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This report summarizes my eight-week internship at McGill University, Montréal, Canada,
under the supervision of Jérome Vétois.

1 Introduction

When intense light propagates along an optical fiber or through diverse materials, nonlinear
effects can appear, namely the refraction index becomes dependent on the light intensity
[1]. This can be observed with light-emitting diodes (LED) or small lasers such as those
used to read compact disks.

The propagation of a light wave in presence of nonlinear effects can be described by the
nonlinear Schrédinger equation

0 (r,t) = —Ap(r,t) + g(|9[*)(r, 1)

where ¢ is a real-valued function characterizing the nonlinearity of the interaction between
light and matter. ¢ is the wave function and is related to the slow variations of the
electromagnetic field of the wave propagating at a given frequency. The term A arises from
the diffraction or the dispersion of the wave ; the nonlinearity is due to the refraction index
n depending on light intensity I = |¢|>. When 7 is of the form n = ng+al, the propagation
is described by the famous cubic Schrédinger equation

0 (r,t) = —Ap(r, 1) — [p(r, 8) P (r, 1).
We are interested in a special class of solutions, called standing waves, of the form
P(r,t) = ei>‘2t<I>(r)
for some A € R, where the spatial profile is time-independent. The function & satisfies
—AD + \?P — |D]*D = 0.

If @ is a positive, radial, smooth and exponentially decaying solution of this equation, it is
said to be a ground state.

Our focus in this paper will be to discuss the existence of a ground state solution of
—Au+ Nu—|u[*u=0

where A > 0, 0 > 0 and its stability.



2 Existence of a ground state

Our aim in this section is to prove this existence result:
Theorem 2.1

2
Suppose d >3, A2 >0 and 0 < 0 < T3 Then,

— Au+ N — |u*u=0 (2.1)

has a positive, spherically symmetric solution u € CQ(Rd). In addition, u and its
derivatives up to order 2 have an exponential decay at infinity. This solution minimizes
the action

1
§(u) = 3T(u) V()
among all Hl(Rd)—solutions of (2.1), when
T(u) = / |Vu|?dz
R4

and

wwj/lmW“—VMQW
~ Jra \ 20 +2 2 '

Remark. Here and throughout the report, by solution we mean nontrivial solution.

Define

1 A2
g:s€R— |5]%75 — \2s and G:SGR'—)W‘SFU—W—?SQ

its primitive such that G(0) = 0.

2
Take d > 3 and 0 < 0 < 12 Let us start by deriving a variational formulation

for (2.1). Suppose u € H?(RY) satisfies (2.1). Then, multiplying by v € H'(R?) and
integrating over R? yields

/ (Vu - Vo + Nuv — |ul*?uwv) dz = 0,
Rd

which is meaningful since H'(RY) — L?*(R%) and H'(RY) — L?**?(R?) by Sobolev’s
embedding theorem (see theorem and its corollary in Appendix A). Indeed, by Holder’s
inequality,

2 2041 _ 20+1
o] d < P gy olaesagaay = 35 ol < o

Therefore, we'll say that u € H'(R?) is a solution of (2.1)) if either
Au — Ny + |u|*u =0 in 7'(RY)



or

Vo € HY(RY), Vu-Vodr = / (|u|2”uv - )\2uv) dz. (2.2)
R4 R

2.1 A necessary condition

Lemma 2.2

For any d > 1, o > 0, any solution u of [2.1) in H'(R?) N H .(R?) such that G(u) €
LY(RY) satisfies Pohozaev’s identity

d—2 1 A2
—5 \Vu|>de = d/ <2 |u|?7 2 — u2> dx.
Rd R4 O'+ 2 2

> We follow the proof given by O. Kavian [12]. Let y € C2°(R?) such that 0 < x < 1 and

(z) = 1 for|z| <1
XEZ0 0 for [z] > 2

and for n € N*| let xn:xERde<£>.
n
Let u € H'(RY) N HE (R?) such that

—Au = |[u]*®u — Nu = g(u).

For a given 1 < i < d, by multiplying this by z;x,0;u, we have
- / (Au)z;xpOiudr = / xiXng(u)Ojudx (2.3)
Rd Rd

Integrating by parts the right term in ((2.3)) yields

/xixng(u)&-udx = /:nixnai(G(u))dx
R4 Rd

= _/ XnG(U)dx—/ ;0 xnG(u)dz.
Rd

R4
Since
e G(u) € L*(RY) by hypothesis,

o Xp(x) ——1land 0 < x, <1,
n——+0o00

1 z
o Onxnle) = 0 (=) ——— 0 and [a:0x,(x)| =

n n—-+oo

ZT; X
Zo ()] <219l
the dominated convergence theorem ensures that

/Rd Tixng(uw)de —— — G(u)dx. (2.4)

n——+oo R4



Integrating by parts the left term in (2.3)) yields
—/ (Au)zixpOiudr = Vu - V(z;0;uxy)dz
Rd Rd
1
= / xixnai(]VuF)dx—{—/ anaiUde—f—/ z;0uVu - Vyndz
2 R4 Rd R4

The dominated convergence theorem proves that

/ |8iu|2xndx — / ]@u\zdaz and / z;0;uVu - Vypde —— 0.
Rd n—+00  Jpd Rd

n—-+00

Furthermore, integrating by part the remaining term yields

1 1 1
/ 2ixn0i(|Vul*)dz = —/ IVU\and:r—/ |Vu|*2;0; xnda
2 Rd 2 Rd 2 R4

and, as before,

1 2 1 2
2/Rd zixn0i(|Vu|*)dz o T3 y |Vu|“dz

so that )
—/ (Au)mixn&-udx%/ |8iu|2—/ |Vu|?dz. (2.5)
Rd n—+00  Jpd 2 Rd

Injecting (2.4) and (2.5)) into (2.3]) yields

1
/ \Vu|2dx—/ |O;ul?dz = G(u)dz.
2 R4 Rd R4

By summing this over 1 < i < d we prove that

-2 Vul’dz =d [ G(u)dz = d/ <
2 R4 R4

Rd

1

—|u? 2 — /\—QUZ dz.
20 +2

2

U
Corollary 2.3
For d > 3, ([2.1) has no solution u # 0 in H*(RY) N HZ (R?) such that G(u) € L'(R%)

when o > ——

d—2

> Suppose u is such a solution. The calculation leading to (2.2)) is still valid with v = u
thanks to the hypothesis on G(u) and yields

/ |Vu|?dz :/ (Ju? T2 = N2u?)d.
R4 R4

But thanks to the previous lemma, we also have

2 1 2
/ |Vu|*dz = d / I - )\—UQ dz
Rd d—2 Rd 2042 2

so that )
2 2—od 2\
Lot ez ol [ e, — / lul?dz > 0
(d—2)(0'+1) Rd d—2 Rd
which contradicts 20 + 2 — od < 0. O



In the rest of this section, we will consider d > 3 and 0 < ¢ < 5 unless stated

otherwise.

2.2 The constrained minimization method

Following the steps of H. Berestycki and P.-L. Lions [4], let us consider the constrained
minimization problem

minimize {T'(w), w € H*(R?), V(w) = 1} (2.6)

where the functionals T" and V are defined by
vw e HY(RY),  T(w)= / \Vw|*dz
R4

and

1 2
V% Hl Rd v — - 20+2 7V 2 de.
wem®), Vo = [ (Gl - k) as

Let us indeed assume that 7" and V are of class C*(R?) and consider a solution u* of

1
2.6). Then, there exists a Lagrange multiplier! 6 such that =DT'(uv*) = 0DV (u*). This
2

yields
— AuF = 0(|uuF — A2u)  in 2/(RY). (2.7)

We will prove below that # > 0. Then, with u = u*\/g(m) =u x>7 we have

(3
—Au = |[u*u — \u

so w is a solution of (2.1)).
Theorem 2.4

2
Supposed > 3 and 0 < o < T3 Then the minimization problem (2.6)) has a solution

w* € HY(R?) which is positive, spherically symmetric, and decreases with r = |z|.
Furthermore, there exists a Lagrange multiplier § > 0 such that u* satisfies (2.7)).
Hence u*\/g is a solution of (12.1)).

