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Definition (Combinatorial game)
1 Let L and R be two sets of games. Then the ordered pair {L|R} is a

combinatorial game.
2 (Descending Game Condition) There is no infinite sequence of

combinatorial games (Gi )i∈N :≡ ({Li |Ri})i∈N such that ∀i ∈ N,
Gi+1 ∈ Li ∪ Ri .

I Options : L ∪ R
I Positions : G and all the positions of any option of G

Examples :

1 0 :≡ { | }
2 1 :≡ {0| }

3 −1 :≡ { |0}
4 ∗ :≡ {0|0}
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Conway Induction

Theorem (Conway induction)

Let P be a property which games might have, such that any game G has
property P whenever all left and right options of G have this property.
Then every game has property P.

Example : Let’s show that the positions of a game form a set.

∀G ≡
{
GL
∣∣GR

}
,P(G ) : " The positions of G form a set."

P(G ) holds whenever P(GL) and P(GR) hold. By Conway induction, then
P(G ) hols for any game G .

�
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Conway Induction

Theorem (Generalised Conway induction)

For any n ∈ N∗, let P be a property which any n-tuple of games might
have. Suppose that P(G1, · · · ,Gi , · · · ,Gn) holds whenever, for all i ∈ 1, n
and for all G ′i ∈ Li ∪ Ri (where Gi ≡ {Li |Ri}), P(G1, · · · ,G ′i , · · · ,Gn)
holds. Then P(G1, · · · ,Gn) holds for every n-tuple of games.
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Conway Induction

Theorem (Targeted Conway induction)

Let PC be a hereditary property that games might have, and lLet then :

C := {G games | PC(G ) is true}

Finally, let P be a property wich games in C might have, such that any
game G ∈ C has property P whenever all left and right options of G have
property P. Then P holds for every game G ∈ C.
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Classifying games

4 outcome classes :

1 The second player wins, no matter who they are : G = 0
2 The fisrt player wins, no matter who they are : G ‖ 0
3 Left wins, no matter who starts : G > 0
4 Right wins, no matter who starts : G < 0.

Definition (Order of games)

Let G be a game. Then :
1 G ≥ 0 unless there is a right option GR ≤ 0 of G .
2 G ≤ 0 unless there is a left option GL ≥ 0 of G .
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Classifying games

Definition (Order of games, outcome classes)

∃GL ≥ 0 @GL ≥ 0
∃GR ≤ 0 G ‖ 0 G < 0
@GR ≤ 0 G > 0 G = 0

Which means, with words :

If Left starts then. . .
Left wins. Right wins

If Right starts, then. . . Right wins. G ‖ 0 G < 0
Left wins. G > 0 G = 0
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Adding games

Definition (Sum of games)

Let G and H be two games. Then the set of left options of G + H is :(⋃
i∈I

(GLi + H)

)
∪
( ⋃

i ′∈I ′
(G + HLi′ )

)
and the set of right options of G + H is :(⋃

j∈J
(GRj + H)

)
∪

( ⋃
j ′∈J′

(G + HRj′ )

)
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Adding games

Example :

1+ 1 ≡ {0|}+ {0|} ≡ {0+ 1; 1+ 0|}

Yet :

0+ 1 ≡ {|}+ {0|} ≡ {0+ 0|} ≡ {({|}+ {|})|} ≡ {({|})|} ≡ {0|} ≡ 1

and a similar development gives :

1+ 0 ≡ 1

So :

1+ 1 ≡ {1; 1|} ≡ {1|} :≡ 2
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Adding games

Definition (Negative of a game)

Let G be a game. Then :

−G ≡
{
(−GRj )j∈J

∣∣(−GLi )i∈I
}

Example :

−1 ≡ {|−0} ≡ {|− ({|})} ≡ {|({|})} ≡ {|0}

Definition (Substraction)

Let G and H be two games. Then we define :

G − H ≡ G + (−H)
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Adding games

Definition (Equality of games)

Let G and H be two games. Then :

G = H if and only if G − H = 0.

Property
The relation = is an equivalence relation.

I Equivalence classes of equal games

Theorem
Equal games are in the same outcome class.
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The GROUP of games

Property
Addition :

1 Is compatible with the equivalence relation of equality : if G = G ′ and
H = H ′, then G + H = G ′ + H ′ and G = −G ′.

2 Is associative : (G + H) + K ≡ G + (H + K ).
3 Is commutative : G + H ≡ H + G .
4 Has 0 ≡ {|} as zero element G + 0 ≡ G .
5 Is such that the inverse equivalence class of G is −G , for all game G .
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Theorem
The equivalence classes formed by equal games form an additive abelian
GROUP in which the zero element is represented by any game G = 0.
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Property

For any game G and for any left option GL and any right option GR of G :

GL C G C GR

Definition (Surreal number)

Let x be a game. Then x is a surreal number if all left and right options of
x are surreal numbers, and if, for all left option xL and all right option xR

of x , then xL < xR .
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Definition

Examples :

1 0 ≡ {|} is a number.
2 1 ≡ {0|} is a number.
3 −1 ≡ {|0} is a number.
4 ω ≡ {0, 1, 2, 3, . . .|} is a

number.

5 1
2 :≡ {1|2} is a number.

6 ∗ ≡ {0|0} is a game but NOT
a number !
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Multiplying numbers

We want multiplication to :

I Be such that the product of two numbers remains a number.
I Be distributive upon addition.
I Behave as expected with comparison.
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Multiplying numbers

Let x and y be two numbers. Then :{
xL < x < xR

yL < y < yR
(1)

As we want xy to remain a number, then we have to impose :

(xy)L < xy < (xy)R (2)
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Multiplying numbers

This gives :

I

{
(x − xL) > 0
(y − yL) > 0

⇒ (x−xL)(y−yL) > 0⇒ xy > xyL + xLy − xLyL

I

{
(x − xR) < 0
(y − yR) < 0

⇒ (x − xR)(y − yR) > 0⇒

xy > xyR + xRy − xRyR
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The FIELD of numbers

Property
1 The game 1 ≡ {0|} is a neutral element for multiplication.

2 The game 0 ≡ {|} is an absorbing element for multiplication.
3 The equivalence classes formed by equal numbers form an abelian

(SUB)GROUP of games.
4 Multiplication and division are compatible with the equivalence

relation of equality.
5 Multiplication is commutative.
6 Multiplication associative and distributive uppon addition when

considered as an operation on equivalence classes of numbers
7 For all number x , there exists a number y such that xy = yx = 1.
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The FIELD of numbers

Theorem
The equivalence classes formed by equal numbers form a totaly ordered
FIELD, in which the zero element for addition is represented by any
number x = 0 and the neutral element for multiplication is represented by
any number y = 1.
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