + |Ik |
k−1∑
l�1

(ñ l)
)

which is also equal to

D(S, T) �
∑
i∈I0

ni +

H∑
k�1

(∑
i∈Ik

|ni − ñk | + ñk
H∑

l�k+1

(|Il |)
)

9

Proof. Let i ∈ I0. ui is deleted, which costs ni (as explained in the previous section).

Let i ∈ Ik with k > 1. Φ(ui) is of height k. To obtain the complete subtree underΦ(ui) in S from

the subtree under ui in T, it is necessary to adjust the number of children of ui to ñk
which

costs

��ni − ñk
��
. It is also necessary to add

∑k−1

l�1
ñ l

nodes under one of the children of ui , so that

the height of ui increases to k. �

For every partition (Ik)06k6H−1
of ~1; N�, that verifies lemma 2.2, it is possible to compute

in O(N) the family (ñk)
16k6H−1

such that the distance between the corresponding self-nested

tree and T is minimal. It is also possible to show that

Lemma 2.4. For every k > 1,

|Ik | >
H−1∑

l� k+1

|Il |

Lemma 2.5. For every k > 1,

ñk >
k−1∑
l�1

ñ l

Corollary 2.6. The height H of S is bounded by min(log
2
(N + 1), log

2
(nN + 1)).

Proof. Lemma 2.4 leads to the following inequalities:

|Ik | >
∑H

l�k+1
|Il | + 1

> |Ik+1
| +∑H

l�k+2
|Il | + 1

> 2(∑H
l�k+2

|Il | + 1)
> 2

H−k−1(IH + 1)
> 2

H−k

As a consequence, N >
∑H

k�1
|Ik | >

∑H
k�1

2
H−k > 2

H − 1, and H 6
⌊
log

2
(N + 1)

⌋
.

The same reasoning can be applied to lemma 2.5 to show that H 6
⌊
log

2
(ñH + 1)

⌋
, and we will

notice that ñH 6 nN , which leads to the result. �

Byenumerating thepartitions (Ik)06k6H−1
that verify lemmas2.2 and2.4 and then computing

the optimal family (ñk)
16k6H−1

and the distance to the corresponding self-nested tree each time,

we will find the NST of T. The number of partitions (Ik)06k6H−1
of ~1; N� that verifies lemmas

2.2 and 2.4 is bounded by

(N+H
H)

2
H .

Since

(N+H
H)

2
H is a O(NH) and that H 6 log

2
(N + 1), the number of partitions that have to be

considered is in the range of N log
2
(N)

, which is unfortunetely not polynomial.

I was not able to find any complexity better than this one, yet a few remarks can be made.

First of all, the complexity is expressed in function of N the number of nodes of height 1 and

not in function of the size of the tree and in practice, the trees that have a NST of height close

to the boundary log
2
(N) are very big in comparison of N . Secondly, the proofs are far more

complicated when all the edit operations are considered than when only the height preserving

operations are authorized. In the following, we will also prefer to use the restricted operations

whenever it is possible.

This approach is not very conclusive, indeed, the fact that the algorithms presented are

based on a brute-force search, makes it difficult to spot the exact difficulty in the NST problem,

apart from the tremendous number of parameters that describe the NST of a tree.

10

2.3 Second approach

We will present in this section a different approach to the problem, by studying analogies of

the NST problem with NP-complete problems and by pointing out similarities between the

proofs of NP-completeness of the state of the art. It appears that many different proofs of

NP-completeness rely on the same general patterns (such as the ideas of variables, widgets and
constraints). Since the first approach was not conclusive, we tried to adapt those ideas to the

NST problem. In this section we will present these concepts through two different reductions

and present a family of trees that illustrates the concepts of variables and widgets in the NST

problem.

Let us begin with the proof of the reduction from 3-SAT to INDEP-SET (presented in [6] for

example). As a brief reminder:

Definition 2.7 (3-SAT).
Input: Φ a formula in conjunctive normal formwhere each clause is composed of three litterals.