We will follow this steps:

—_

. Proof that {w € H'(R?), V(w) = 1} # @;

2. Selection of an adequate minimizing sequence;
3. Estimates for the minimizing sequence;

4. Passage to the limit;

5. Conclusion.

!See theorem in Appendix




Step 1: {w e HY(RY), V(w) =1} # @. Let ¢ > 0 be such that

1 opra A
20’—1—2C 2C >0,

R > 1 and define

¢ for || <R
wr:z €RY— < C(R+1—7) forr=|z|€[R,R+1]
0 for || > R+ 1.

We have wr € H'(RY) and

1

1 A2
Lt T got2 A 2
20+ 2

g >\2
¢+ Cz) (B0, R)|=(1B(0, R+ 1)| — | B(0. B))) max |5 2

Vv >
(wR) - < 2 s€[0,(]

Since |B(0, R)| = CRY, we have |B(0, R+1)| — |B(0, R)| < CR*! for some other constant
C > 0. This shows that there exist C,C’ > 0 such that

V(wg) > CRY — C'R1

so for R > 1 large enough, we have V(wg) > 0. Then, by a scale change wg o(z) = wgr (£>,

«
we have V(wpao) = adV(wR). Thus, for an appropriate choice of @ > 0, we have
V(wg,a) = 1.

Step 2: Selection of an adequate minimizing sequence. There exists a sequence (U )neN
in H*(RY) such that V(u,) =1 and

lim T(u,) = inf{T(w), w e HY(RY), V(w) =1} =1 > 0.
n—+oo
Let 4, be the Schwarz symmetrization of |u,|*. For any n > 0, we have @, € H'(R?),
V(tup) =1 and I < T(u,) < T(up). So (Un)nen is a minimizing sequence. For the rest of
this proof, we replace u,, by %, so that for all n, u,, is nonnegative, spherically symmetric
and nonincreasing with r = |z|.

Step 3 : Estimates for (un). Let us prove that ([|un| 1 ga))nen is bounded. We will
use the following lemma.

1Ver refer the reader to [13] and |3], for proofs, we only state here useful properties. Let f € L'(R?),
then f is a radial nonincreasing (in 7), measurable function such that for any « > 0,

{f = o} =KIfl > a}.

For every continuous function F such that F(f) is integrable, we have

[ pae= [ P
If f € H'(RY), then f € H'(R?) and

[ wita < [ 19rPa
RrRd Rd



Lemma 2.5
d+2 .
Let ¢ = et For any € > 0, there exists C; > 0 such that

1 A2

VS € R, m|8|20+2 S CE|S|€+1 —+ E?SQ. (28)

1
> For0<s< (5)\2) 20 we have
s20H < 22,

Therefore,
1
VO<s< (eX?)> VO >0, 2T <COs'+eds. (2.9)
2
Moreover, since o < 1 s 20T g nonincreasing and we have, with C. =
20+1—2¢
(6)\2) 20 ,
1
Vs > (5/\2) 20 g2l < oL
Thus,
1
Vs > (5/\2) 20 20t < Ogt + eX?s. (2.10)
Combining (2.9) and (2.10)) yields
Vs >0, s < st +eNs.

Integrating this yields, for some constant C; > 0

1 A2
Vs Z 0, m820+2 S CESZ—’_l -+ 5382.
Therefore,
Vs e R LW’+2 < C.s)t + 5815\2
’ 20 + 2 - F 2

g

T (up) R I'so [|[Vug|[2(ga) is bounded. By Sobolev’s embedding theorem fA.1} this

2d
implies that [lup | 2+ ga) is bounded by some constant C' > 0, where 2% = T o= ¢+ 1.

Since, V(uy,) = 1, we have

1 2042 N
[t | dz = —|up|“dr +1
Rd 20 + 2 Rd 2

and by (23),

1 20+2 /\2/ 2
de <CHe— d
/Rd20'+2|un’ x < +€2 Rd|un| x



1
so that, after choosing, for example, € = 5

1

3
funlls = [ funPata) " <
Rd
for some constant C' > 0.

Thus, ||ul| g1 (gay is bounded. From |up||;2(ga) and [|un || 2+ (gay Deing bounded, Holder’s
inequality and interpolation yield that HunHLp(Rd) < C for all 2 < p < 2% and some C > 0,
as follows. For 2 < p < 2%, there exists 0 < o < 1 such that

1 a l-a 2(2" —p)

525"_ o €. a:m

Then, by Hélder’s inequality,

1
ooy = | funl a7,

1
P

IN

2%

1
e TP [ R
ap (R4 [ d—a)p (Rd)

- ”unHL2 ]Rd HunHLQ* Rd)

Step 4: Passage to the limit. Let us first note that w,(z) |\4> 0 uniformly with
T|—+00

respect to n. This is an immediate consequence of the following radial lemma.

Lemma 2.6

Ifue Lp(Rd), 1 < p < +o0, Iis a radial nonincreasing function, then

d 1
_d P
vo 0, fu@)l < el (i) Tullages

> For all r = |z| > 0, we have
" ST\ [P rd
ey = 15°71] [ o ()] s 2 157 )
because u is nonincreasing. O

Applying this lemma to u,, yields
Vn € N,Vz # 0, lup (z)] < Clz| 2

which indeed implies that u,(z) H—> 0 uniformly.
r|—+00

Let us now prove a convergence result for the sequence (uy,).



Lemma 2.7

Let (up) be a bounded sequence of H*(R?). Then, up to extraction of a subsequence,
(u,) converges weakly in H'(R?) and almost everywhere in R? to a function u*.

> (HY(RY), |-l 2 (rey) is a Hilbert space so, since (uy) is bounded in HY(RY), for some
increasing function ¢ : N — N, u converges weakly to u* in H 1(Rd). Then, for k €

N*, tg(n) |B(0,k)
increasing function 1 : N — N and v € L?(B(0, k)),

©(n)
converges weakly to u* | k) in H'(B(0,k)). This implies that, for some

L>(B(0,k))
Yootk (M |BOK) ~ oo ¢
and v = u" B(0,k)- Then, for some increasing function 75 : N — N,

u* | B(0,k) a.e in B(O, k)

Uporromi(n) | B(0,k) 7o 4oo

With a, = ¢ oy, o, and ®(n) = aj 0 -+ 0 ay(n), we have

Vk €N, U (n) | Bo) v u*|Bo,k) a-e. in B(0,k)
so that ug () converges weakly in H 1(R?) and almost everywhere in R? to u*. O

Recall that u* € H'(RY) is spherically symmetric and nonincreasing with 7.
Let P(s) = |s[?**72 and Q(s) = s> + |s|*. Then

P(s) P(s)
Q) ot Q) 50

since [|un| pgay < C for all 2 < p < 2%, we have

sup [ Q(uy)(z))da < 4o0;
neN JRd
and we have seen that

P(u,) — P(u*) a.e. in R?
n—+o00

and

Uy () — 0 uniformly in n € N.
|z| =00

Therefore, the compactness lemma of Strauss (see Appendix applies and

/R Plug(@)dr —— [ P(@)ds

n—-+4oo Rd

1e.

1 2042 / 1 2042
d *|20+2 g,
/Rd 2o ol T |l e

10



Then,

1 1
/ —|u**?dz = lim inf/ |y, |2 2da
Rd 20+ 2 neN Rd 20 + 2

o Ao,
= liminf | —lu,|*dz+1
neN R4 2

)\2
> / |u*|?da + 1
Fatou 2 Rd
so that V(u*) > 1. Moreover, by Fatou’s lemma, T'(u*) < I.
Suppose that V(u*) > 1. Set uq(z) = u* <£> Then, for some 0 < o < 1,
a

V(ug) = a®V(u*) = 1.
But
I <T(ug) =4 2T(u*) < o721

Therefore, I =0 and T'(u*) = 0 so u* = 0 which contradicts V (u*) > 1.
This proves that V(u*) =1 and T'(u*) = I > 0 so that u* is a solution of the minimiza-
tion problem ([2.6)).

