

Conway's surreal numbers A particular case of Combinatorial Game Theory

> Clémentine Laurens, supervised by Anatole Khelif

ENS Rennes, Université Paris Diderot

August 27th, 2018

General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games

2 A particular kind of games : surreal numbers

- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Definition

Conway Induction Classifying games Adding games The GROUP of games

General background : combinatorial gamesDefinition

- Conway Induction
- Classifying games
- Adding games
- The GROUP of games

A particular kind of games : surreal numbers

- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Definition Conway Induction Classifying games Adding games The GROUP of games

Definition

Definition (Combinatorial game)

- Let L and R be two sets of games. Then the ordered pair {L|R} is a combinatorial game.
- (Descending Game Condition) There is no infinite sequence of combinatorial games (G_i)_{i∈ℕ} := ({L_i|R_i})_{i∈ℕ} such that ∀i ∈ ℕ, G_{i+1} ∈ L_i ∪ R_i.

Definition Conway Induction Classifying games Adding games The GROUP of games

Definition

Definition (Combinatorial game)

- Let L and R be two sets of games. Then the ordered pair {L|R} is a combinatorial game.
- (Descending Game Condition) There is no infinite sequence of combinatorial games (G_i)_{i∈ℕ} := ({L_i|R_i})_{i∈ℕ} such that ∀i ∈ ℕ, G_{i+1} ∈ L_i ∪ R_i.
 - Options : $L \cup R$

Definition Conway Induction Classifying games Adding games The GROUP of games

Definition

Definition (Combinatorial game)

- Let L and R be two sets of games. Then the ordered pair {L|R} is a combinatorial game.
- (Descending Game Condition) There is no infinite sequence of combinatorial games (G_i)_{i∈ℕ} := ({L_i|R_i})_{i∈ℕ} such that ∀i ∈ ℕ, G_{i+1} ∈ L_i ∪ R_i.
- Options : $L \cup R$
- ▶ Positions : G and all the positions of any option of G

Definition Conway Induction Classifying games Adding games The GROUP of games

Definition

Definition (Combinatorial game)

- Let L and R be two sets of games. Then the ordered pair {L|R} is a combinatorial game.
- (Descending Game Condition) There is no infinite sequence of combinatorial games (G_i)_{i∈ℕ} := ({L_i|R_i})_{i∈ℕ} such that ∀i ∈ ℕ, G_{i+1} ∈ L_i ∪ R_i.
- Options : $L \cup R$
- Positions : G and all the positions of any option of G

Examples :

Definition Conway Induction Classifying games Adding games The GROUP of games

Definition

Definition (Combinatorial game)

- Let L and R be two sets of games. Then the ordered pair {L|R} is a combinatorial game.
- (Descending Game Condition) There is no infinite sequence of combinatorial games (G_i)_{i∈ℕ} := ({L_i|R_i})_{i∈ℕ} such that ∀i ∈ ℕ, G_{i+1} ∈ L_i ∪ R_i.
- Options : $L \cup R$
- Positions : G and all the positions of any option of G

Examples :

1 $0 := \{ | \}$

Definition Conway Induction Classifying games Adding games The GROUP of games

Definition

Definition (Combinatorial game)

- Let L and R be two sets of games. Then the ordered pair {L|R} is a combinatorial game.
- (Descending Game Condition) There is no infinite sequence of combinatorial games (G_i)_{i∈ℕ} := ({L_i|R_i})_{i∈ℕ} such that ∀i ∈ ℕ, G_{i+1} ∈ L_i ∪ R_i.
 - Options : $L \cup R$
 - Positions : G and all the positions of any option of G

Examples :

- **0** := $\{ | \}$
- $\textcircled{0} 1 :\equiv \left\{ 0 \right| \left. \right\}$

Definition Conway Induction Classifying games Adding games The GROUP of games

Definition

Definition (Combinatorial game)

- Let L and R be two sets of games. Then the ordered pair {L|R} is a combinatorial game.
- (Descending Game Condition) There is no infinite sequence of combinatorial games (G_i)_{i∈N} :≡ ({L_i|R_i})_{i∈N} such that ∀i ∈ N, G_{i+1} ∈ L_i ∪ R_i.
 - Options : $L \cup R$

