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Abstract. This paper reviews some compression algorithms designed or
modified for analyzing symbolic music data. The algorithms were used
in combination with a new method of classification based on multiple
viewpoints and the k-nearest-neighbours algorithm to classify the folk
tunes in the Annotated Corpus of the Dutch Song Database (Nederlandse
Liederenbank). The best-performing algorithm achieved a classification
success rate 94%.

1 Introduction

Folk music can be used to analyze the cultural development of a geographical
region and for studying interactions between cultures [1]. In order to do this, folk
songs are typically categorized by tune family, geographic location, genre and so
on. Two songs are said to be in the same category if they have a common ancestor
in the tree of oral transmission [2]. The possibility of automatic classification of
folk songs was first noted as early as the year 1900 by the musicologist Daniel
François Scheurleer [25].

Van Kranenbourg et al. [27] show that a classification method based on local
features [5, 7, 10, 27], such as pattern similarity, outperforms all methods that
focus on global features [8, 10, 27], such as tonality, first and last note of the
song, average pitch and so on. Moreover, Conklin et al. [5,7] extend this analysis
with their multiple viewpoint model which combines different features, local and
global. This method provided good results on prediction and generation of mu-
sic [6, 22]. Conklin recently showed that applying this model to a classification
task outperforms all classification algorithms that use just one feature.

General-purpose compression algorithms such as Burrows-Wheeler [3] (BW),
Lempel-Ziv-77 [31] (LZ77) and Lempel-Ziv-78 [32] (LZ78) are based on the re-
dundancy of the input sequence. This suggested that they might be useful for



finding musically relevant patterns. Therefore, our idea was to explore whether
these algorithms, perhaps modified for song compression, could be used success-
fully for music classification. We also investigated the effect that using different
representation schemes has on the efficiency and effectiveness of these algorithms.

Meredith [17–20], inspired by the theory of Kolmogorov complexity [13, 28],
hypothesized that the simplest and shortest descriptions of any musical object
are those that describe the best possible explanations for the structure of that
object. He developed an algorithm, COSIATEC (“COmpression with Structure
Induction Algorithm, and Translational Equivalence Classes"), which finds max-
imal repeated patterns in a point-set representation of a piece of music and uses
these to produce a losslessly compressed encoding of the input piece. Meredith
evaluated COSIATEC [20] by using it to classify the songs in the Annotated
Corpus of Dutch folk songs [27] by computing Normalized Compression Dis-
tances (NCDs), the 1-nearest-neighbour classification algorithm and leave-one-
out cross-validation (i.e., each song of the corpus is associated with the class of
the most similar song in the rest of the corpus).

This paper presents and analyses derivative versions of four compression algo-
rithms: Burrows-Wheeler [3], Lempel-Ziv-77 [31], Lempel-Ziv-78 [32] and COSI-
ATEC. The first three are general-purpose compression algorithms that were
developed for text compression. In this paper they are used on sequences of two-
dimensional points, but those sequences will be considered as one-dimensional
strings of letters from the alphabet Z2. For this reason, examples will use letters
instead of two-dimensional points. The goal is to preserve the design of the text
compression algorithms, but present the musical data in a way that allows them
to find repeated patterns.

The main purpose of this paper is to determine how well these algorithms
can find musically relevant patterns and detect similarities. Moreover, the paper
aims to evaluate the effect of the representations on general-purpose compression
algorithms.

Sections 2 to 5 present the four algorithms we used. Then we present the new
classification method that combines the multiple viewpoints approach [5] and the
k-nearest-neighbours algorithm. The last section compares all algorithms used
with different representations. This evaluation is done on a classification task
run on the Dutch folk song dataset, Onder der Groene linde [9], with the new
classification method.

2 Burrows-Wheeler

There are many lossless compressors used today. One of them is bzip2 [26] based
on the work of Burrows and Wheeler [3, 24]. The algorithm they present uses
a transformation on the sequence and entropy coding. The method provides a
result at least as good as the one given by gzip, and is generally faster. In fact,



it outperforms gzip both in speed and in compression. It was therefore decided
to implement it for note sequences.

The algorithm consists of three parts:

1. The Burrows-Wheeler transform. This step executes a permutation of the
input sequence that improves the compression effect of the following step.

2. Move-to-front coding. This is a transformation that can improve the perfor-
mance of entropy coding such as Huffman coding. It also has a high com-
pression effect.