Step 5: conclusion. We prove in Appendixthat V and T are C* functionals on H 1(]Rd).
1
By the Lagrange multipliers theorem® there exists # € R such that éDT(u*) =

0DV (u*). Note that # # 0, since # = 0 implies that T'(u*) is an extremal value for T’
on H'(RY). This means T(u*) = 0 and u* = 0. Let us show that # > 0. Suppose that
6 < 0. Note that DV (u*) # 0, since DV (u*) = 0 implies |u*|**u* — A?u* = 0 and therefore

~\o 9
* — * d
V(u®) /Rd20+2lu| x <0

which contradicts V(u*) = 1. Thus, DV (u*) is a nontrivial linear form over 2(R%) so there
exists a function ¢ € Z(R?) such that

(DV (u™),p) = / (Ju*[P7u* — Nu*) pda > 0.
Ra

Then
T(u* + ep) = T(u*) + (DT (u*), ) (1 + Ego(e)) = T(u*) + 260(DV (u*), ) (1 + s30(1))
and

V(w' +ep) = V() + DV (), ) (1+ o (1))

Thus, for a small € > 0 and v = u* + ey, we have T'(v) < T'(u*) = I and V(v) > V(u*) = 1.
Then, by a scale change, there exists 0 < a < 1 such that V(v,) = 1 and T'(v,) < I, which
is absurd. Hence 6 > 0.
Then u* satisfies, at least in 2'(R%), the equation
—Au* =40 (|u*|2au* - )\2u*) .
Therefore, as we have seen above, u*\/g is a solution of ({2.1)).

'with E=H'(R),n=1,f=Tand ®=V

11



2.3 Regularity of spherically symmetric solutions

We can now state general results on the regularity of solutions of ([2.1)), and especially of
radial solutions. More precisely, we begin by proving the following lemma.

Lemma 2.8

If u € HY(RY) is a solution of ([2.1)), then u € C*(RY) N W2 (RY) for any s > 1.

> We need to gain an order of derivation in our control of u. Indeed, saying that w is
a solution, we assume that v € H 1(Rd) but we have no a priori control on second-order
derivatives. We will not prove such a result and refer the reader to Agmon’s work [2] (p.
444) for proof of the following theorem.

Theorem 2.9

Let Q be a bounded open set of R? with boundary of class C*™ and L be an elliptic linear
differential operator of order 2m with coefficients ay € C*(Q). Let u € LI(Q) for some

q>1, and f € LP(Q) for p > 1. Suppose that for all functions v € C*™(Q) N W™P (),

/m@@:/ﬁm

Then u € W*™P(Q) N V(I)/m’p(Q) and

lllyamoay < € (Ifll @y + Iulngey ) -

where C' is a constant depending only on 2, L, d and p.

We recall that a linear differential operator L of order m on a domain 2 in R? can be

written
L= Z ao ()0,

|ao| <m

L is said to be elliptic if

vz € Q,V¢ e RN\{0}, > aa()e #0.

laf=m

This theorem is valid for linear problems. To adapt this to our situation, we consider
the problem
~Av+ A% = [u*u in Q
{ v=u in 0€).

u is a solution of this problem and we can apply regularity theorem By a bootstrap
argument, we will show that u € W?%(R%) for all s > 1. We adapt here an argument
presented in [IT] (p. 248).

Indeed, u € H'(R?) so by Sobolev’s embedding theorem, u € L* (R?). Let

2d

12



2’1"71
Then f = |u|*"u € L%(Rd) and by regularity theorem u € W2 (RY). Then, by
Sobolev’s embedding theorem, u € LP? (R?) with

loc

1_20+1 2 pid

— = - < =
D2 D1 d P2 (20 + 1)d —2p1

loc

if (20 +1)d > 2p1, or u € Li, (R for all s > 1 otherwise. If (20 4 1)d > 2py, then, since
2

o< —,
d—2
p2 > p1.
P2

2,522
We have f = |u|**u € L2+ (RY) so by regularity theorem u € Wi 2 (R?). Then, by

loc

Sobolev’s embedding theorem, u € L (R?) with

loc

pad
20 + 1)d - 2p2

P3=(

if (20 4+ 1)d > 2pa, or u € L{,.(R?) for all s > 1 otherwise.
And we repeat this method until after a finite number of steps, we find u € L{,(R?) for
all s > 1. Indeed, for a real number p; > od, if we define by induction

pid .
if (20 +1)d > 2p;
Pit1 = (20 + 1)d — 2p; ( ) Pi
400 otherwise,
then, by induction, for all ¢ € N, p; > od so that Pit1 > 1. Two cases arise. First, if
pi

(20 +1)d

p; becomes greater than , then p; = oo for large 7. Otherwise, for all ¢ € N,

(20 + 1)d > 2p;. Then (p;) is an increasing bounded sequence. Therefore, it converges to
some p > od (since (p;) is increasing) such that

dp
= = d
P=o+yd—2p < P77

which is absurd.
Thus, for large i, p; = 400 and by Sobolev’s embedding theorem, u € L{ .(R?) for all
s > 1. Applying regularity theorem yields u € I/Vlics (Rd). For large s, we have

d d
2-->1 and 2--¢N.
S S

Therefore, by Sobolev’s embedding theorem, u € C*(R?). a

With this additional regularity, lemma [2.2] applies and we have the following corollary.
Corollary 2.10

Any u € HY(R?) solution of (2.1)) satisfies Pohozaev’s identity:

d—2 9 1 sgrn A2,
—_ dr = —_— o+2 _ T dz. 2.11
2 Jga [Vul*dz d/Rd (20 + 2|u| 9 ¥ v ( )

13




Now, if u is also supposed to be spherically symmetry, then we have even more regularity.
We will follow in the rest of this paragraph the proofs given in [4].

Lemma 2.11

If u is a spherically symmetric solution of ([2.1)), then u € C*(R%).

Remark. By an abuse of notation, we will write u(r) for u(z) with |z| =r.

> Since u has spherical symmetry, we can consider u = u(r) and (2.1)) can be written

d—1

" u' (1) = |u(r)|*7u(r) — Nu(r) Vr e RL (2.12)

— u"(r) _

This shows that «” is a meaningful continuous function, except possibly at 0. Define
v(r) = |u(r)*u(r) — N2u(r). Then v is continuous on Ry and (2.12) can be written

—%(rd_lu'(r)) = rd_lv(r).

Integrating from 0 to r yields
T
rd=t/ (r) = / s y(s)ds
0

i S
and, putting ¢t = —,
r

Therefore, u’'(0) = 0 and

r—0

wir) _ /1 =L (rt)dt — —Udo)
0

by, for example, the dominated convergence theorem (since v is continuous). This proves

that «”(0) exists and u”(0) = _v(dO). But thanks to (2.12]),

" ,_v(0)
u (T) r—0 d '

Thus u € C*(RY). O

Note that since u is nonnegative, from this result and the maximum principle, we can
derive that u is positive. Furthermore, u and its derivatives can be controlled for large r,
as stated in the following theorem, that includes the previous lemma.

14



Theorem 2.12

If u is a spherically symmetric solution of (2.1)), then u € C*(R?) and its derivatives up
to order 2 have an exponential decay at infinity ie., for some C,§ > 0 and |a| < 2,

veeRY,  |D%(z)| < Ce~ll,

> The previous lemma ensures that v € C2(R?). Define v(r) = e u(r). Then v satisfies

Vr >0, " (r) = {q(r) + :;) v(r)
where ¢(r) = A\? — |u(r)|*” and b = (d= 1)4(d ) Since, u(r) e 0
0+ ¥
and there exists rp > 0 such that
Vr > ro, q(r)—i-?% > /\22

Let w = v2. Then
1 " / 2 b
Vr > 0, 510 (r)y=v'(r)*+ (q(r)+ = ) w(r)

so that, because w > 0,
Vr > rg, w” (r) > Nw(r)

and w” > 0.
Define now z(r) = e~ (w'(r) + Aw(r)). Then 2'(r) = e " (w”(r) — N2w(r)) > 0 and 2z
is nondecreasing on |rg, +00].
Suppose there exists r; > rg such that z(r1) > 0, and therefore, z(r) > z(r1) > 0 for all
r > r1. Then
Vr > rq, w'(r) + dw(r) > z(rl)e)""

2 and v’ are

so that w’ + Aw is not integrable on ]ri,+ool. But, since u € H'(R?), v
integrable near oo so that w’ and w are also integrable: contradiction. Thus, z(r) < 0 for
all » > rg. Then,

d
Vr > 1o, T (e”w(r)) = eP2(r) <0.