Output: Yes if and only if there exists an interpretation that satifies Φ.

Definition 2.8 (INDEP-SET).
Input: G � (V, E) an undirected graph and k an integer.

Output: Yes if and only if there exists a set of vertices V′ ⊂ V of size k such that for every pair

of vertices (u , v) of V′, (u , v) < E.

In the reduction proposed by Garey and Johnson [7], the image instance of INDEP-SET is

built in two steps: the first one consists in defining triangles that correspond to each clause

of the initial instance of 3-SAT (represented in blue on the example Figure 9); the second one

consists in adding edges that link the nodes of the triangles that are labeled with the negation

of the same variable of 3-SAT (represented in red on the example Figure 9). One way of

interpreting this division in two steps is to consider the triangle widgets as variables that can

take three different values (the variable term here should not be confused with the variable of

the 3-SAT problem) and to consider the edges linking the widgets as constraints.

Figure 9 – Reduction of 3-SAT to INDEP-SET: example with the formula

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ ¬z).

These three different possible values are the labels of the three nodes of the triangle. The

value taken is the label of the node that belongs to the set of vertices of V′ the INDEP-SET

problem. For example in Figure 9, the first widget can take the values x, y or z.

The edges linking two widgets A and B forbid the two coresponding variables to take simul-

taneously some given values. Indeed, we can see in Figure 9 that the edge (x ,¬x) between the

11

first and the second widgets forbids the first widget to take the value x if the second takes the

value ¬x at the same time.

We will now consider the reduction from VERTEX-COVER to HAMILTONIAN-PATH pro-

posed by Cormen, Leiserson, Rivest and Stein [8]. As a reminder:

Definition 2.9 (VERTEX-COVER).
Input: G � (V, E) a undirected graph and k an integer.

Output: Yes if and only if there exists set of vertices V′ ⊂ V of size k such that for every edge

(u , v) ∈ E, u ∈ V′ or v ∈ V′.

Definition 2.10 (HAMILTONIAN-CYCLE).
Input: G � (V, E) an undirected graph.

Output: Yes if and only if G is hamiltonian, in other words, if there exists a cycle on G visiting

every vertex exactly once.

In this reduction, the image instance is also built in two steps: the first one consists in

defining small pieces of graph composed of twelve nodes (Figure 10) and the second one

consists in linking these pieces together through additionnal edges and vertices.

Figure 10 – Hamiltonian widget.

Once again, the small widgets of the first part can be interpreted as variables. Indeed, there

are two and only two ways of visiting one widget during the traversal of the complete graph:

in one time or two times. For this reason, the widget can be seen as a variable that can take two

values, one or two.

Since it is quite complicated and not particularly relevant here, we will not go into detail

on how the small pieces of graph are linked to each other, but the edges and vertices added to

connect the widgets together can likewise be seen as constraints.

In both cases, several remarks can be made: first of all, without the constraints, the widgets
are totally independent: the value taken by the variable corresponding to one of them has no

influence on any of the values taken by the others. Secondly, the widget used in the reduction is

specific to the second problem. Indeed, it is quite easy to reduce several different NP-complete

problems to a problem A by using the same widgets and linking them differently. Finally,

the constraints highly reflect the shape of the instance of the first problem and are a sort of

translation of the difficulty of the instance of the first problem into the difficulties of the second

problem.

I choose to start the reduction from the INDEP-SET problem because of its simplicity and

of the clarity of its constraints and variables. Indeed, each vertex of the graph can be considered

as a binary variable taking the value 1 if the vertex belongs to V′ and 0 otherwise. There are

two types of constraints, the first one is that if there is an edge between the vertices x and y, the
corresponding variables cannot take both the value 1; the second one is that only k variables can

take the value 1.

12

(a) Tree widget. (b) DAG compression of the tree widget.

Figure 11 – Tree widget that can be use in the NST problem as a variable.

(a) First possibility of NST. (b) Second possibility of NST.