3. Huffman or arithmetic coding.

We implemented each part except the Huffman coder as it improves neither the
success rate results nor the compression ratios for the Annotated Corpus. Huff-
man coding fails to improve performance because we use a string representation
and there are only a few notes in a melody, then the radix-10 representation
is better than radix-2 because it uses fewer characters. The results given by
move-to-front coding are presented in section 7.

2.1 Burrows-Wheeler Transform

This transform performs a permutation on the input string. The aim of this per-
mutation is to bring equal elements closer together. This permutation increases
the probability of finding a character c at a point in a sequence if c already
occurs near this point. Move-to-front coding can then have a better compression
effect.

The Burrows-Wheeler transform uses an n× n matrix where n is the length
of the input string S. The elements of this matrix are points in S. Each row is
a cyclic shift of S. There is therefore at least one row that is equal to the input.
The rows are then sorted into lexicographic order. The output of the algorithm
is a pair (T, i), where T is the last column of the matrix and i is the index of a
(usually the) row corresponding to S.

An example of such a sorted matrix using the input string S = banana is
shown in Figure 1. As S appears in the row 3, the output is then the pair formed
by the string of the last column and this index: (nnbaaa, 3). In this example,
characters that are equal are regrouped together. However, this is not always
the case, as can be seen in Burrows’ own example, abraca, which is transformed
into caraab [3].

2.2 Move-to-front Coding

This algorithm is used to encode the string returned by the Burrows-Wheeler
transform. It takes a string T as input and returns a vector R of integers. This
algorithm needs to know the alphabet Y of the input, so the first step consists



row T
0 a b a n a n
1 a n a b a n
2 a n a n a b
3 b a n a n a
4 n a b a n a
5 n a n a b a

Fig. 1. Example of matrix used by Burrows-Wheeler transform.

Data: A sequence of letters T
Result: A vector of integers R
Y = alphabet of T ;
construct an empty array R of length |T |;
for i = 0 to |T | do

R(i) = index of T (i) in Y ;
Move T (i) to the front of Y ;

end
Algorithm 1: Move-to-front coding.

of an iterative algorithm that builds the alphabet by reading the input string
from left to right, adding new characters to an initially empty alphabet.

The algorithm then buildsR by executing Algorithm 1 (see above). It replaces
each character, T [i], by its index in the alphabet, Y , and then places that char-
acter at the beginning of Y . Applied on the example nnbaaa, it first computes
the alphabet Y = [n, b, a] and then returns the integer vector R = [0, 0, 1, 2, 0, 0].

The input of this algorithm is such that when a character appears, the prob-
ability that it has already appeared or will appear again is high. Therefore, the
integer found by the first instructions of the loop will be lower than without the
transform.

To ensure reversibility, the algorithm needs to return the alphabet, Y , as well
as the integer vector R returned by the move-to-front coding algorithm and the
index i returned by the Burrows-Wheeler transform.

3 Lempel-Ziv-77

In 1977, A. Lempel and J. Ziv introduced a lossless dictionary-based data com-
pression algorithm: LZ77 [31]. There are some improvements for this algorithm
such as LZMA, used by the 7zip compressor [11], but some compressors such as
ZPAQ, which is one of the best today [15], still continue to use the basic version
of LZ77. LZ77 uses some pattern discovery—indeed, it codes repeated substrings
by references to their last occurrences [24]. This is why we decided to see what it



can do with a string of notes. Are the patterns found by this algorithm musically
relevant?

The LZ77 algorithm uses a sliding window which consists of two parts: the
dictionary part and the look-ahead buffer. The dictionary contains an already
encoded part of the sequence, and the look-ahead buffer contains the next portion
of the input to encode. The size of each part is determined by the two parameters
n, the size of the window, and Ls, the maximal matching length, that is the size
of the look-ahead buffer.

The principle of this algorithm is to find the longest prefix of the look-ahead
buffer that also begins in the dictionary. The output is then a sequence of triples
(pi, li − 1, c) where p is a pointer to the first letter of the dictionary occurrence,
li−1 is the length of the prefix and c is the first character that follows the prefix
in the look-ahead buffer.

Let S1 and S2 be two strings. S1(i) denotes the (i+1)th element in S1 (zero-
based indexing is used). S1(i, j) is the substring from S1(i) to S1(j). S1S2 is the
string obtained by concatenating S1 and S2. Finally, Sn

1 denotes S1 concatenated
n times.