Therefore, for some constant C' > 0, w(r) < Ce™", which yields

d—1 Ar

Vr > 1o, lu(r)| < Cr= 2 e 2. (2.13)

To obtain the exponential decay of u/, observe that u’ satisfies

d

T (rd_lu'(r)) = —r T () Poulr) + A2rd u(r)

15



so that, integrating over [r, R|, we have
R R
R&TW (R) — r N (r) = —/ s Hu(s)[*u(s)ds + )\2/ s (s)ds. (2.14)
Letting R — +o00 shows that #?~14/(r) has a limit, say £ € R, as r — 400, so that

14

1
- pd-l + ro oo (rdl) '
Integrating over [r, +oo[ yields

+o00 +oo Y +o0 ds Vi 1
—u(r) = /T u/(s)ds = /T sd—1 ds +r—>qs—oo </T sd1> B (d—2)rd=2 +r—>?l-oo (rd2> ’

The exponential decay of u (2.13)) then forces ¢ = 0.
Therefore, letting R — +o0 in (2.14)) and applying (2.13]) yields

+o00 +o00
— _d=1)2o-1) _As d—1 _ s
Ird= ! (r)| = —/ s 2 e 2 (2"+1)d5—|—/ s 2 e zds.
T T

u'(r)

But, these two integrals have exponential decay as r — +oo. For example, for 0 < § < 5
+oo R B
e‘sr/ sT e Tds = / 8%6_6(8_T)6(%_6)81{s>7’}(S)ds
T R N

) A
and, since 5 > 0,
d—1 -5

S 2 e (S—T)e_(%_(s)s]_{szr}(S) T> 0,

55t o= 0(s—r) o —(3-0)s1 {Szr}(s)‘ <57 e (51 o1 (s) € L'(R)

so by the dominated convergence theorem,

o0
d—1 _ As _
s2e 2ds= o (e&").
r r—-+00

Therefore, u' has exponential decay as r — ~+o00.
Finally, (2.12)) implies the exponential decay for u”. O
2.4 Minimization of the action

We begin by proving that the ground state u obtained in section [2.2]is in fact equal to the
minimization solution u*.
Recall that
—Au* = 0(u*)* T — \20u*.

Since u, thus u*, is of class C?, multiplying by v* and integrating by parts yield
T(u) = 0 / () P+ 2dz — 220 / * () Pda.
Rd Rd

16



Together with

1
1=V = 20+2 / d
W) = gos [, 0@ u* () P
and 49
Sy sTOP
this implies
2(20 +2) 2(20 4+ 2 — 0d)
)P 2de = =—— 2 d *(x)|?de = 2, 2.15
/ [ (@) od — 20 o R (@) da A2(od — 20) (2.15)
Pohozaev’s identity (2.11]) and (2.15)) yield
2d
T(u") = ——
(W) =——

and 0 = 1 so that ©* = u.

Let us conclude the proof of theorem and prove that v minimizes the action

among all H*(R%)-solutions of (2.1)).
Theorem 2.13

Let w denote the solution of ({2.1)) obtained in section Then, for any solution
v e HY(R?) of ([2.1)), we have

0< —— =S(u) < S).

> We adpat the proof given in [4]. If v € H'(R?) is another solution of (2.1)), then, by
Pohozaev’s identity (2.11]), we have

we have V(vg) = 1 and T(va) = a® 2T (v) so that

T(v) = (d;d2> N T(va)2.

Then, since u minimizes 7'(w) under the constraint V(w) =1,

ol

vl
[\

S(v) = éT(v) —- <d2d2> T(va) > % (d;j)dfzﬂ(u) = =5,



3 Orbital stability of ground states

We come back now to the study of the initial-valued nonlinear Schrédinger equation:
zﬁtz/}(m,t) + Aiﬁ(%ﬂ - W}(xvt)‘zjw(mat) =0 (.Z',t) S Rd X R-‘r
¥(-,0) = o in H'(R?).
This equation has been widely studied. We shall make use of the following theorem,
proved by J. Ginibre and G. Velo [10].
lheorem 3.1

(3.1)

2
Let 0 < 0 < p and Yy € Hl(]Rd). Then equation (3.1)) has a unique solution v in
Cp(R, H'(RY)).

The time-dependent nonlinear Schrodinger equation has phase and translation symme-
tries de. if 9(x,t) is a solution, then so is 1(x + xg, t)e” for any zy € R%, v € R. We define
the orbit of a function v € H'(R?) under the action of these symmetries by

Gy =A{u(-+ a:o)e”, (xo,7) € R? x R}.

We will say that a ground state is orbitally stable if initial data being near the ground
state orbit implies that the corresponding standing wave solution at all later times remains
near the ground state orbit. To measure the deviation of a solution from G,,, we consider
the functional

. i 2 i 2
pA((-, 1), Gu)? = zég}%d (HW/J(' 20, 1)e” = V[ o ay + A [0 (- + @0, ) — uHLQ(Rd)> '
~v€[0,27]

We will prove the following theorem:
Theorem 3.2

2
Letd >3 and 0 < 0 < 7 Let ¢ (x,t) be the unique solution of (3.1). Then w is
orbitally stable, ie. , for any € > 0, there exists 6(¢) > 0 such that if

pA(Yo, Gu) < 6(¢)

then
Vt>0,  pA(¥(,1),Gu) <e.

2
Unless stated otherwise, we assume in the rest of this report d >3 and 0 < 0 < —.

d
Following M. Weinstein’s proof [18], define the energy
E(W) = A () + NN (¥)

where

a0) = [ (I900P = o 0f?) a

18



and

(W)= [ oG0P

By a result of Ginibre and Velo [10], 7 and .#" are conserved in time. Let us prove it
formally. First, multiplying (3.1) by ¢ and integrating yields

/ (i0) + T + [p[27+2) da = 0.
Rd

Thus, considering the imaginary part, we have
/ Re (¢0yp)dz =0
Rd
so that

/ AelPdx =0
R4
and .4 (1) is conserved.
Similarly, multiplying (3.1)) by 0y and integrating yields

[, @00 + 8580 + v v00) de o

By taking the real part, we have

[, oIVl + 0P au) dr =0

7€.
2 1 2042
_—_— d =
/Rdat<|WJ| a+1\1/f| r=0

and 7 is conserved.
We are going to estimate & in terms of py. Define h = f 4 ig by
Y(x + xo,t)e? = u(z) + h(z,t).
Then,

(o) = & (u) = E(W (1)) = E(u) = EW( + w0,1)e’) = E(u) = E(u+h) — E(u).

But
N (u+h) — :/ (u® + 2uh + f* + ¢*)dz,
R4
/ \V(u+h)|2dx:/ (IVul’ + 2V - Vi + [V + |VgP?) da
R4 R4
and

lu+ Rt = [u]* T2 + (20 + 2)u* T f + (0 + 1) (20 + DU f2 + (0 + D)u*"g* + R

19



with |R| < C|h[3.
1
If o > 5 then d < 4 ie. d = 3. Then, by Sobolev’s embedding theorem, H'(R?) <
L3(RY) and

lu+h|*7+? < / ([l + (20 + 2w f + (0 + 1)(20 + D) f2 + (0 + 1)u*g%) da+C || hl|31 (ga) -
R4 R4

1
If0o<o< 50 we don’t necessarily have H'(R?) < L3*(R?%) and we have to be more
-~ h
i g}:gandh:—,wehave
u’ u u

precise. Let us show that R < C|h|** 2. Writing f =

R 114+ A2 = 1= 20 +2)] = (0 + 1)(20 +2)]? ~ (0 + 1)
|h|2cr+2 - ’B‘QU_;,_Q

’(1+2f+f2+g2)0+1—1—2(a+1)f—(a+1)(2a+1)f2—(a+1)g2‘

~ o+1
(+7)
This defines a function 7(f, §). 7 is a continuous function on R?\{0}. One can verify that
7(f,5) ——1
|h|—=+o0

and

(9= 0 ()= o ()

|[h|—0

This proves |R| < C|h/***2. Then, since H!(R?) < L?***?(R?), we have

lut+h|?*H2 < / (a7 + (20 + 2)u T f + (0 + 1)(20 + D 2 + (0 + 1)u*g?) da+C ||h[[ 2,
Rd

Rd

2
Thus, for any 0 < o0 < ’k

(o) = E(u) > (Lyf, f) + (L-g,9) = C | B3 lge, (3.2)
where 6 > 0,
(a,b) = / a(z)b(z)dz,
R4
and L4 and L_ are the linearized Schédinger operators:

Ly=-A+XN—-20+1)u* L_=-A+)\—u>.