► Positions : *G* and all the positions of any option of *G* Examples :

- **0** := $\{ | \}$
- **2** $1 := \{0|\}$

3
$$-1 :\equiv \{ |0\}$$

Definition Conway Induction Classifying games Adding games The GROUP of games

Definition

Definition (Combinatorial game)

- Let L and R be two sets of games. Then the ordered pair {L|R} is a combinatorial game.
- (Descending Game Condition) There is no infinite sequence of combinatorial games (G_i)_{i∈N} :≡ ({L_i|R_i})_{i∈N} such that ∀i ∈ N, G_{i+1} ∈ L_i ∪ R_i.
 - Options : $L \cup R$

► Positions : *G* and all the positions of any option of *G* Examples :

1 $0 := \{ | \}$ **2** $1 := \{0| \}$

3
$$-1 :\equiv \{ |0\}$$

4 $* :\equiv \{0|0\}$

Definition Conway Induction Classifying games Adding games The GROUP of games

General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games

A particular kind of games : surreal numbers

- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Definition Conway Induction Classifying games Adding games The GROUP of games

Conway Induction

Theorem (Conway induction)

Let \mathcal{P} be a property which games might have, such that any game G has property \mathcal{P} whenever all left and right options of G have this property. Then every game has property \mathcal{P} .

Definition Conway Induction Classifying games Adding games The GROUP of games

Conway Induction

Theorem (Conway induction)

Let \mathcal{P} be a property which games might have, such that any game G has property \mathcal{P} whenever all left and right options of G have this property. Then every game has property \mathcal{P} .

Example : Let's show that the positions of a game form a set.

Definition Conway Induction Classifying games Adding games The GROUP of games

Conway Induction

Theorem (Conway induction)

Let \mathcal{P} be a property which games might have, such that any game G has property \mathcal{P} whenever all left and right options of G have this property. Then every game has property \mathcal{P} .

Example : Let's show that the positions of a game form a set.

 $\forall G \equiv \{G^L | G^R\}, \mathcal{P}(G) : " \text{ The positions of } G \text{ form a set."}$

Definition Conway Induction Classifying games Adding games The GROUP of games

Conway Induction

Theorem (Conway induction)

Let \mathcal{P} be a property which games might have, such that any game G has property \mathcal{P} whenever all left and right options of G have this property. Then every game has property \mathcal{P} .

Example : Let's show that the positions of a game form a set.

 $\forall G \equiv \{G^L | G^R\}, \mathcal{P}(G) : " \text{ The positions of } G \text{ form a set."}$

 $\mathcal{P}(G)$ holds whenever $\mathcal{P}(G^L)$ and $\mathcal{P}(G^R)$ hold. By Conway induction, then $\mathcal{P}(G)$ hols for any game G.

Definition Conway Induction Classifying games Adding games The GROUP of games

Conway Induction

Theorem (Generalised Conway induction)

For any $n \in \mathbb{N}^*$, let \mathcal{P} be a property which any n-tuple of games might have. Suppose that $\mathcal{P}(G_1, \dots, G_i, \dots, G_n)$ holds whenever, for all $i \in 1, n$ and for all $G'_i \in L_i \cup R_i$ (where $G_i \equiv \{L_i | R_i\}$), $\mathcal{P}(G_1, \dots, G'_i, \dots, G_n)$ holds. Then $\mathcal{P}(G_1, \dots, G_n)$ holds for every n-tuple of games.

Definition Conway Induction Classifying games Adding games The GROUP of games

Conway Induction

Theorem (Targeted Conway induction)

Let $\mathcal{P}_{\mathcal{C}}$ be a hereditary property that games might have, and lLet then :

$$\mathcal{C} := \{ G \text{ games} \mid \mathcal{P}_{\mathcal{C}}(G) \text{ is true} \}$$

Finally, let \mathcal{P} be a property wich games in \mathcal{C} might have, such that any game $G \in \mathcal{C}$ has property \mathcal{P} whenever all left and right options of G have property \mathcal{P} . Then \mathcal{P} holds for every game $G \in \mathcal{C}$.