LZ77 is an iterative algorithm. First it initializes the window W by filling
the dictionary with a null letter (a in our example, however, in practice, we use
the point (0, 0)). The look-ahead buffer is then filled with the first Ls notes of
the input sequence S to be encoded:

W = an−LsS(0, Ls − 1)

The followings steps are then repeated until the whole sequence S is encoded:

1. Find Si = W (n−Ls, n−Ls + li−2), the longest prefix of length li−1 of the
look-ahead buffer that also begin at index pi in the dictionary. When there
is no prefix (i.e. li = 1), pi = 0, and when there are several possible pi, the
smaller is taken. There can be overlapping if li + pi > n− Ls.

2. Add the triple (pi, li − 1, c) to the output string (radix-10 representation
is used for pi and li). c is the first character that follows the prefix in the
look-ahead buffer: c = W (n− Ls + li − 1).

3. Shift the window and fill the end of the look-ahead buffer with the next li
letters of the input sequence: W = W (li, n)S(hi + 1, hi + li) where hi is the
index in S of the last element of W before the shift operation.

Figure 2 shows LZ77 being used to encode the sequence caabaabaabcccccb.
It first fills the dictionary with ‘a’ and the look-ahead buffer with the 8 first
characters of the input sequence. Then there is no substring in the dictionary
that begins with a c so li = 1 and pi = 0, the character following the prefix is c.
Then, we shift the window by one (value of li) and obtain the state given in the
second line. Here we found the prefix aa followed by a b so li = 3 and as pi can
be any integer between 0 and 5, the algorithm returns the lowest one: pi = 0,
and then we have to shift the window by 3. The state obtained is shown on



Fig. 2. Sliding window used by the LZ77 algorithm.

line 3. Here there is an overlapping, the algorithm returns (5, 6, c). In fact, the
prefix found is aabaab so the reproduction of this prefix begins in the dictionary
and ends in the look-ahead buffer. The algorithm ends by doing one more step.
Finally, the output is:

(0, 0, c)(0, 2, b)(5, 6, c)(7, 4, b)

4 Lempel-Ziv-78

The Lempel-Ziv-78 (LZ78) algorithm is also a dictionary-based compression al-
gorithm [24, 32]. However, in LZ78, the dictionary is not limited in size. Many
algorithms have been developed based on LZ78. The most famous is the Lempel-
Ziv-Welch [29] (LZW) algorithm which is used by the basic Linux command
compress. However, as LZW needs to know the input alphabet which contains
Z2 symbols in our case, we preferred to use the basic LZ78 version.

The principle of this algorithm is to fill an explicit dictionary with substrings
of the input. A feature of this algorithm is that the dictionary is the same at
encoding and decoding.

LZ78 works in four steps:

1. Create an empty substring B and enlarge it by adding characters of the
input S until B does not appear in the dictionary.

2. Add the pair (i, c) to the output, where i is the last index met (i.e., the index
corresponding to the longest match of B in the dictionary) and c is the last
character added. In practice, when i = −1, the algorithm returns (’x’, c).
This improves the compression ratio a little because it uses one character
instead of two.

3. Add B to the dictionary.
4. Set B to the empty string and repeat the steps until the whole input is

encoded.



Dictionary
Output Index Entry
(x, c) 0 c
(x, a) 1 a
(1, b) 2 ab
(1, a) 3 aa
(x, b) 4 b
(3, b) 5 aab
(0, c) 6 cc
(6, c) 7 ccc
(4, ε) 8

Fig. 3. Example of sequence encoding with the LZ78 algorithm.

Figure 3 illustrates the encoding of the sequence caabaabaabcccccb with LZ78.
When the algorithm begins, the dictionary is empty, therefore the two first let-
ters encountered (c and a) are directly added into it and the returned index is
−1 (written ’x’). Then a is added to an empty B, but as a is already in the
dictionary, the algorithm adds also b, producing B = ab which is not in the
dictionary. The output is then (1, b) the index of the longest match (a) in the
dictionary and the last character of B. It also adds B in the dictionary as a new
substring encountered. The details of the remainder of the encoding process are
tabulated in Figure 3.