20



3.1 Further properties of ground states and the linearized operators

We begin by proving that the ground states obtained in section [2] are solutions of another
minimization problem.

Theorem 3.3
For v € HY(R)\{0}, define the functional

20+2—od
IVl ey oI350

2012
||U||sz+2(Rd)

2
Ford>2and0 <o < L if u is the previously constructed ground state solution

d—
of
—Au+ Nu—utl=0

then
Yo e HY(RY),  J(u) < J(v).

> We adapt here an idea from Jérome Vétois.

1
< N2(20 + 2) > 2 (1117 (gay

Let v € HY(RH)\{0}. Let oo = % 12— od 3012

so that, with v, = awv,

ol o g

2042
A2 ‘|Ua||%2(Rd) B ||UaHL2j_+2(Rd)
2042 —0d 20 + 2

N(od — 20 d 2 :
Let 8 = <2(20(—|—2—a)d)) HUQHEQ(Rd) so that, with v, g(x) = va(Bx),

2
2042 A

1
V(Ua,,@) v a,ﬂHL2a+2 R T o |‘Ua,ﬁ‘|i2 RA) — L.
20 +2 ) 2 (R%)

Then, thanks to the remark in the beginning of paragraph we have

2 zati—2 2
2 : 220 +2—ad)\ "7 [ A2(20 +2) \ 7 I0lEgh V0l
IVullzz@a < 1Vvoslz@n = \ "2pd 20y

20+ 2 —od 2(20+2)
ol %2
so that
Iulod o < <2(2a+2—ad)>—a A2(20 + 2) J(0) = 752 | 752 (g ”
2 Li -~ e - - @~ 7
LA®RS A2(od — 20) 20 +2 —od L2(Rd) [ HLQ(Rd)
and
J(u) < J(v).
O

From this we deduce some properties of operator L.
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Theorem 3.4

Ly has exactly one negative eigenvalue.

> We give a detailed proof following Weinstein’s arguments [I8]. A proof similar to the
one in Appendix [B| proves that J is a C? functional on H 1(]Rd). Since v is a minimum of
J, by computing the second-order variation of J, we have, for any v € H 1(R”l)7

0 < (Lyv,v)— Che Ug)d(d —2) (/}Rd vAudx)2

~N2o(d—2) </Rd uvdx) </Rd vAud:r) - m (/Rd uvdx>2.

or (Tv,v) > 0 where

T(w) = Low— 2= U‘;)d(d —2) (/Rd UAudm) Au

~N0(d—2) (/Rd uvdx) Au — m </Rd uvd:v) u.

oy AT =2) /uvdx "
b 2(20 +2 —od) \ Jra

is nonnegative. Thus, T'+ r; is nonnegative. This can be written

(3.3)

Yo € HY(RY), ((L+ +72)v,v) >0

where 73 is an operator of rank one: Ra(ry) = Span(Aw). This implies that L has at most
one negative eigenvalue.

Indeed, suppose by contradiction that o < 3 < 0 are eigenvalues of L. Let hq, hg be
corresponding eigenfunctions, with ||halli2gey = [|hgllp2gay = 1. Let £ € H LRY* such
that r2(-) = ¢(-)Au. Then,

0 S ((L+ + TQ)haa hOé) =a+ g(h’a)(Aua hOé)
and
0 < (Lt +72)hs, hg) = B+ £(hg)(Au, hg).
If either £(hq),€(hg), (Au, hy) or (Au,hg) is equal to 0, then we have a contradiction.

U(hs)
£(ha)

Suppose that none of these are 0. Let v = . Then, since L is self-adjoint, (hq, hg) =0

so that,
((Ly +7r2)(vha — hg), Yha — hs)

7204 + 05
(Au,hg) | L(hg)\ | Uhg) (Au,hg)
+(ha)(Au, ha) (72 - ((Au,ha) t g(ha)> + {(hea) (Au, ha)>

Ya+

VANRVAN

IN
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Since «, 8 < 0, we have v2a + 8 < 0 and this leads to a contradiction.
Let us now prove that

p = inf{(Liv,v), v e HY(R?), 0]l p2(ray = 1}

is a negative eigenvalue for L, .
First note that (Liu,u) = —20 ||u||%gj32(Rd) < 0 so that u < 0.

We prove that this minimization problem has a solution v, € H*! (]Rd). We adapt the
ideas developed in [I7] (p. 478). Let (v,) be a minimizing sequence and set £ > 0. There
exists ng € N such that for all n > ng

p < (Lyvp,v,) = / |V,|?dz + )\2/ v2de — (20 + 1)/ w7 vide < p+e
R4 R4 R4

so that, since 1 <0, [|vn||2(gay = 1 and u is bounded,

1< vl ey Sp+e+1- M4 (20 +1) /Rd u*vidr < C (3.4)

for some constant C. Thus, (||vp| g1(ge)) is uniformly bounded. By lemma there exists
v, € H'(R?) such that, up to extraction of a subsequence, (v,,) converges weakly in H'(R?)
and almost everywhere in R? to v,. Moreover (v,) is bounded in LP(R%) for 2 < p < 2%,

Note that since (v,) converges weakly to v, in H*(RY), v, — v, and Vv, — Vo, in
LQ(Rd). To see this, for any wq,wy € LQ(Rd), define

A:ve H(RY — vwide + / vwadx.
R4 R

Then A € HY(R?) so, by weak convergence of (vy,), A(v,) —— A(v,). Taking alterna-

n—-+oo
tively w1 and we equal to 0 yields the result.

Since (v?2) is bounded in L= (R?) and (v2) converges almost everywhere to v2, by lemma
in Appendix , (v2) converges weakly to v? in L%(Rd). Thus,

u*vide — u*vide.
R4 n——+00 Rd

Then, passage to the limit in (3.4)) yields, since p < 0,

0<e— A+ (20+ 1)/ u*v2da.
R4

Since ¢ is arbitrary, this implies that v, # 0.

Vx

By Fatou’s lemma, [|v.[| 2 (gay < 1. Let w, = . Thenw € H'(R?), lwll L2 (ray =

[04 L2 (ra)
1. Let ¢ € L*(RY), ¢l p2(ray = 1. Since (Vuy) converges weakly to Vv, in L*(RY),

(¢, Vo) = liminf(C, Von) < liminf [ Vonl 2 g
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Maximizing over all such ¢ we obtain
||VU*||L2(]Rd) < Egﬂg HVUTLHL?(]Rd) :
Thus, we have
< L _
(L vs, v4) < %gﬁgg(lf—kvm Un) =
and
(Lyws, wy) < pl|vell p2gay < p
(R?)
with [[ws||f2gey =1 which implies wy = v, and (L vy, v4) = p.

Now v € HYRY) — (L,yv,v) is a C* functional on H'(R?). Lagrange multipliers
theorem implies that there exists # € R such that

L+U* = 9'0*.
Therefore, since ||vs|p2gay = 1,
n= (LJrv*’v*) =0

and p is the only negative eigenvalue. O

Another useful consequence is the following theorem.
Theorem 3.5

We have

inf (Lyv,v)=0.
(w)zo( +0,0)

> Note that L, 0,;,u =0 and (0;,u,u) = 0 so that the infimum is nonpositive.
Now, using the same notation as in the previous proof, we have

Yo € HY(RY), T(v,v) >0

2
where, for some constants Cy,Cs,C3 > 0 for o < 7

T(v) = Lyv — C1(Au,v)Au — Cy(u,v)Au — Cs(u, v)u.
Thus, for (u,v) = 0, this implies

(Lyv,v) > Cy(u,v)(Au,v)? > 0.

We will need the following description of the kernel of L .
Theorem 3.6

We have
Ker L, = Span(9,,u, 1 < j <d).
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> We sketch the proof, using arguments in [7] or [I7].
We admit that since L4 is has spherical symmetry, any solution of Liv = 0 can be

decomposed as
U= 3 ohy(r)Yi(#)
E>05€S;,

N € . .
where r = |z|, & = —, Y} ; denote spherical harmonics
r

_ASn71Yk7j = ,ukYkJ M = k(k‘ + d— 2),
Y, is finite and

> d-14d ok
—@ , 5+>\2—(2U+1)U2 +T2>Uk7j:0.

vk >0, Apvgj = <

For details, we refer the reader to [§].
Note that Vu = u/(r)# and Aju’ = 0. Let v satisfy Ajv = 0. Define the Wronskian
W(r) = rYo(r)u (r) — v'(r)u(r)). Then we have W(r) = 0 so that W (r) = hIJP W(r).
T—+00
Since we want for the solutions to satisfy v(r),v'(r) = 0, we have W(r) = 0 and
r—r+00
v = C'u for some constant C'. This implies that A; > 0.

