Conway's surreal numbers
 A particular case of Combinatorial Game Theory

Clémentine Laurens, supervised by Anatole Khelif

ENS Rennes, Université Paris Diderot

August 27 ${ }^{\text {th }}, 2018$
(1) General background: combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games: surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Adding games
The GROUP of games

(1) General background: combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games: surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Definition

Definition (Combinatorial game)

(1) Let L and R be two sets of games. Then the ordered pair $\{L \mid R\}$ is a combinatorial game.
(2) (Descending Game Condition) There is no infinite sequence of combinatorial games $\left(G_{i}\right)_{i \in \mathbb{N}}: \equiv\left(\left\{L_{i} \mid R_{i}\right\}\right)_{i \in \mathbb{N}}$ such that $\forall i \in \mathbb{N}$, $G_{i+1} \in L_{i} \cup R_{i}$.

Definition

Definition (Combinatorial game)

(1) Let L and R be two sets of games. Then the ordered pair $\{L \mid R\}$ is a combinatorial game.
(2) (Descending Game Condition) There is no infinite sequence of combinatorial games $\left(G_{i}\right)_{i \in \mathbb{N}}: \equiv\left(\left\{L_{i} \mid R_{i}\right\}\right)_{i \in \mathbb{N}}$ such that $\forall i \in \mathbb{N}$, $G_{i+1} \in L_{i} \cup R_{i}$.

- Options: $L \cup R$

Definition

Definition (Combinatorial game)

(1) Let L and R be two sets of games. Then the ordered pair $\{L \mid R\}$ is a combinatorial game.
(2) (Descending Game Condition) There is no infinite sequence of combinatorial games $\left(G_{i}\right)_{i \in \mathbb{N}}: \equiv\left(\left\{L_{i} \mid R_{i}\right\}\right)_{i \in \mathbb{N}}$ such that $\forall i \in \mathbb{N}$, $G_{i+1} \in L_{i} \cup R_{i}$.

- Options: $L \cup R$
- Positions: G and all the positions of any option of G

Definition

Definition (Combinatorial game)

(1) Let L and R be two sets of games. Then the ordered pair $\{L \mid R\}$ is a combinatorial game.
(2) (Descending Game Condition) There is no infinite sequence of combinatorial games $\left(G_{i}\right)_{i \in \mathbb{N}}: \equiv\left(\left\{L_{i} \mid R_{i}\right\}\right)_{i \in \mathbb{N}}$ such that $\forall i \in \mathbb{N}$, $G_{i+1} \in L_{i} \cup R_{i}$.

- Options: $L \cup R$
- Positions: G and all the positions of any option of G

Examples:

Definition

Definition (Combinatorial game)

(1) Let L and R be two sets of games. Then the ordered pair $\{L \mid R\}$ is a combinatorial game.
(2) (Descending Game Condition) There is no infinite sequence of combinatorial games $\left(G_{i}\right)_{i \in \mathbb{N}}: \equiv\left(\left\{L_{i} \mid R_{i}\right\}\right)_{i \in \mathbb{N}}$ such that $\forall i \in \mathbb{N}$, $G_{i+1} \in L_{i} \cup R_{i}$.

- Options: $L \cup R$
- Positions: G and all the positions of any option of G

Examples:

(1) $0: \equiv\{\mid\}$

Definition

Definition (Combinatorial game)

(1) Let L and R be two sets of games. Then the ordered pair $\{L \mid R\}$ is a combinatorial game.
(2) (Descending Game Condition) There is no infinite sequence of combinatorial games $\left(G_{i}\right)_{i \in \mathbb{N}}: \equiv\left(\left\{L_{i} \mid R_{i}\right\}\right)_{i \in \mathbb{N}}$ such that $\forall i \in \mathbb{N}$, $G_{i+1} \in L_{i} \cup R_{i}$.

- Options: $L \cup R$
- Positions: G and all the positions of any option of G

Examples:

(1) $0: \equiv\{\mid\}$
(2) $1: \equiv\{0 \mid\}$

Definition

Definition (Combinatorial game)

(1) Let L and R be two sets of games. Then the ordered pair $\{L \mid R\}$ is a combinatorial game.
(2) (Descending Game Condition) There is no infinite sequence of combinatorial games $\left(G_{i}\right)_{i \in \mathbb{N}}: \equiv\left(\left\{L_{i} \mid R_{i}\right\}\right)_{i \in \mathbb{N}}$ such that $\forall i \in \mathbb{N}$, $G_{i+1} \in L_{i} \cup R_{i}$.