Definition Conway Induction Classifying games Adding games The GROUP of games

General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games

A particular kind of games : surreal numbers

- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Definition Conway Induction Classifying games Adding games The GROUP of games

Classifying games

4 outcome classes :

Definition Conway Induction Classifying games Adding games The GROUP of games

Classifying games

- 4 outcome classes :
 - The second player wins, no matter who they are : G = 0

Definition Conway Induction Classifying games Adding games The GROUP of games

Classifying games

- 4 outcome classes :
 - The second player wins, no matter who they are : G = 0
 - 2 The fisrt player wins, no matter who they are : $G \parallel 0$

Definition Conway Induction Classifying games Adding games The GROUP of games

Classifying games

4 outcome classes :

- The second player wins, no matter who they are : G = 0
- 2 The fisrt player wins, no matter who they are : $G \parallel 0$
- Solution Left wins, no matter who starts : G > 0

Definition Conway Induction Classifying games Adding games The GROUP of games

Classifying games

4 outcome classes :

- The second player wins, no matter who they are : G = 0
- 2) The fisrt player wins, no matter who they are : $G \parallel 0$
- Solution Left wins, no matter who starts : G > 0
- Right wins, no matter who starts : G < 0.

Definition Conway Induction Classifying games Adding games The GROUP of games

Classifying games

4 outcome classes :

- The second player wins, no matter who they are : G = 0
- 2) The fisrt player wins, no matter who they are : $G \parallel 0$
- Solution Left wins, no matter who starts : G > 0
- Right wins, no matter who starts : G < 0.

Definition (Order of games)

Let G be a game. Then :

- $G \ge 0$ unless there is a right option $G^R \le 0$ of G.
- **2** $G \leq 0$ unless there is a left option $G^L \geq 0$ of G.

Definition Conway Induction Classifying games Adding games The GROUP of games

Classifying games

Definition (Order of games, outcome classes)

	$\exists G^L \geq 0$	$\nexists G^L \geq 0$
$\exists G^R \leq 0$	<i>G</i> 0	<i>G</i> < 0
$\nexists G^R \leq 0$	G > 0	<i>G</i> = 0

Which means, with words :

		If <i>Left</i> starts then	
		Left wins.	Right wins
If <i>Right</i> starts, then	Right wins.	<i>G</i> 0	<i>G</i> < 0
	Left wins.	G > 0	G = 0

Definition Conway Induction Classifying games Adding games The GROUP of games

General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
- A particular kind of games : surreal numbers
 - Surreal numbers : definition
 - Multiplying numbers
 - The FIELD of numbers

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Sum of games)

Let G and H be two games. Then the set of left options of G + H is :

$$\left(\bigcup_{i\in I}(G^{L_i}+H)\right)\cup\left(\bigcup_{i'\in I'}(G+H^{L_{i'}})\right)$$

and the set of right options of G + H is :

$$\left(\bigcup_{j\in J}(G^{R_j}+H)\right)\cup\left(\bigcup_{j'\in J'}(G+H^{R_{j'}})\right)$$

Conway Induction Classifying games Adding games The GROUP of games

Adding games

Example :

C. Laurens, A. Khelif Conway's surreal numbers

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Example :

$$1+1 \equiv \{0|\} + \{0|\} \equiv \{0+1; 1+0|\}$$

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Example :

$$1 + 1 \equiv \{0|\} + \{0|\} \equiv \{0 + 1; 1 + 0|\}$$

Yet :

$0+1 \equiv \{|\} + \{0|\} \equiv \{0+0|\} \equiv \{(\{|\}+\{|\})|\} \equiv \{(\{|\})|\} \equiv \{0|\} \equiv 1$

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Example :

$$1+1 \equiv \{0|\} + \{0|\} \equiv \{0+1; 1+0|\}$$

Yet :