For k > 2, A, = A1 + Hi _2 Bl oo that A} is a positive operator. Thus, Aiv = 0 has no
r

nonzero solution.
For k = 0, we refer the reader to [7] and Sturm-Liouville theory to prove there is no
nonzero solution of Agv = 0. O

Let us now give a useful result about the operator L_. We will need the following
theorem. For proof, we refer the reader to [16] (p. 236).

Theorem 3.7

Suppose H = —A+V is a self-adjoint and bounded from below operator with COO(]Rd)
as a core. If Ey = mino(H) is an eigenvalue, it is simple.

Theorem 3.8

L_ is a nonnegative operator. Furthermore,

Ker L_ = Span(u).

> As noticed in [I5] (p. 73), it is easily checked that

L_= —ldiv (u2grad <1)>
U U

so (L_v,v) > 0 for all v € H'(R?). Thus, the spectrum of L_ is included in R,. But
u € Ker L_ so, by the theorem 0 is a simple eigenvalue, so Ker L_ = Span(u). O
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3.2 Constrained variational problems for L, and L_

We can now go further is our lower estimate (3.2)) of & (1p9)—& (u) for some choice of zg and .

Using the methods developed by J. Bona [5] for the KAV equation, one can prove ([1§])
that there exist functions zo(¢),v(t) that minimize

HV¢(~ + 0, t)e — VuHiQ(Rd) + A2 Hﬂi( + 0, 1) — uHiQ(Rd) (3.5)

and the resulting function h(z,t) = ¥(z + xo, t)e”” — u(z) has continuous H' norm.
Minimization of (3.5) yields (by approximation using smooth functions)

V1 <j <d, /Rd u2”u(x)8xj () f(x,t)dx (3.6)
and
/ w? T (z)g(x, t)dz = 0. (3.7)
Rd

These constraints lead to lower estimates for (L4 f, f) and (L_g, g).

Lemma 3.9

There exists C' > 0 such that if v € H*(R?) satisfies (3.7), ie. (u***1,v) =0, then

(L_v,v) > C(v,v).

> Define
p=mt{(L_v,0), v € HYRY), o] 2 gy = 1, (421, v) = 0}.

The arguments detailed in the last part of the proof of theorem [3.4] also show that, if

u = 0, it is attained for some function v, # 0. Since L_ is nonnegative, this implies
v« € Ker(L-) = Span(u) by theorem 3.8 Since [|v4[|;2gay = 1, we have v, = “

Follpogar)
Then, (u?°*1,v,) = 0 implies Hu”+1 HLQ(Rd) = 0 which contradicts u > 0.
Thus, 1 > 0 and
Yo € HY(RY) s.t. (u? 1 v) =0, (L_v,v) > p(v,v) > 0.
O

Corollary 3.10
There exists C' > 0 such that for v € H*(R?Y), if (u** ™!, v) = 0 then

(L-v,v) > C ||U||12L11(Rd) :

> By the previous lemma, there exists C' > 0 such that

Vo e H'(RY) st (w7 0) =0,  (L_v,v) > Cllv]|72(ga -
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Moreover, for v € H' (Rd),
2 2
(L_v,v) > HVUHL2(Rd) — sup u?? HUHLQ(Rd) :
So, for any C" > 0,

(C"+1)(L-v,v) > C" | Vol Z2gay + (C = C"supu®?) [[v]|72 ay -

C
/
FOI'O<C SW,Weget

!

C
(L-v,v) > o1 10l 71 (gay -

g

To give a lower estimate for (Lyg,g), we further require that the solution ¢ has the
same L?-norm as the ground state ie.

/Rd (2, £)[2dz = /Rdu(x)de.

This condition will be relaxed later.

This implies that
/ lu+ f +ig|’de = / u?dx
Rd R4

(/) = ~3 [(F.£) + (9.9)]. (33

We have the following lower estimate for (L f, f) in [18].

which yields

Lemma 3.11

There exists constants c1,c,c3 > 0 such that if f € H'(R?) satisfies (3.6) and (3.8),
then

(L+f. f) =z a ||f||?{1(Rd) = 2|V 2 (ray ||h”2L2(]Rd) —C3 ”h”iQ(Rd) :

> Without loss of generality, we can consider ||lul| 2ga) = 1. We write

f=r+rn
where 1
fr =, flru=—5(£.f) +(9,9)]u
and 1
fr=F=(u=F+5[f:)+(g9)]ueu.
Then,

(L £, f) = LSy, fp) + 2L fry, fo) + (L fo, fo)-
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(I(/}_fl}f)l) with the constraints (u, f1) = 0 and (3.6).
IRy

By theorem it is nonnegative. The arguments detailed in the last part of the proof of
theorem [3.4] also show that, if the infimum is zero, it is attained for some function fi # 0.
Then, since Ly is nonnegative on ut, fi € Ker(Ly) so f« = ¢- Vu for some ¢ € R?. Then

First, we consider the functional

V1 <j <d, O:/ u? 9, uf*da:—Zc,/ 7(Op;u) (O, u)dx
But, for ¢ # j,
! 2
/ U7 (0, u)(0y,u)d —/ UQU(T)%a:ixjdx =0.
Rd Rd r
It follows that for all 1 < j < d,

cj/ (udp,u) dz = 0
R4

and ¢; = 0, which contradicts f, # 0.
Therefore, the infimum is positive and we have

((f: 1)+ (9.9))

(Lo f1) 2000 10 = B[ D) = Gy £)) = (5.1 — 5

for some b > 0.

Furthermore,
(Lefyfp) = 3 (5. 1) + (9,0)) (Esu)
Moreover,
(Lefiofp) = =51 F) + (9.9 (L fr,u).
But
(Lyfi,u) (Vf1,Vu) = (20 + 1)(f1,u*)

Hiii:ler C||Vh||L2(Rd +C,HU2O—+1H Td )||fL||L2*(]Rd)
<" Y Vhl gagae

Sobolev
SO

(Lyfo, fy) = =0 HhH%Z(Rd) VR L2 (ray

for some b’ > 0.
Putting all this together and using a similar trick as in the proof of corollary [3:10] to
get ||f H?{l(Rd) give the announced result. O

Throughout this section, we thus proved the following theorem.
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Theorem 3.12

For zo(t) and ~y(t) minimizing (3.5), if | (-, )[| 2(gay = l|ull f2(ray, we have

(Lo fs )+ (L-g,9) = e ||hl| 7 ey — e2 [Pl ray = 3 IRl e - (3.9)

3.3 Conlusion

Suppose, as in the previous paragraph, that

10C, Ol L2may = llull L2 (rey - (3.10)

. Since
Vmin(A2, 1) [AC, )| 1 gy < oA 1), Gu) < V/max(A2, D) [|h(, )] g1 gy
injecting into , we have, for xo(t),y(t) minimizing ,
& (o) — &(u) > a(pa(i(-, 1), Gu)) (3.11)

with

0

a(s) = ¢15%(1 — c28” — 35 — 45°)

for some constants ¢y, ¢, c3,cq,0 > 0. What is really needed from a is that a is positive
near 0.

We can now prove theorem under the assumption . Let ¢ > 0 sufficiently
small. & is continuous on H'(R?) so there exists §(¢) > 0 such that

pa(Y0,Gu) <d(e) = E(Yo) — E(u) <ale).
Since & is constant in time, implies that
Vi >0,  alpa(¥(1),Gu)) <ale).
Since py (¢ (-, t), Gy) is continuous in time, for € and §(¢e) sufficiently small, this implies that

px((-,t),Gy) < €.

