Comment calculer une intégrale?

Méthode 1 : on connaît une primitive. Dans ce cas là on utilise le fait que si F est une primitive de f (de manière équivalente f est la dérivée de F) alors $\int_a^b f = F(b) - F(a)$.

Par exemple, on sait que si $n \in \mathbb{Z} \setminus \{-1\}$ alors une primitive de $x \mapsto x^n$ est $x \mapsto \frac{x^{n+1}}{n+1}$ et qu'une primitive de $x \mapsto x^{-1}$ est ln.

Méthode 2 : on utilise la linéarité de l'intégrale. C'est bien si on a une combinaison linéaire de fonctions dont on connaît des primitives. Par exemple, on sait intégrer les polynômes.

Méthode 3 : on utilise des intégrations par parties.

Théorème 0.1. Soient $a, b \in \mathbb{R}$ et $u, v \in C^1([a, b], \mathbb{R})$.

$$\int_{a}^{b} uv' = \int_{a}^{b} ((uv)' - u'v) = [uv]_{a}^{b} - \int_{a}^{b} u'v$$

Méthode 4 : on utilise des changements de variables.

Théorème 0.2. Soient I, J des intervalles réels, $\varphi \in \mathcal{C}^1(I, \mathbb{R}), f \in \mathcal{C}^0(J, \mathbb{R})$ tels que $\varphi(I) \subset J$.

Pour tous
$$a, b \in I$$
, $\int_a^b f(\varphi(t))\varphi'(t)dt = \int_{\varphi(a)}^{\varphi(b)} f(x)dx$.

En effet, $F: \begin{cases} J \to \mathbb{R} \\ y \mapsto \int_{\varphi(a)}^y f(x) \mathrm{d}x \end{cases}$ est la primitive de f nulle en $\varphi(a)$ donc $F \circ \varphi$ est la primitive de $F'(\varphi)\varphi' = f(\varphi)\varphi'$ nulle en a donc est égale à la fonction $G: \begin{cases} I \to \mathbb{R} \\ s \mapsto \int_a^s f(\varphi(t))\varphi'(t) \mathrm{d}t \end{cases}$. En particulier, $F(\varphi(b)) = G(b)$.

Rappel : si g_0 et g_1 sont des primitives d'une fonction g alors $g_0 - g_1$ est constante donc, si elle est nulle en un point alors elle est nulle partout.

Utilisation pratique : on a une intégrale qu'on ne sait pas calculer, et on reconnaît la forme de l'intégrale de gauche $\int_a^b f(\varphi(t))\varphi'(t)\mathrm{d}t$, du coup on applique le théorème 0.2, et on a l'intégrale $\int_{\varphi(a)}^{\varphi(b)} f(x)\mathrm{d}x$ dont on espère qu'on sait la calculer.