 $0+1 \equiv \{|\} + \{0|\} \equiv \{0+0|\} \equiv \{(\{|\}+\{|\})|\} \equiv \{(\{|\})|\} \equiv \{0|\} \equiv 1$

and a similar development gives :

$$1+0\equiv 1$$

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Example :

$$1+1 \equiv \{0|\} + \{0|\} \equiv \{0+1;1+0|\}$$

Yet :

 $0+1 \equiv \{|\} + \{0|\} \equiv \{0+0|\} \equiv \{(\{|\}+\{|\})|\} \equiv \{(\{|\})|\} \equiv \{0|\} \equiv 1$

and a similar development gives :

$$1+0\equiv 1$$

So :

$$1+1 \equiv \{1;1|\} \equiv \{1|\} :\equiv 2$$

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Negative of a game)

Let G be a game. Then :

$$-G \equiv \left\{ (-G^{R_j})_{j \in J} \middle| (-G^{L_i})_{i \in I}
ight\}$$

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Negative of a game)

Let G be a game. Then :

$$-G \equiv \left\{ (-G^{R_j})_{j \in J} \middle| (-G^{L_i})_{i \in I}
ight\}$$

Example :

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Negative of a game)

Let G be a game. Then :

$$-G \equiv \left\{ (-G^{R_j})_{j \in J} \middle| (-G^{L_i})_{i \in I}
ight\}$$

Example :

$$-1 \equiv \{|-0\} \equiv \{|-(\{|\})\} \equiv \{|(\{|\})\} \equiv \{|0\}$$

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Negative of a game)

Let G be a game. Then :

$$-G \equiv \left\{ (-G^{R_j})_{j \in J} \middle| (-G^{L_i})_{i \in I}
ight\}$$

Example :

$$-1 \equiv \{|-0\} \equiv \{|-(\{|\})\} \equiv \{|(\{|\})\} \equiv \{|0\}$$

Definition (Substraction)

Let G and H be two games. Then we define :

$$G-H\equiv G+(-H)$$

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Equality of games)

Let G and H be two games. Then :

G = H if and only if G - H = 0.

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Equality of games)

Let G and H be two games. Then :

G = H if and only if G - H = 0.

Property

The relation = is an equivalence relation.

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Equality of games)

Let G and H be two games. Then :

G = H if and only if G - H = 0.

Property

The relation = is an equivalence relation.

Equivalence classes of equal games

Definition Conway Induction Classifying games Adding games The GROUP of games

Adding games

Definition (Equality of games)

Let G and H be two games. Then :

G = H if and only if G - H = 0.

Property

The relation = is an equivalence relation.

Equivalence classes of equal games

Theorem

Equal games are in the same outcome class.

Definition Conway Induction Classifying games Adding games The GROUP of games

General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games

A particular kind of games : surreal numbers

- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Definition Conway Induction Classifying games Adding games The GROUP of games

The GROUP of games

Property

Addition :

C. Laurens, A. Khelif Conway's surreal numbers

Definition Conway Induction Classifying games Adding games The GROUP of games

The GROUP of games

Property

Addition :

• Is compatible with the equivalence relation of equality : if G = G' and H = H', then G + H = G' + H' and G = -G'.

Definition Conway Induction Classifying games Adding games The GROUP of games

The GROUP of games

Property

- Is compatible with the equivalence relation of equality : if G = G' and H = H', then G + H = G' + H' and G = -G'.
- 3 Is associative : $(G + H) + K \equiv G + (H + K)$.

Definition Conway Induction Classifying games Adding games The GROUP of games

The GROUP of games

Property

- Is compatible with the equivalence relation of equality : if G = G' and H = H', then G + H = G' + H' and G = -G'.
- 3 Is associative : $(G + H) + K \equiv G + (H + K)$.
- **()** Is commutative : $G + H \equiv H + G$.

Definition Conway Induction Classifying games Adding games The GROUP of games

The GROUP of games

Property

- Is compatible with the equivalence relation of equality : if G = G' and H = H', then G + H = G' + H' and G = -G'.
- 3 Is associative : $(G + H) + K \equiv G + (H + K)$.
- **3** Is commutative : $G + H \equiv H + G$.
- Has $0 \equiv \{|\}$ as zero element $G + 0 \equiv G$.