Figure 12 – The two NST of the tree widget presented Figure 11a.

The aim is to find pieces of trees that could be easily combined together and that could

be the widgets of the reduction we are trying to find. These widgets have to be used in only

two possible ways, in order to act as the variables of the INDEP-SET problem. In our case, this

means that there are two and only two different self-nested trees at equal andminimal distance

from the widget. The widgets also have to be easily combined and in a way that the choice of

use of each widget is independent from the way we use the others (we have seen that without

the constraints, the widgets are totally independent).

In order to be independent, the widgets have to be placed at different heights: indeed, if two

widgets are at the same height, the operations applied on them to obtain the nearest self-nested

tree will be the same, so they couldn’t represent different variables. A solution to this issue is to

look for widgets through their DAG compression and to pile them up. A second advantage of

this method is that the size of the corresponding tree grows exponentially, whereas the size of

the DAG grows linearly with the number of widgets, so if we rephrase the NST problem to give

as an Input a DAG instead of a tree, the construction has still chances to be polynomial.

A piece of DAG that respects these properties is shown in Figure 11a (its DAG compression

is shown in Figure 11b). The corresponding tree is at equal distance of the self-nested trees in

Figures 12a and 12b, and their DAG compression is shown in Figures 13a and 13b. To set the

ideas, we will say arbitrarily that the variable corresponding to a widget takes the value 1 if in

the NST considered the widget was transformed into Figure 13a and 0 if it was transformed into

Figure 13b.

These widgets can be pilled up as shown in Figure 14a. We will denote the tree obtained by

pilling up n widgets by Tn . The widgets in Tn are independent from one another: it is possible to

13

(a) DAG compression of the first possibility

(Figure 12a).

(b) DAG compression of the second possibility

(Figure 12a).

Figure 13 – The DAG compressions of the self-nested trees Figure 12.

(a) Stack of widgets Tn .

(b) General shape of the NST of the stack of

widgets.

Figure 14 – Piling up the widgets.

show that Tn is equidistant from every tree having the DAG compression of Figure 14b where

every Ai is either the DAG piece in Figure 13a or Figure 13b. We will denote by Sn the set of

these self-nested trees. There exists no tree closer to Tn than these ones.

To summarize, Tn has exactly 2
n
different NST and each one of those self-nested trees cor-

responds to an assignment of n variables in {0; 1}. As explained before, this could correspond

to the first step of a reduction of the NST problem. In order to complete the reduction, we

have to add constraints. Adding constraints means modifing Tn in function of the instance of

INDEP-SET, in order to obtain a tree T closer to the self-nested trees that correspond to valid

assignments of variables for the instance of INDEP-SET. Given an instance I of INDEP-SET, we

will denote bySI the subset ofSn constituted of the trees that correspond to valid assignments

of variables in I.

Let us start with the first type of constraint: if there is an edge between u and v in the graph

G � (V, E) of I, the variables represented by u and v cannot be both assigned to the value

1. Given two vertices u and v, if there is an edge between u and v, we have to modify Tn to

obtain T such that T is closer to all the self-nested trees of Sn where at least one of the widgets

14

corresponding to u and v was modified into Figure 13b, than the rest of Sn . By doing these

modifications the NST of T will be the trees that correspond to a valid assignment of variables.

The goal is to add successively these modifications for every edge in E, and to reduce at

every step the distance to the self-nested trees of SI . By applying these modifications to every

edge in E, we should have applied all the constraints of the first type of the INDEP-SET problem

and we would still have to find how to translate the second one (the fact that only k variables
can take the value 1).

It appears that themodification for one edge has to equally reduce the distance to every tree

of SI , so that the set of nearest self-nested trees of T is exactly SI . Otherwise, it is not possible

to prove the implication ω NST � f (ω Indep-Set) ∈ Y NST ⇒ ω Indep-Set ∈ Y Indep-Set

Unfortunately, the only modifications we found did not respect this property. For this

reason, we were not able to finish the proof with this method.