- Options: $L \cup R$
- Positions: G and all the positions of any option of G

Examples:

(1) $0: \equiv\{\mid\}$
(3) $-1: \equiv\{\mid 0\}$
(2) $1: \equiv\{0 \mid\}$

Definition

Definition (Combinatorial game)

(1) Let L and R be two sets of games. Then the ordered pair $\{L \mid R\}$ is a combinatorial game.
(2) (Descending Game Condition) There is no infinite sequence of combinatorial games $\left(G_{i}\right)_{i \in \mathbb{N}}: \equiv\left(\left\{L_{i} \mid R_{i}\right\}\right)_{i \in \mathbb{N}}$ such that $\forall i \in \mathbb{N}$, $G_{i+1} \in L_{i} \cup R_{i}$.

- Options: $L \cup R$
- Positions: G and all the positions of any option of G

Examples:

(1) $0: \equiv\{\mid\}$
(3) $-1: \equiv\{\mid 0\}$
(2) $1: \equiv\{0 \mid\}$
(4) $*: \equiv\{0 \mid 0\}$

Adding games
The GROUP of games

(1) General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games: surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Conway Induction

Theorem (Conway induction)
Let \mathcal{P} be a property which games might have, such that any game G has property \mathcal{P} whenever all left and right options of G have this property. Then every game has property \mathcal{P}.

Conway Induction

Theorem (Conway induction)

Let \mathcal{P} be a property which games might have, such that any game G has property \mathcal{P} whenever all left and right options of G have this property. Then every game has property \mathcal{P}.

Example : Let's show that the positions of a game form a set.

Conway Induction

Theorem (Conway induction)

Let \mathcal{P} be a property which games might have, such that any game G has property \mathcal{P} whenever all left and right options of G have this property. Then every game has property \mathcal{P}.

Example : Let's show that the positions of a game form a set.

$$
\forall G \equiv\left\{G^{L} \mid G^{R}\right\}, \mathcal{P}(G): \text { "The positions of } G \text { form a set." }
$$

Conway Induction

Theorem (Conway induction)

Let \mathcal{P} be a property which games might have, such that any game G has property \mathcal{P} whenever all left and right options of G have this property. Then every game has property \mathcal{P}.

Example : Let's show that the positions of a game form a set.

$$
\forall G \equiv\left\{G^{L} \mid G^{R}\right\}, \mathcal{P}(G): \text { "The positions of } G \text { form a set." }
$$

$\mathcal{P}(G)$ holds whenever $\mathcal{P}\left(G^{L}\right)$ and $\mathcal{P}\left(G^{R}\right)$ hold. By Conway induction, then $\mathcal{P}(G)$ hols for any game G.

Conway Induction

Theorem (Generalised Conway induction)

For any $n \in \mathbb{N}^{*}$, let \mathcal{P} be a property which any n-tuple of games might have. Suppose that $\mathcal{P}\left(G_{1}, \cdots, G_{i}, \cdots, G_{n}\right)$ holds whenever, for all $i \in 1, n$ and for all $G_{i}^{\prime} \in L_{i} \cup R_{i}$ (where $\left.G_{i} \equiv\left\{L_{i} \mid R_{i}\right\}\right), \mathcal{P}\left(G_{1}, \cdots, G_{i}^{\prime}, \cdots, G_{n}\right)$ holds. Then $\mathcal{P}\left(G_{1}, \cdots, G_{n}\right)$ holds for every n-tuple of games.

Conway Induction

Theorem (Targeted Conway induction)

Let $\mathcal{P}_{\mathcal{C}}$ be a hereditary property that games might have, and ILet then :

$$
\mathcal{C}:=\left\{G \text { games } \mid \mathcal{P}_{\mathcal{C}}(G) \text { is true }\right\}
$$

Finally, let \mathcal{P} be a property wich games in \mathcal{C} might have, such that any game $G \in \mathcal{C}$ has property \mathcal{P} whenever all left and right options of G have property \mathcal{P}. Then \mathcal{P} holds for every game $G \in \mathcal{C}$.