5 COSIATEC

COSIATEC (COmpression with Structure Induction Algorithm, and Transla-
tional Equivalence Classes) is not a general-purpose algorithm. It is an SIA-
based algorithm developed by Meredith et al. [16, 19, 21, 30] to find repeated
patterns in a musical score. But it can be seen as a compression algorithm for
symbolic music [18, 20]. In fact it returns a set of Translational Equivalence
Classes (TEC), where each TEC is a pair (pattern, translator set) and this set
is typically shorter than (and never longer than) the input set of notes.

The input of COSIATEC is a dataset (no sequence order needed) of two-
dimensional points (notes). A pattern can be any subset of this dataset. For a
dataset D and a vector v, a Maximal Translatable Pattern (MTP) is defined by:

MTP(v, D) = {p|p ∈ D ∧ p+ v ∈ D}

where p+ v is the point obtained by the translation of the point p by the vector
v. MTP(v, D) is the subset of all points of D that have an image in D when
translated by v.

The algorithm used to find MTPs, called SIA, is well described in [21], and
will not be described here.



The equivalence relation used to build TECs, denoted ≡T is defined between
two patterns P1 and P2 of a dataset D:

P1 ≡T P2 ⇐⇒ (∃v|P2 = P1 + v)

where P1 + v defines the set obtain by translating all points of P1 by the vector
v. The TEC of the pattern P ⊆ D is the equivalence class of P :

TEC(P,D) = {Q|Q ≡T P ∧Q ⊆ D}

COSIATEC first runs SIATEC to find MTP TECs—that is translational
equivalence classes of the maximal translatable patterns in the input dataset.
Each TEC is represented by a pair (pattern, translator set). Moreover the re-
turned TECs have the property that they cover the whole input dataset and that
all TEC pairs are disjoint. It means that COSIATEC gives an encoded partition
of the input dataset.

The algorithm is quite complex, but fully described by Meredith [19].

6 Combined Representations Classification Method

This section presents the method used in evaluating the compression algorithms
described above. This method is based on Conklin et al.’s [6] idea that “no single
music representation can be sufficient for music” and that combining several
representations can produce a better model. With this method, they achieved
good results both in prediction, generation and classification [4,5,7,22,23]. Our
new method combines this multiple viewpoints approach [5] with the well-known
k-nearest-neighbours algorithm.

6.1 Definitions

We define a representation of a melody to be a reversible function that takes a
string of two-dimensional points and returns a string of two-dimensional points.
It preserves the size of the string and the sequence of points—that is, a point
is replaced in the sequence by its new representation. Each representation used
is described in appendix A. We also used composition of transformations, ◦, as
the composition on functions.

The onset of a note is the time of the start of the note and the pitch is the
MIDI value of the note. In this paper, all representation are applied on a string
of (onset, pitch) points sorted in the lexicographic order because all melodies are
monophonic—that is, all points have different onset. However, for polyphonic
music, another base-representation could be more appropriate.

Here, a viewpoint is a pair (Z,R) where Z is a compression algorithm and
R is a representation. It can be seen as a function that takes a song in the
pitch-time representation and returns a string of characters: Z ◦R.



To be able to use 1-nearest-neighbour, Meredith used a distance called Nor-
malized Compression Distance [14] defined on a viewpoint Z and two songs s
and s′ as:

NCD(Z, s, s′) = Z(s+ s′)−min (Z(s), Z(s′))
max (Z(s), Z(s′))

This distance has two problems. First, the values are not restricted to being in
the interval [0; 1]. Second, for two different compression algorithms on the same
corpus, the distances will not be comparable. For example, in our evaluation,
one of the algorithms gave values in [0.5; 0.8], and another produced values in
[0.8; 1.2]. We therefore define another distance, called Corpus Compression Dis-
tance (CCD) which depends on the corpus C used for classification. It has the
feature that it computes values in [0; 1] for all algorithms. The CCD is defined
by the following formula:

CCD(s, s′, Z, C) =
NCD(Z, s, s′)−mins1,s2∈C∪{s}NCD(Z, s1, s2)

maxs1,s2∈C∪{s}NCD(Z, s1, s2)−mins1,s2∈C∪{s}NCD(Z, s1, s2)

To evaluate the algorithms, we also examined the compression ratios
achieved, since these appeared to be related to the classification success rate.
The compression ratio CR of a viewpoint v on a song s is defined by:

CR(v, s) = |s|
|v(s)|

where |x| gives the size of the file containing the string x. The success rate is
simply defined by the fraction:

SR = number of well classified songs
number of songs in the corpus .