2.4 Last approach

Since the second approch was not conclusive, I tried to approach the problem from the other

side: instead of trying to find the widgets, we will this time search to adapt the concept of

constraint to the NST problem.

As we said before, the constraints are generally a sort of translation from one problem to

another of the difficulties. The issue is that we do not know precisely at this point where the

difficulty truly lies in the NST problem.

The algorithms proposed by C. Godin, P. Ferraro and R. Azais [1, 2] to compute the NEST

and the NeST rely on the fact that since only addition or deletion operations are made, it is

possible to operate recursively on the DAG. More precisely, both algorithms start by doing

operations on the nodes of low height, in order to make them all self-nested and isomorphic

one to another, recursively use the changed nodes of low height to make the ones of higher

height also isomorphic and self-nested. This method is possible because only one type of

operations is allowed.

There is a sort of balance between two irreconcilable goals: to be close to the initial tree

T, the subtrees of small height in the NST S have to be close to the trees of small height of T.
But to make the higher nodes self-nested and isomorphic to one another, it will sometimes be

necessary to add whole subtrees of smaller height. And therefore, the subtrees of small height

in S also have to be of small size. This prevents us from using a recursion from the bottom of

the DAG to the top or in the other direction. It prevents us from knowing where to start doing

the modifications: if we start with the upper part of the DAG, we will need to know the exact

size of the smaller subtrees to be able to choose properly which operations have to be done;

if we start with the lower part of the DAG, we will have to know how many times the small

subtrees will be completely added in order to choose a self-nested tree of small size yet close to

the initial subtrees of small height.

The tree Figure 15 (that has the DAG compression shown Figure 16) is a simple tree that

depicts perfectly this balance: the lower rhombus in the DAG needs to be modified in odrer to

become self-netsed, as well as the upper rhombus, but the modifications made on any of them

impacts the cost of the modifcation made on the other one.

This tree is at distance 12 from the self-nested trees represented by their DAG Figures 17a,

15

Figure 15 – Tree illustrating the concept of constraint in the NST problem.

Figure 16 – DAG compression of the tree Figure 15.

17b and 17c and at distance 14 from the self-nested tree Figure 17d. The 3 first trees are the NST

of the tree Figure 15. It is quite easy to see the two rhombus as widgets and assimilate them to

variables, that can take the values 2 or 3, depending on which one of the 4 self-nested tree we

consider.

(a) First NST. (b) Second NST. (c) Third NST.

(d) Further self-nested

tree corresponding to

the last assignment of

variables.

Figure 17 – Four DAG corresponding to each assignment of variables.

The equal distance to the 3 first self-nested tree is particularly interessant because it is very

similar to the constraint of the INDEP-SET problem (Figure 18)! As a short reminder, the first

16

type of constraint for the INDEP-SET problem is that if two vertices u and v are linked by an

edge in G, the corresponding variables cannot be both set to 1.

We can see Figure 18 that the assignment of variables that corresponds to a valid independent

set for the INDEP-SET problem, are exactly the assignments of variables that correspond to the

NST of the tree Figure 15, which confort us in the idea that the tree Figure 15 could play the

role of the constraint for the NST problem.

u v constraint
0 0 respected

0 1 respected

1 0 respected

1 1 violated

(a) Constraint of the INDEP-SET problem.

u v distance constraint
2 2 12 respected

2 3 12 respected

3 2 12 respected

3 3 14 violated

(b) Constraint of the NST problem.

Figure 18 – Comparaison of the Constraints of the two problems.

What is left to do

Partly by lack of time, we unfortunately did not manage to put more than two widgets together
to form the image of a graph with more than 2 vertices. There is also still to find how to express

the second type of constraint, that count the number of nodes taken in the independent set.

Conclusion

The initial goal of the internship was to prove that the NST problem is NP-complete. This

would prove that (under the assumption that P and NP classes are different,) there exists no

polynomial algorithm that could solve this problem. Itwould also justify the use of the heuristic

and of the approximation algorithms proposed by C. Godin and his team.