Adding games
The GROUP of games

(1) General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games : surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Adding games
The GROUP of games

Classifying games

4 outcome classes :

Classifying games

4 outcome classes :

(1) The second player wins, no matter who they are : $G=0$

Classifying games

4 outcome classes :
(1) The second player wins, no matter who they are : $G=0$
(2) The fisrt player wins, no matter who they are : $G \| 0$

Classifying games

4 outcome classes :
(1) The second player wins, no matter who they are : $G=0$
(2) The fisrt player wins, no matter who they are : $G \| 0$
(3) Left wins, no matter who starts: $G>0$

Classifying games

4 outcome classes :
(1) The second player wins, no matter who they are : $G=0$
(2) The fisrt player wins, no matter who they are : $G \| 0$
(3) Left wins, no matter who starts: $G>0$
(9) Right wins, no matter who starts : $G<0$.

Classifying games

4 outcome classes :
(1) The second player wins, no matter who they are: $G=0$
(2) The fisrt player wins, no matter who they are: $G \| 0$
(3) Left wins, no matter who starts: $G>0$
(9) Right wins, no matter who starts : $G<0$.

Definition (Order of games)

Let G be a game. Then :
(1) $G \geq 0$ unless there is a right option $G^{R} \leq 0$ of G.
(2) $G \leq 0$ unless there is a left option $G^{L} \geq 0$ of G.

Classifying games

Definition (Order of games, outcome classes)

	$\exists G^{L} \geq 0$	$\nexists G^{L} \geq 0$	
$\exists G^{R} \leq 0$	$G \\| 0$	$G<0$	
$\nexists G^{R} \leq 0$	$G>0$	$G=0$	

Which means, with words :

	If Left starts then...			
	Left wins.	Right wins		
If Right starts, then...	Right wins.	$G \\| 0$	$G<0$	
	Left wins.	$G>0$	$G=0$	

Adding games

(1) General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games: surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Adding games

Definition (Sum of games)

Let G and H be two games. Then the set of left options of $G+H$ is :

$$
\left(\bigcup_{i \in I}\left(G^{L_{i}}+H\right)\right) \cup\left(\bigcup_{i^{\prime} \in I^{\prime}}\left(G+H^{L_{i^{\prime}}}\right)\right)
$$

and the set of right options of $G+H$ is :

$$
\left(\bigcup_{j \in J}\left(G^{R_{j}}+H\right)\right) \cup\left(\bigcup_{j^{\prime} \in J^{\prime}}\left(G+H^{R_{j^{\prime}}}\right)\right)
$$

Adding games

Adding games

Example :

Adding games
The GROUP of games

Adding games

Example :

$$
1+1 \equiv\{0 \mid\}+\{0 \mid\} \equiv\{0+1 ; 1+0 \mid\}
$$

Adding games

Example :

$$
1+1 \equiv\{0 \mid\}+\{0 \mid\} \equiv\{0+1 ; 1+0 \mid\}
$$

Yet :

$0+1 \equiv\{\mid\}+\{0 \mid\} \equiv\{0+0 \mid\} \equiv\{(\{\mid\}+\{\mid\}) \mid\} \equiv\{(\{\mid\}) \mid\} \equiv\{0 \mid\} \equiv 1$

Adding games

Example :

$$
1+1 \equiv\{0 \mid\}+\{0 \mid\} \equiv\{0+1 ; 1+0 \mid\}
$$

Yet :

$$
0+1 \equiv\{\mid\}+\{0 \mid\} \equiv\{0+0 \mid\} \equiv\{(\{\mid\}+\{\mid\}) \mid\} \equiv\{(\{\mid\}) \mid\} \equiv\{0 \mid\} \equiv 1
$$

and a similar development gives :

$$
1+0 \equiv 1
$$

Adding games

Example :

$$
1+1 \equiv\{0 \mid\}+\{0 \mid\} \equiv\{0+1 ; 1+0 \mid\}
$$

Yet :

$$
0+1 \equiv\{\mid\}+\{0 \mid\} \equiv\{0+0 \mid\} \equiv\{(\{\mid\}+\{\mid\}) \mid\} \equiv\{(\{\mid\}) \mid\} \equiv\{0 \mid\} \equiv 1
$$

and a similar development gives :

$$
1+0 \equiv 1
$$

So :

$$
1+1 \equiv\{1 ; 1 \mid\} \equiv\{1 \mid\}: \equiv 2
$$

Adding games
The GROUP of games

Adding games

Definition (Negative of a game)