6.2 Classification Method

The classification method takes a song and a corpus as input and returns a class
which aims to be the real tune family of the song. For this, it computes a matrix
M like the one developed by Conklin et al. [5,7]. The matrix is shown in Table 1.
To fill this matrix, we use a function f that depends on:

– C, the known corpus (i.e. the labeled songs);
– s, the song to classify (not yet labeled);
– j, the class to evaluate;
– vi, the viewpoint applied; and
– N , the number of nearest neighbours to consider.

This function f gives a measure of how similar the song, s, is to its nearest
neighbours that are in tune family j. The higher the value is, the higher the



M 1 · · · j · · · m
v1
...

...
vi · · · f(C, s, j, vi, N) · · ·
...

...
vn

· · · g(j) · · ·
Table 1. Table computed for the song to be classified.

probability that s will be in j. The value of f is given by the following formula:

f(C, s, j, vi) =
∑

snn∈CN
j

(s)

1
(CCD(s, s′, vi, C) + ε)8∗nn

where ε is a constant as low as we want, and:

CN
j (s) = Cj ∩ CN (s)

Cj is the subset of C which contains the song of class j and CN (s) is the N
nearest neighbours of s in C. The primary purpose of the ε factor was to avoid
divide-by-zero error, but the value and the placement of it under the power has
little effect on the results. In practice, we use ε = 0.1.

The bottom row in Table 1 is computed by combining the values of each
column with the function g which is the geometric mean of the values of f for
the class j, weighted by the proportion of corpus songs in class j. g is defined
by:

g(j) = |Cj |
|C|
∗ n

√√√√ n∏
i=1

Mi,j

where |.| is used for the cardinality of sets. As this method is used with the
leave-one-out strategy, s is not in C so not in Cj . Finally, we choose the class
with the maximum value to classify s:

c∗ = argmax
c∈[1;m]

g(c)

7 Results

This section presents results for the classification on the Annotated Corpus of the
Dutch folk song melodies, Onder der Groene linde [9]. The corpus is available on
the website of the Dutch Song Database (http://www.liederbank.nl) provided



by the Meertens Institute. It consists of 360 melodies such that each of the 26
tune families is represented by at least 8 melodies and not more than 27 melodies.
Each melody is labeled with the name of the family it belongs to. The melodies
each contain around 50 notes and are monophonic (i.e., at most one note sounds
at any one time).

To classify each melody, we use the method described in Section 6 and leave-
one-out cross-validation. We first test the method with single viewpoints sepa-
rately and then we show that combining viewpoints produces better results than
when individual viewpoints are used alone. Appendix B describes how LZ77 pa-
rameters were chosen

7.1 Single Viewpoint Classification

To evaluate our method, we first used it with single viewpoints separately. The
method was used with N = 8. That is, the method only considered the first
8 nearest neighbours of the song to classify. The reason for this value is that
the smallest tune family has only 8 melodies and so a larger N would increase
the error in the method. The success rate is obtained by leave-one-out cross-
validation—that is, each song is classified using all the other songs in the corpus.
The various representations used are described in appendix A.

As all songs are monophonic (i.e., all onsets are different), general-purpose
compression algorithms can only work on representations that transform the on-
sets. As these algorithms need equality on points in order to compress the strings,
if all onsets are distinct, this implies a compression ratio less than 1. Compres-
sion ratios less than 1 were associated with poor classification success rates, so
all viewpoints with an average compression ratio less than 1 were discarded.

Conversely, COSIATEC cannot use representations that transform the onsets
(ioi, ioib and combined—see Appendix A). Those representations are good for
LZ77, LZ78 and BW because they create redundancy, but COSIATEC needs a
set of distinct points in order to work. In fact it is the condition of the reversibility
of COSIATEC. Therefore, those viewpoints were also discarded.

Table 2 shows the results obtained by using the classification method on
each viewpoint separately (i.e., in each case, the table corresponding to Ta-
ble 1 contained only one row). Only those algorithm-viewpoint combinations
are listed that resulted in a success rate higher than 70%. We can see that in
terms of success rate, COSIATEC outperforms all of the other compression al-
gorithms with a value of 0.8528 with the basic (onset, pitch) representation.
The viewpoint (COSIATEC, int) achieves poorer results than the viewpoint
(COSIATEC, basic). This implies that the patterns found are not the same with
each representation. Therefore, it is very important to find the representation
that provides the best success rate for a given algorithm.