Definition Conway Induction Classifying games Adding games The GROUP of games

The GROUP of games

Property

- Is compatible with the equivalence relation of equality : if G = G' and H = H', then G + H = G' + H' and G = -G'.
- 3 Is associative : $(G + H) + K \equiv G + (H + K)$.
- **3** Is commutative : $G + H \equiv H + G$.
- Has $0 \equiv \{|\}$ as zero element $G + 0 \equiv G$.
- **5** Is such that the inverse equivalence class of G is -G, for all game G.

Definition Conway Induction Classifying games Adding games The GROUP of games

The GROUP of games

Theorem

The equivalence classes formed by equal games form an additive abelian GROUP in which the zero element is represented by any game G = 0.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games

2 A particular kind of games : surreal numbers

- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Surreal numbers : definition

Property

For any game G and for any left option G^L and any right option G^R of G :

 $G^L \lhd G \lhd G^R$

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Surreal numbers : definition

Property

For any game G and for any left option G^L and any right option G^R of G :

 $G^L \lhd G \lhd G^R$

Definition (Surreal number)

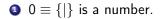
Let x be a game. Then x is a surreal number if all left and right options of x are surreal numbers, and if, for all left option x^L and all right option x^R of x, then $x^L < x^R$.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Definition

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Definition



Surreal numbers : definition Multiplying numbers The FIELD of numbers

Definition

- $0 \equiv \{|\}$ is a number.
- 2 $1 \equiv \{0|\}$ is a number.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Definition

- **1** $0 \equiv \{|\}$ is a number.
- **2** $1 \equiv \{0\}$ is a number.
- 3 $-1 \equiv \{|0\}$ is a number.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Definition

Examples :

1 $0 \equiv \{|\}$ is a number.

number.

- 2 $1 \equiv \{0\}$ is a number.
- **3** $-1 \equiv \{|0\}$ is a number.
- () $\omega \equiv \{0, 1, 2, 3, \ldots |\}$ is a

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Definition

Examples :

- **1** $0 \equiv \{|\}$ is a number.
- 2 $1 \equiv \{0\}$ is a number.
- 3 $-1 \equiv \{|0\}$ is a number.
- ④ $\omega \equiv \{0, 1, 2, 3, \ldots |\}$ is a

number.

 $\bullet \ \frac{1}{2} :\equiv \{1|2\} \text{ is a number}.$

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Definition

Examples :

- **1** $0 \equiv \{|\}$ is a number.
- 2 $1 \equiv \{0\}$ is a number.
- **3** $-1 \equiv \{|0\}$ is a number.
- ④ $\omega \equiv \{0, 1, 2, 3, \ldots |\}$ is a

number.

- $\bullet \ \frac{1}{2} :\equiv \{1|2\} \text{ is a number}.$
- s = {0|0} is a game but NOT a number !

Surreal numbers : definition Multiplying numbers The FIELD of numbers

General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games

2 A particular kind of games : surreal numbers

- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

We want multiplication to :

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

We want multiplication to :

▶ Be such that the product of two numbers remains a number.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

We want multiplication to :

- Be such that the product of two numbers remains a number.
- Be distributive upon addition.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

We want multiplication to :

- ▶ Be such that the product of two numbers remains a number.
- Be distributive upon addition.
- Behave as expected with comparison.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

(1)

Multiplying numbers

Let x and y be two numbers. Then :

$$\begin{cases} x^L < x < x^R \\ y^L < y < y^R \end{cases}$$

C. Laurens, A. Khelif Conway's surreal numbers

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

Let x and y be two numbers. Then :

$$\begin{aligned}
x^{L} < x < x^{R} \\
y^{L} < y < y^{R}
\end{aligned}$$
(1)

As we want xy to remain a number, then we have to impose :

$$(xy)^L < xy < (xy)^R \tag{2}$$

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

This gives :