Let G be a game. Then :

$$
-G \equiv\left\{\left(-G^{R_{j}}\right)_{j \in J} \mid\left(-G^{L_{i}}\right)_{i \in I}\right\}
$$

Adding games
The GROUP of games

Adding games

Definition (Negative of a game)

Let G be a game. Then :

$$
-G \equiv\left\{\left(-G^{R_{j}}\right)_{j \in J} \mid\left(-G^{L_{i}}\right)_{i \in \prime}\right\}
$$

Example :

Adding games

Definition (Negative of a game)

Let G be a game. Then :

$$
-G \equiv\left\{\left(-G^{R_{j}}\right)_{j \in J} \mid\left(-G^{L_{i}}\right)_{i \in I}\right\}
$$

Example :

$$
-1 \equiv\{\mid-0\} \equiv\{\mid-(\{\mid\})\} \equiv\{\mid(\{\mid\})\} \equiv\{\mid 0\}
$$

Adding games
The GROUP of games

Adding games

Definition (Negative of a game)

Let G be a game. Then :

$$
-G \equiv\left\{\left(-G^{R_{j}}\right)_{j \in J} \mid\left(-G^{L_{i}}\right)_{i \in I}\right\}
$$

Example :

$$
-1 \equiv\{\mid-0\} \equiv\{\mid-(\{\mid\})\} \equiv\{\mid(\{\mid\})\} \equiv\{\mid 0\}
$$

Definition (Substraction)

Let G and H be two games. Then we define :

$$
G-H \equiv G+(-H)
$$

Adding games

Definition (Equality of games)

Let G and H be two games. Then :

$$
G=H \text { if and only if } G-H=0 .
$$

Adding games

Definition (Equality of games)

Let G and H be two games. Then :

$$
G=H \text { if and only if } G-H=0 .
$$

Property

The relation $=$ is an equivalence relation.

Adding games

Definition (Equality of games)

Let G and H be two games. Then :

$$
G=H \text { if and only if } G-H=0 .
$$

Property

The relation $=$ is an equivalence relation.

- Equivalence classes of equal games

Adding games

Definition (Equality of games)

Let G and H be two games. Then :

$$
G=H \text { if and only if } G-H=0 .
$$

Property

The relation $=$ is an equivalence relation.

- Equivalence classes of equal games

Theorem

Equal games are in the same outcome class.

Adding games
The GROUP of games

(1) General background : combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games: surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Adding games
The GROUP of games

The GROUP of games

Property

Addition :

The GROUP of games

Property

Addition :

(1) Is compatible with the equivalence relation of equality : if $G=G^{\prime}$ and $H=H^{\prime}$, then $G+H=G^{\prime}+H^{\prime}$ and $G=-G^{\prime}$.

The GROUP of games

Property

Addition :

(1) Is compatible with the equivalence relation of equality : if $G=G^{\prime}$ and $H=H^{\prime}$, then $G+H=G^{\prime}+H^{\prime}$ and $G=-G^{\prime}$.
(2) Is associative : $(G+H)+K \equiv G+(H+K)$.

The GROUP of games

Property

Addition :

(1) Is compatible with the equivalence relation of equality : if $G=G^{\prime}$ and $H=H^{\prime}$, then $G+H=G^{\prime}+H^{\prime}$ and $G=-G^{\prime}$.
(2) Is associative : $(G+H)+K \equiv G+(H+K)$.
(3) Is commutative : $G+H \equiv H+G$.

The GROUP of games

Property

Addition :

(1) Is compatible with the equivalence relation of equality : if $G=G^{\prime}$ and $H=H^{\prime}$, then $G+H=G^{\prime}+H^{\prime}$ and $G=-G^{\prime}$.
(2) Is associative : $(G+H)+K \equiv G+(H+K)$.
(3) Is commutative : $G+H \equiv H+G$.
(4) Has $0 \equiv\{\mid\}$ as zero element $G+0 \equiv G$.

The GROUP of games

Property

Addition :

(1) Is compatible with the equivalence relation of equality : if $G=G^{\prime}$ and $H=H^{\prime}$, then $G+H=G^{\prime}+H^{\prime}$ and $G=-G^{\prime}$.
(2) Is associative : $(G+H)+K \equiv G+(H+K)$.
(3) Is commutative : $G+H \equiv H+G$.
(4) Has $0 \equiv\{\mid\}$ as zero element $G+0 \equiv G$.
(5) Is such that the inverse equivalence class of G is $-G$, for all game G.