Therefore we have proved the following theorem.
Theorem 3.13

Letd>3,0<0 < 3 and vy € H*(R?) such that [oll 2(ray = llull 2(ray- Let ¥(z,1)
be the unique solution of . Then w is orbitally stable, ie. , for any € > 0, there
exists d(g) > 0 such that if
pA(to, Gu) < 6(¢)
then
vt >0, ox(V(-, 1), Gy) < €.
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We will now relax assumption (3.10). First note that with u, = aiu(a-) and o =
2

<H¢0\|L2(Rd)

od
, we have a ground state u, satisfying
[[ull 2 ey

2 2041 _
—Aug + o ug —ul T =0

such that [[ua |l L2 ray = l[Yoll f2(Ra)-
We will need the following lemma:

Lemma 3.14

The function
Ry — H'Y(RY

a ua:a%u(a-)

Ay

is continuous near o = 1.

> It suffices to prove this for A, : Ry — L*(RY). To do so, one can first prove it for C°
functions, using the uniform continuity of such functions, and then easily extend it to any
function in L?(RY). O

Therefore, there exists d1(¢) such that

€
la — 1] < 01(¢) == Hua—uHHl(Rd) < 3
20
1ol L2 (ray | >~
But, for a = (HHLW , applying lemma [B.2| yields
Ullrz®e)
_20
oy Il B )5
o —
lull 22 7w
2042 do'd 20‘+2 od
o (Il e+l
< ez [ 1%0ll 2may = llll L2 (rey |
2—0
HUHLz (RY)
< (O H% + o)e HLQ(Rd HUHLQ(R"Z) \

<t +20)e — 1

< Cp)\ (7/10» Gu)

for z¢,y minimizing (3.5)).
Suppose

pA(to, Gu) < d2(¢)
61(6)
C

with da(e) < . Then

£
[t = ull g1 gay < 3
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We can now conclude the proof. Note that, for every (x,v) € R? x R, we have
“¢( + 2o, t)ei’}’ — UHHl(Rd) < Hq/}( + X, t)@i’Y — uO‘HHl(Rd) =+ ||U,a — U||H1
so that, taking the infimum over xg, 7,

Con((11),Gu) < Cpa(tb(-, 1), Gun) + = (3.12)

5
But, as we have seen before,

pa(%, Gua) <C Hlﬁo( + xo)ei'y - UaHH1(Rd)

for some constant C' > 0 and any (xo,7) € R? x R. Therefore, for (x0,7) minimizing (3.5)),

Pa(V0,Guy) < ||tho(- + zo)e™ — UHHl(Rd) + llu = vall g1gay
< Cpalvo,Gu) + 5
< Cos(e) +§
< ()

for d5(g) small enough. Applying theorem with the ground state u, instead of u, and
injecting the result in (3.12)), we get

pA(to, Gu) < d2(e) = pA(Y (1), Gy) < Ce

and theorem [3.2] is proved.
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A Sobolev’s embeddings

In this section, we take d > 2 and give useful embeddings of Sobolev spaces. For the sake
of concision, we refer the reader to [6] for proofs.

Theorem A.1 (Sobolev, Gagliardo, Nirenberg)

For1<p<d, . L
WhP(RY) — LF"(RY)  where T d
and there exists a constant C = C(p,d) > 0 such that
Yu € WHRT,  ul e < CVul,
and the embedding WP < LP" is continuous.
Remark. If there exists a constant C' > 0 such that
vue WHRY),  ull e < C|Vul (A.1)

x
for some 1 < ¢ < oo, then, for A > 0 and u € Wl’p(Rd), since uy : x € R — <X) is in

WLP(RY), we have
[urllpe < Cl[Vuallpy (A.2)

1€e.
d_d
lull e < CA» ™27 [Vull,  ¥A>0 (A.3)
d d
which implies — — — — 1 =0 ie. ¢ = p*.
p q
To prove this theorem, we will need the following lemma:
Lemma A.2

Let d > 2 and f1, fo, ..., fe € LY RYY). Forz e RY and 1 < i < d, let
a?l-:(xl,xg,...,xi_l,xi+1,...,md) ERdil. (A4)
Then, the function
f 1xr e Rd — f1 (.fl)fQ({fg) ... fd(-fd) (A5)
is in L*(R%) and
d
11 ey < T 1ill pa1ggary - (A.6)
i=1

> We prove this result by induction on d.

— The case d = 2 amounts to Holder’s inequality that we consider as a know fact.

— Suppose that the statement holds for some d > 2. Let f1,..., far1 € Ld(Rd). Let
441 be given. By Holder’s inequality,

/Rd [f(@)|dzy ... dza < [[fat1l Lagra) Hfl---fd(l"dH)HLd%dl(Rd)- (A.7)
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where
d—1
d

]fl...fd(xd+1)]Ld(il(Rd):</Rd|f1...fd\ddldx1...dxd (rap1).  (AS)

The induction hypothesis applied to the functions | f1|ri1, ce | fd|d7i1 yields
4 4 =t
Hfl-‘-fd(ﬁde)HLd%l(Rd) = H\flld‘1 s fal T (@an)||
d—1
d 1 4 T
< [ (@ay) A9
(1;11 l L= (Ri—1) A9
d
< [ Ifi@ar)ll Laggary -

=1

We allow now z4,1 to vary. For 1 <4 < d, the function x4, — Hfi(xCH*l)”Ld(Rd*l) is in

d
LYR). Then by Holder’s inequality!, z44; € R — H 1 fi(@a+1)|| pagra-1y is in L*(R) and
=1

d
puy = I iliqmey - (410
i=1

d d
[T 1fi@allgogas|| < TT|[Ifitwaen) | aggasy
i=1 =1

L (R)

Thus, we have
d+1

L, V@it < TL 1Al oy (A1)
=1
g
Let us begin the proof of theorem by the case p =1 with v € Ci(Rd). We have
r—1 400
ou ou
= —(t dt| < —(t dt A12
|’U,($1, )$d)’ ‘/Oo axl( , L2, ,.de) ‘ = /OO ’8.171( y L2, ,Z'd) ( )
and, similarly, pour 1 <17 < d,
ol < [ |2 et | @ = a) as)
u\r)| =~ . 8.%'1 L1y o5 XLi—1,0y Lit15 -+ - Ld d;f i\Ts5). .
So
d
u(z)|? < H fi(@3). (A.14)
=1
'In the form: If f1,..., fx are such that f; € Lpi(Rd) with % = pi 4+ 4+ pi <1,then f=fi...fr €
1 k
LP(R%) and

”fHLp < Hf1||LP1 kaHka .
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1
By the previous lemma, since f;*~ e LRI,

d
d ldx 7,
/»"EGRd Hf b Ld—1(Rd-1) 11_[1 7 HLl = l_[1 axz L1 (R9)
(A 15)
SO
1
d_ d—1
/ ()| 7 v . (A.16)
Rd €Iy Ll(Rd)
From this, we get
4| Bu ||
. A7
Ity < 1T 5 (A7)
Let t > 1. Applying with |u|'~!u instead of u yields
1 d 1
ou Ou || 4
t -1
u — <t|u A.18
Il g IR e S - L
by Holder’s inequality.
—1 —1 —1
We can now chose ¢ such that td = pt—1) te. t = pld—1) = p* > 1 since
d—1 p—1 d—p d
1 < p<d. Then,
4 Qu ||
il e < TT | (A.19)
SO
Vu e ClRY),  [ull gy < C V0l e - (A.20)

1,p(Td - 1 (d W (R)
Let uw € WHP(R?). There exists a sequence (up) € C,(R?) such that u, ——— u. We

consider, taking subsequences if needed, that u, — u almost everywhere. Then, for all n,
LP" (R4
lunl ™ ) < 1|Vl o ray - (A.21)

Fatou’s lemma yields u € LP" (R%) and

[ull o = h%glfun < lirneiR?f HunHLP*(Rd) =< Clizneil\?f ”VUnHLP(Rd) = [[Vull g, < oo

L (rd) "

(A.22)
which concludes the proof.