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

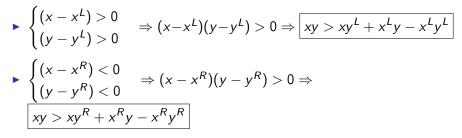
This gives :

$$\begin{cases} (x-x^L) > 0\\ (y-y^L) > 0 \end{cases} \Rightarrow (x-x^L)(y-y^L) > 0 \Rightarrow \boxed{xy > xy^L + x^Ly - x^Ly^L}$$

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

This gives :



Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

$$\begin{array}{c} \bullet & \begin{cases} (x-x^L) > 0 \\ (y-y^R) < 0 \end{cases} \Rightarrow (x-x^L)(y-y^R) < 0 \Rightarrow \\ \hline & xy < xy^R + x^Ly - x^Ly^R \end{bmatrix} \end{array}$$

Surreal numbers : definition Multiplying numbers The FIELD of numbers

Multiplying numbers

$$\begin{cases} (x - x^{L}) > 0\\ (y - y^{R}) < 0 \end{cases} \Rightarrow (x - x^{L})(y - y^{R}) < 0 \Rightarrow \\ \hline xy < xy^{R} + x^{L}y - x^{L}y^{R} \\ \end{cases}$$
$$\begin{cases} (x - x^{R}) < 0\\ (y - y^{L}) > 0 \end{cases} \Rightarrow (x - x^{R})(y - y^{L}) < 0 \Rightarrow \\ \hline xy < xy^{L} + x^{R}y - x^{R}y^{L} \end{cases}$$

Surreal numbers : definition Multiplying numbers The FIELD of numbers

General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games

2 A particular kind of games : surreal numbers

- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Surreal numbers : definition Multiplying numbers The FIELD of numbers

The FIELD of numbers

Property

• The game $1 \equiv \{0|\}$ is a neutral element for multiplication.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

The FIELD of numbers

- The game $1 \equiv \{0|\}$ is a neutral element for multiplication.
- 2 The game $0 \equiv \{|\}$ is an absorbing element for multiplication.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

The FIELD of numbers

- **1** The game $1 \equiv \{0|\}$ is a neutral element for multiplication.
- 2 The game $0 \equiv \{|\}$ is an absorbing element for multiplication.
- The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

The FIELD of numbers

- The game $1 \equiv \{0|\}$ is a neutral element for multiplication.
- 2 The game $0 \equiv \{|\}$ is an absorbing element for multiplication.
- The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.
- Multiplication and division are compatible with the equivalence relation of equality.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

The FIELD of numbers

- The game $1 \equiv \{0|\}$ is a neutral element for multiplication.
- 2 The game $0 \equiv \{|\}$ is an absorbing element for multiplication.
- The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.
- Multiplication and division are compatible with the equivalence relation of equality.
- Multiplication is commutative.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

The FIELD of numbers

- The game $1 \equiv \{0|\}$ is a neutral element for multiplication.
- 2 The game $0 \equiv \{|\}$ is an absorbing element for multiplication.
- The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.
- Multiplication and division are compatible with the equivalence relation of equality.
- **6** Multiplication is commutative.
- Multiplication associative and distributive uppon addition when considered as an operation on equivalence classes of numbers

Surreal numbers : definition Multiplying numbers The FIELD of numbers

The FIELD of numbers

- **(**) The game $1 \equiv \{0|\}$ is a neutral element for multiplication.
- **2** The game $0 \equiv \{|\}$ is an absorbing element for multiplication.
- The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.
- Multiplication and division are compatible with the equivalence relation of equality.
- **6** Multiplication is commutative.
- Multiplication associative and distributive uppon addition when considered as an operation on equivalence classes of numbers
- For all number x, there exists a number y such that xy = yx = 1.

Surreal numbers : definition Multiplying numbers The FIELD of numbers

The FIELD of numbers

Theorem

The equivalence classes formed by equal numbers form a totaly ordered FIELD, in which the zero element for addition is represented by any number x = 0 and the neutral element for multiplication is represented by any number y = 1.