The GROUP of games

Theorem

The equivalence classes formed by equal games form an additive abelian GROUP in which the zero element is represented by any game $G=0$.
(1) General background: combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games: surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

Surreal numbers : definition

Property

For any game G and for any left option G^{L} and any right option G^{R} of G :

$$
G^{L} \triangleleft G \triangleleft G^{R}
$$

Surreal numbers : definition

Property

For any game G and for any left option G^{L} and any right option G^{R} of G :

$$
G^{L} \triangleleft G \triangleleft G^{R}
$$

Definition (Surreal number)

Let x be a game. Then x is a surreal number if all left and right options of x are surreal numbers, and if, for all left option x^{L} and all right option x^{R} of x, then $x^{L}<x^{R}$.

The FIELD of numbers

Definition

Examples:

The FIELD of numbers

Definition

Examples:

(1) $0 \equiv\{\mid\}$ is a number.

Definition

Examples:

(1) $0 \equiv\{\mid\}$ is a number.
(2) $1 \equiv\{0 \mid\}$ is a number.

Multiplying numbers
The FIELD of numbers

Definition

Examples:

(1) $0 \equiv\{\mid\}$ is a number.
(2) $1 \equiv\{0 \mid\}$ is a number.
(3) $-1 \equiv\{\mid 0\}$ is a number.

Definition

Examples:

(1) $0 \equiv\{\mid\}$ is a number. number.
(2) $1 \equiv\{0 \mid\}$ is a number.
(3) $-1 \equiv\{\mid 0\}$ is a number.
(c) $\omega \equiv\{0,1,2,3, \ldots \mid\}$ is a

Definition

Examples:

(1) $0 \equiv\{\mid\}$ is a number.
(2) $1 \equiv\{0 \mid\}$ is a number.
(3) $-1 \equiv\{\mid 0\}$ is a number.
(4) $\omega \equiv\{0,1,2,3, \ldots \mid\}$ is a

Definition

Examples:

(1) $0 \equiv\{\mid\}$ is a number.
(2) $1 \equiv\{0 \mid\}$ is a number.
(3) $-1 \equiv\{\mid 0\}$ is a number.
(c) $\omega \equiv\{0,1,2,3, \ldots \mid\}$ is a
number.
(3) $\frac{1}{2}: \equiv\{1 \mid 2\}$ is a number.
(0) $* \equiv\{0 \mid 0\}$ is a game but NOT a number!
(1) General background: combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games: surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

The FIELD of numbers

Multiplying numbers

We want multiplication to :

Multiplying numbers

We want multiplication to :

- Be such that the product of two numbers remains a number.

Multiplying numbers

We want multiplication to :

- Be such that the product of two numbers remains a number.
- Be distributive upon addition.

Multiplying numbers

We want multiplication to :

- Be such that the product of two numbers remains a number.
- Be distributive upon addition.
- Behave as expected with comparison.

Multiplying numbers

Let x and y be two numbers. Then :

$$
\left\{\begin{array}{l}
x^{L}<x<x^{R} \tag{1}\\
y^{L}<y<y^{R}
\end{array}\right.
$$

Multiplying numbers

Let x and y be two numbers. Then :

$$
\left\{\begin{array}{l}
x^{L}<x<x^{R} \tag{1}\\
y^{L}<y<y^{R}
\end{array}\right.
$$

As we want $x y$ to remain a number, then we have to impose :

$$
\begin{equation*}
(x y)^{L}<x y<(x y)^{R} \tag{2}
\end{equation*}
$$

The FIELD of numbers

Multiplying numbers

This gives:

The FIELD of numbers

Multiplying numbers

This gives:

$$
\text { - }\left\{\begin{array}{l}
\left(x-x^{L}\right)>0 \\
\left(y-y^{L}\right)>0
\end{array} \Rightarrow\left(x-x^{L}\right)\left(y-y^{L}\right)>0 \Rightarrow x y>x y^{L}+x^{L} y-x^{L} y^{L}\right.
$$

Multiplying numbers

This gives:

- $\left\{\begin{array}{l}\left(x-x^{L}\right)>0 \\ \left(y-y^{L}\right)>0\end{array} \Rightarrow\left(x-x^{L}\right)\left(y-y^{L}\right)>0 \Rightarrow x y>x y^{L}+x^{L} y-x^{L} y^{L}\right.$
- $\left\{\begin{array}{l}\left(x-x^{R}\right)<0 \\ \left(y-y^{R}\right)<0\end{array} \Rightarrow\left(x-x^{R}\right)\left(y-y^{R}\right)>0 \Rightarrow\right.$ $x y>x y^{R}+x^{R} y-x^{R} y^{R}$

The FIELD of numbers

Multiplying numbers

$$
\begin{aligned}
& -\left\{\begin{array}{l}
\left(x-x^{L}\right)>0 \\
\left(y-y^{R}\right)<0
\end{array} \Rightarrow\left(x-x^{L}\right)\left(y-y^{R}\right)<0 \Rightarrow\right. \\
& x y<x y^{R}+x^{L} y-x^{L} y^{R}
\end{aligned}
$$

Multiplying numbers

$$
\begin{aligned}
&-\left\{\begin{array}{l}
\left(x-x^{L}\right)>0 \\
\left(y-y^{R}\right)<0
\end{array} \Rightarrow\left(x-x^{L}\right)\left(y-y^{R}\right)<0 \Rightarrow\right. \\
& x y<x y^{R}+x^{L} y-x^{L} y^{R}
\end{aligned}
$$

$$
-\left\{\begin{array}{l}
\left(x-x^{R}\right)<0 \\
\left(y-y^{L}\right)>0
\end{array} \Rightarrow\left(x-x^{R}\right)\left(y-y^{L}\right)<0 \Rightarrow\right.
$$

$$
x y<x y^{L}+x^{R} y-x^{R} y^{L}
$$

(1) General background: combinatorial games

- Definition
- Conway Induction
- Classifying games
- Adding games
- The GROUP of games
(2) A particular kind of games: surreal numbers
- Surreal numbers : definition
- Multiplying numbers
- The FIELD of numbers

The FIELD of numbers

Property

(1) The game $1 \equiv\{0 \mid\}$ is a neutral element for multiplication.

The FIELD of numbers

Property

(1) The game $1 \equiv\{0 \mid\}$ is a neutral element for multiplication.
(2) The game $0 \equiv\{\mid\}$ is an absorbing element for multiplication.

The FIELD of numbers

Property

(1) The game $1 \equiv\{0 \mid\}$ is a neutral element for multiplication.
(2) The game $0 \equiv\{\mid\}$ is an absorbing element for multiplication.
(3) The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.

The FIELD of numbers

Property

(1) The game $1 \equiv\{0 \mid\}$ is a neutral element for multiplication.
(2) The game $0 \equiv\{\mid\}$ is an absorbing element for multiplication.
(3) The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.
(9) Multiplication and division are compatible with the equivalence relation of equality.

The FIELD of numbers

Property

(1) The game $1 \equiv\{0 \mid\}$ is a neutral element for multiplication.
(2) The game $0 \equiv\{\mid\}$ is an absorbing element for multiplication.
(3) The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.
(9) Multiplication and division are compatible with the equivalence relation of equality.
(5) Multiplication is commutative.

The FIELD of numbers

Property

(1) The game $1 \equiv\{0 \mid\}$ is a neutral element for multiplication.
(2) The game $0 \equiv\{\mid\}$ is an absorbing element for multiplication.
(3) The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.
(9) Multiplication and division are compatible with the equivalence relation of equality.
(5) Multiplication is commutative.
(0) Multiplication associative and distributive uppon addition when considered as an operation on equivalence classes of numbers

The FIELD of numbers

Property

(1) The game $1 \equiv\{0 \mid\}$ is a neutral element for multiplication.
(2) The game $0 \equiv\{\mid\}$ is an absorbing element for multiplication.
(3) The equivalence classes formed by equal numbers form an abelian (SUB)GROUP of games.
(9) Multiplication and division are compatible with the equivalence relation of equality.
(5) Multiplication is commutative.
(0) Multiplication associative and distributive uppon addition when considered as an operation on equivalence classes of numbers
(3) For all number x, there exists a number y such that $x y=y x=1$.

The FIELD of numbers

Theorem

The equivalence classes formed by equal numbers form a totaly ordered FIELD, in which the zero element for addition is represented by any number $x=0$ and the neutral element for multiplication is represented by any number $y=1$.