Although we did not manage to find a reduction of the NST Problem, we presented a poly-

nomial algorithm in the case of the trees of height 2, when only height conserving operations

are allowed. In the more general case of the trees of height 2 with the distance presented by K.

Zhang [4], the same brute force method is in O(N log
2
(N)+1) (where N is the number of nodes of

height 1 in T). This is of course not polynomial in N , but it is expressed in function of N (the

approximate size of the DAg compression) and not in function of the size of the initial tree, and

in practice the trees for which this boundary is reached have a tremendous size in comparison

with N . Therefore, the complexity of this algorithm should be more reasonable in practice.

We also highlighted similarities in the NP completness proofs and presented the ideas of

widgets, variables and constraints, three concepts that appears frequently in the reductions. We

used this concept to try to build the reduction, first by adapting the ideas of variables and

widgets the the NST problem, before changing strategy and adapt first the idea of constraint.
Unfortunately none of those attempts succeeded, but the reason of difficulty of the problem has

been identified more precisely, and the tree representing the constraints may be used to pursue

the reduction.

17

APPENDIX

Short reminder on the NP-completeness theory

A decision problem is a couple (Ω,Y). Ω is described in the section Input and is a set of words

called instances of the problem. Y is described in the sectionOutput and is a language included

inΩ. Y corresponds to the set of instances for which the answer to the problem is “yes” (figure

19a).

For example, the optimisation problem NST can be rephrased as the following decision

problem:

Input: A tree T, an integer k ∈ N
Output: Yes if and only if there exists a self-nested tree S such as the edit distancee between T
ans S is less than k.
Here, each couple (T, k) is an instance, and Ω is the set of all the instances.

(a) Algorithmic problem (b) Example of reduction

The complexity class P is the class of problems for which there exists a deterministic Turing

machine deciding Y in a time polynomial in the size of the instance. The complexity class

NP consists of the problems for which Y is accepted by a non-deterministic Turing machine in

polynomial time.

A reduction from a problem A to a problem B is a function f : ΩA → ΩB such as for all

instance ωA of A, ωA ∈ SA ⇔ f (ωa) ∈ SB (figure 19b). As a result, if there exists a polynomial

reduction fromA to B then B is “harder” thanA. Indeed, ifYB is accepted (respectively decided)

by a Turing machine in polynomial time, to accept (respectively decide) YA in polynomial time,

all there is to do is to apply the reduction to the instance of A and return the result computed

by the Turing machine of the problem B.

An algorithmic problem is called NP-hard if there exists a polynomial reduction from each

problem of the NP class to this one. The problems that are both NP-hard and belong to the NP

class are said to be NP-complete.

Acknowledgments

I would like to thank Christophe Godin for the time he spent supervising and helping me, as

well as himandRomainAzais for themanydiscussionswehad together aboutNP-completeness

and self-nested trees. I also would like to thank Frédéric Vivien, who helped me to work on

the first approach and gave me numerous advices on the way of approaching a problem of

NP-completeness.

References

[1] C. Godin and P. Ferraro, “Quantifying the degree of self-nestedness of trees: Application

to the structural analysis of plants,” 2010.

[2] R. Azais, “Nearest embedded and embedding self-nested trees,” 2017.

[3] P. de Reffye, C.Edelin, J. Françon,M.Jaeger, andC. Puech, “Plantmodels faithful to botanical

structure and development,” 1988.

[4] K. Zhang, “A constrained edit distance between unordered labeled trees,” 1996.

[5] K. Zhang, R. Statman, and D.Shasha, “On the editing distance between unorderd labeled

trees,” 1992.

[6] O. Bournez, “Quelques problèmes NP-complets.” http://www.enseignement.
polytechnique.fr/informatique/INF423/uploads/Main/chap12-good.pdf.

[7] Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and

Company, 1979.

[8] Introduction to algorithms. 1989.