LZ77 also produced very good results and we can see that it is good for several
representations. In fact, eight of the ten best viewpoints use LZ77. However, this



Viewpoint 1-NN Leave-one-out SR CRAC CRpairs

(COSIATEC, basic) 0.8528 1.5794 1.6670
(LZ77, int ◦ ioi) 0.8222 1.4597 1.6735
(LZ77, ioi ◦ ioi) 0.8222 1.2108 1.3547
(LZ77, ioi) 0.8194 1.3075 1.4915
(LZ77, int0 ◦ ioi) 0.8139 1.3769 1.5690
(LZ77, ioib) 0.7944 1.1188 1.2629
(LZ77, int0 ◦ ioib) 0.7861 1.1806 1.3306
(COSIATEC, int) 0.7556 1.5266 1.6226
(LZ77, ioi ◦ ioib) 0.7472 1.0088 1.1127
(LZ77, int ◦ ioib) 0.7444 1.2389 1.4062
(BW, ioi) 0.7333 1.9627 2.2768
(BW, int0 ◦ ioi) 0.7194 2.0732 2.3853
(BW, int0 ◦ ioib) 0.7111 1.4192 1.5436
(LZ78, ioi) 0.6361 1.7542 1.9292

Table 2. Results of the classification method with each single viewpoint apart. SR
is used for Success Rate, CRAC is for mean compression ratio on Annotated Corpus,
CRpairs is for the average compression ratio on pair files used to compute the NCDs.

algorithm does not compress well for most of the representations. Conversely,
the Burrows-Wheeler algorithm achieved good compression but did not perform
so well in terms of classification.

The bottom row of Table 2 gives the best result achieved using LZ78. The
average compression ratio is similar to that achieved with Burrows-Wheeler,
but the success rate is very low. The reason is that the melodies are very short
(approximately 50 notes), whereas LZ78 needs a lot of notes to match long
patterns. We would expect LZ78 to perform better on longer pieces such as
fugues or sonata-form movements, since the patterns it finds in such longer data
would be likely to be longer and more relevant (i.e., there would be more long
patterns).

7.2 Combined Viewpoints Classification

The last evaluation was used to find the best viewpoints. We chose to use the
combined representations method only on viewpoints that gave good results.
Then different combinations were tested to see which viewpoint improved the
result. We can see in Table 3 all success rates obtained by the combined rep-
resentations method using the n viewpoints that performed best individually.
All results are better than those obtained using single viewpoints (cf. Table 2).
But, it seems that some viewpoints have a detrimental effect on success rate, e.g.
(LZ77, int0 ◦ ioi). The last result 10′ of Table 3 is obtained by removing the two
viewpoints (LZ77, int0◦ ioi) and (COSIATEC, int) from the ten first viewpoints
combination.



First viewpoints Leave-one-out SR
2 0.8833
3 0.9139
4 0.925
5 0.9083
6 0.9083
8 0.9194
10 0.9333
12 0.9139
14 0.9139
10’ 0.9444

Table 3. Results for the classification method with the n best viewpoints.

All the above results show that the representation used is an important factor
in the classification success rate achieved. It also shows that general-purpose
compression algorithms can be used to find musically relevant patterns or at
least repetitions in a song. Indeed, the representation has a large effect on both
the accuracy of the classification method and the compression ratio. The best
success rate obtained with our new method is 0.9444.

Conklin et al. [5, 7] ran his own method on the same corpus and achieved
a success rate of 0.967 with the arithmetic fusion function and 0.958 with the
geometric one. We speculate that the difference may be due to the fact that he
was additionally using duration information to build viewpoints while we only
use pitch and note onset information.

8 Conclusions and further work

This paper presents a new classification method applied to the Annotated Cor-
pus. This method, based on normalized compression distance, the k-nearest-
neighbours algorithm and the multiple viewpoints approach, was run with several
compression algorithms and representations. The results show that the represen-
tation of the local features has a large effect on the performance of algorithms.
COSIATEC outperforms all general-purpose algorithms on the classification task
when single viewpoints were used. COSIATEC also performed best when Mered-
ith evaluated it against other SIA-based algorithms [19]. However, it would be
interesting to evaluate those other SIA-based algorithms also, using the new
representation and classification methods presented in this paper.

The LZ77 algorithm also performed very well with single viewpoints. The
results indicate that general-purpose compression algorithms show great promise
for use in musical analysis.



The next step of our work will be to try the classification method on other cor-
pora in order to provide a better analysis of the effect of representation method
on the algorithms.

LZ78 performed poorly in this study. However, we suspect that it would
perform better on longer pieces that can provide the algorithm with enough
data to build a dictionary. This possibility will be explored in future work.

In this project, the evaluations were carried out on a corpus of monophonic
melodies. A future challenge will be to adapt the general-purpose compression
algorithms described above for use on polyphonic music (COSIATEC already
works on polyphonic music). We suspect that simply using the lexicographic or-
dering of points will not be satisfactory, as adjacent points in the encoding will
not correspond to adjacent notes in a part or voice. Perhaps a voice-separation
algorithm (e.g., [12]) could be used to derive voices before applying our classifi-
cation method.
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A Representations used

Input is a string p0, · · · , pl of two-dimensional points.

Name Description

basic
The basic pitch-time representation, that is string of (onset, pitch)
points

int

A string of (onset, interval) points:

int(p0) = p0

int(pn) = (pn.onset, pn.pitch− pn−1.pitch)

int0

A string of (onset, interval with the first note) points:

int0(p0) = p0

int0(pn) = (pn.onset, pn.pitch− p0.pitch)

intb

A string of (onset, interval pointer) points:

intb(p0) = p0

intb(pn) =


(pn.onset, pn.pitch− pn−1.pitch) if it is the first time

the interval occurs,
(pn.onset, n− j) otherwise.

where j is the index of the last occurrence of the interval in the input.

ioi

For inter-onset interval.
int(p0) = p0

ioi(pn) = (pn.onset− pn−1.onset, pn.pitch)

ioib Same as intb but for inter onset intervals.
Table 4. The viewpoints used in the experiments.

B Parameters of LZ77

The LZ77 algorithm needs two parameters to be set:

– n, the size of the sliding window;



· · · abc defghijk abcdefgh ijk · · ·

Fig. 4. Worst case of LZ77 algorithm: periodic input of period p with p > n − LS .

– Ls, the size of the look-ahead buffer, n−Ls is then the size of the dictionary.

The algorithm is based on the hypothesis that patterns will occur close to-
gether. Indeed there are a few cases where it does not work well. This can happen
when the pattern that occurs again is no longer in the dictionary. The worst case
of this is when the input is periodic with a period p > n−LS and contains a lot
of different characters. As is shown in Figure 4, the algorithm cannot find the
first letter in the dictionary and consequently cannot find any pattern.

It is therefore important to find good parameters for the analysis of the
Annotated Corpus. To choose them, we ran the classification method on the
Annotated Corpus several times with the single viewpoint (LZ77n,Ls

, int ◦ ioi).
Each pair of parameters (n,Ls) produced a success rate, an average compression
ratio on song files, and an average compression ratio on pair files. The results are
reported in Table 5. This table shows that success rates tend to increase with the
dictionary size. The size of the look-ahead buffer seems to have a similar effect
on compression ratios. Moreover, the last line shows bad compression ratio but
a good success rate. Bad compression ratios are due to the fact that the size of
the dictionary is more than 99, and so the returned pointers, pi, can have three
figures instead of two. The good success rate can be explained by the fact that
the dictionary is larger.

The best success rate is achieved with the parameters n = 100 and Ls =
10. Taking these parameter values is a good choice because it increases the
success rate and the size of the dictionary allows the algorithm to find similarities
between the two songs. Indeed, as the melodies have approximately 50 notes each,
when LZ77 compresses the second song, the first one is still in the dictionary.
Of course, for another corpus, which contains larger pieces, it would be better
to choose a larger value of n.



n LS 1-NN Leave-one-out SR CRAC CRpairs

55 15 0.5472 1.3201 1.4433
70 20 0.7083 1.3376 1.4782
80 20 0.7444 1.3377 1.4875
100 10 0.8222 1.3151 1.4718
100 15 0.8056 1.3301 1.4881
100 25 0.7972 1.3378 1.4951
140 40 0.7611 1.4316 1.6710
150 30 0.8000 1.2680 1.4291

Table 5. Results of the classification method with the single viewpoint (LZ77n,Ls , int◦
ioi). SR is Success Rate, CRAC is the mean compression ratio on Annotated Corpus,
CRpairs is the average compression ratio on pair files used to compute the CCDs.
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