We deduce from theorem the following result:
Corollary A.3
Let 1 <p < d. Then

v e [pp’],  WHRY) = LIRY)

and the embeddings are continuous.
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> For p < ¢ < p*, there exists 0 < o < 1 such that

1 a 11—« ) pp
-=—+ ie. g=—"——— A.23
g p P ap* + (1 —a)p (4.23)

Then, by Hoélder’s inequality,

1

1 1
_ agl, |(1—a)q|| 7 agqila ’ (1-a)gf|e _ a 1_9 .
P e W [ AP [ WP o) e
(A.24)
Applying Young’s inequality, we have:
[ull e < o flull pprey + (1 = @) lull por (may < 1ll Lo ey + lull or ey (A.25)

and by virtue of theorem there exists C' > 0 such that
Vi e WPRY,  ull g < C lullro s - (4.26)

O
Theorem A.4
Let m € N* and 1 < p < oo. We have,

1 m 1 1 m
if = — = >0 then W™P(R%) c LYRY) where = = = — — ;
Lo (RY) C AR where = 1~
1
iff—%:0thenWm’p(]Rd)CLq(]Rd) for allp < q < o0 ;
p
1
iff—%<0thenWm’pCL°°(]R{d);
p

and the respective embeddings are continuous.
d
Moreover, if m — — > 0 is not an integer, then W™P(R%) c C*¥(RY) where k =

I

If O is an open subset of R? of class C' with bounded boundary, or Q = Ri, we can
replace R? by € in the above theorem.

B Lagrange multipliers and regularity of functionals on H 1(Rd)

Langrange multipliers

We state and prove a very useful theorem associated with the study of constrained mini-
mization problems. We follow the proof given in [II] (p. 225).
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Theorem B.1 (Lagrange multipliers)

Let (E,|.||) a Banach space, Q2 an open subset of E, f : 2 — R a differentiable function
onQ, and ® : Q — R" a function of class C' on Q. We write ® = (®1,...,®,) where, for
1<i<n, ®:Q— R is the i*"-component of ®. Let a € R" and suppose &~ '(a) # @.

If f(xo) = gli]la( )f(a:) for some xo € ® 1 (a) and if D®(zg) € Z(E,R™) is onto,
zeP™(a
then there exist A\1,..., A, € R such that

Df(l'()) = AchI)l(iL‘o) + -+ AnD(I’n({I,‘())

> Since dim (E/Ker D<I>(:L‘0)> = rank D®(z¢) = n, there exists a subspace F' of E such

that dim F' = n and E = Ker D®(xo) & F. We will write x the restriction of D®(zg) to F.
X is an isomorphism between F' and R".
For x near 0, we define
U(z) =P®(xo+x) — a.

It is clear that ¥(0) = 0 and D¥(0) = D®(0). Let II; be the projection E — Ker D®(zg)
and define
h=x"1loWU+1II,

in a neighborhood of 0. We have
Dh(0) = D(x )(0) o DW(0) + I} = x* 0o DY(0) + 111 = Idp.

Thus, by the inverse function theorem, there exist two neighborhood U; and Us of 0 such
that A is a diffeomorphism between Uy and Us.

Let IIy be the projection E — F. We have Ilyoh = y oW, so yollyoh = U,
Moreover, since D¥(0) = D®(xo) = x o I, we have DW¥(0) o h = .

Let us now prove that Ker D®(z9) C Ker D f(xg). Let v € Ker D®(zp) = Ker D¥(0)
and let 1 : ¢t €] —e, e[ tv € Ker D¥(0) where £ > 0. For ¢ sufficiently small, v (] —¢,¢[) C
UsNKer DU(0). Let then 4 = h~to~y;. Since DW¥(0)oh = ¥, we have 1poyy = DU(0)oy; =
0 so

V|t] < e, O(xg+72(t) —a=0

ie. £o + Y2(t) € @71 (a) pour any |t| < . Then the path ~3(t) = xq + 72(t) takes its values
in @ 1(a). We have v3(0) = xg and 7/(0) = ~4(0) = Dh~1(h(0))v = Dh(0)v = v. Since
f 073 has a minimum in 0, we have (f o~3)'(0) = 0 ie. Df(x¢)v =0 and v € Ker D f(x0).

Next, we note that (D®i(zo)|p,...,DPn(z0)|5) is a basis of F*. Since this set has
n elements and dim F* = dim F' = n, it suffices to prove that the elements are linearly
independent. Let A1,..., A, € R such that

AlD(bl(xO)\F'"+)\an)n($U)\F =0. (Bl)

Since Ran D®(xg) = R", the canonical basis (eq, ..., ey) lies in Ran D®(xp) and, for each
1 < i < n, there exists #° € F such that D®(zo)z’ = e;, ie. D®y(xg)z’ = d;, for all
1 <k <n. Applying to such z° yields A; for each 1 <4 < n.

Finally, since Df(zo)|r € F”*, there exist Aj,..., A\, € R such that

Vo € F, Df(xo)x = MiD®1(z0)x + - - + Ay Dy (z0)z.
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Since Ker D®(xg) C Ker D f(zg) and E = F @ Ker D®(z), we can conclude that the above
equation is in fact valid for any =z € E. 0
Regularity of some functionals on H'(R?)

In order to prove the existence of a solution to equation ([2.1), we use the above theorem
with E = HY(R?), f =T and ® = V, where

1 A2
v Hl Rd T — 2d :/ - 2042 7V 2 dz.
wemn®), 1= [ [vaar ve= [ (Ggner =)

Let us now verify that 7' and V are indeed C! functionals on (H'(R%),||.| Hl(Rd)).

For u,h € H'(R?), we have

T(u+h)=T(u)+2 [ Vu-Vhdx+ T(h)
R4 N~

_ 2
= 0 ()

The application £(u) : h € HY(R?) — 2 Vu - Vhdz is obviously linear and, by Cauchy-
Rd
Swcharz’s inequality,

[E(u)h] < 2([Vullpogay VAl L2 ray < 2 llull gy 121l g1 ray

and £(u) is continuous on H'(R?). This proves that T is differentiable on H'(R?), that
DT (u) = £(u) for any u € H'(R?) and that | DT (w)|| g1 ray < l[ull g1 (gay- Since DT : u €
HY(RY) — DT (u) € H(RY)" is linear, this proves that 7" is C* on H'(R?).

For u € H'(R?), we have, for h € H*(R?),

_ 1 2042 AQ 2
Viuth) = /Rd<20+2]u+h| "t b ) da

1 32
= /Rd <20_+2 (|u’2a+2 + (20’ + 2)|u’20uh + |h|2€(h)) — ?(‘UF + 2uh + ‘h|2)> da

where ¢ is bounded so that

V(u+h)=V(u) —I-/

(Jul?*?u — XN2u)hdz + [ |h[*(1 4 (h))dz.
Rd Rd

~~ ~~

fw)h =0, (IrI)

{(u) is linear and, for h € H'(R?), by Sobolev’s embedding theorem and Hélder’s inequality,

[£(u)h]

IA

20+1 2
[ lul*” Hngﬁ (&) 17l p2ovamay + A [ull L2 gay [|2]] 2(Ray

IN

O(Iull25 2 oy + 1l 2o 1A 1 ey
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so £(u) is continuous. This proves that V is differentiable on H'(R?), that DV (u) = £(u)
for any u € H(RY) and that [|DV ()]s gay < CUul25 gy + 1l aggen).
Let us now consider u € H*(R?) and a sequence (un)n>0 € HY (RN such that

HY(RY)
Up —— U
n—-4o00

As before, we can prove that

1DV (u) = DV (un)|| g1 (ray < C <H|U|20U — |un|* + [Ju — Un|L2(Rd)> :

(Rd
In order to prove that DV is continuous, it then suffices to prove that
|20

u — |un|* unH 2042 — 0.

H ‘U 20+1 (R4) n—0

We will use the following lemma.
Lemma B.2

For any p > 0, there exists a constant C' > 0 such that

Va,b € R, llalPa — [b[Pb] < Cla —b| (|alP + [b?) .

> Take a,b € R. If b =0 or a = b then C' = 1 satisfies the condition. We can suppose
that b # 0 and b # a, define s = % and consider the function

trt — 1

IO =Dl —1

1

f is continuous on R\{1} and f(¢) ||—> 1. Moreover, f(t) ol sgn(t — 1)]% Thus f is
t|—o00 —

bounded and there exists C' > 0 such that

VE£1,  [|tPt— 1] < CJt—1|(JtP + 1).

I35 -1l = elg =1 (51 +)

|alPa — [b[Pb] < Cla = bl(|al” + [b[").

For t = s, we have

€.

O
This lemma proves that
20 20 20 20
Il = Pl g o < C NP+ )= ] g
and, by Holder’s inequality,
a7 = 2| a2z oy < C (Il + fun ] 22 ) = tnll oo s2me
< H|u’20HL%(Rd + H’“n’Q HL% (RY > lJu— UnHLza+2(Rd)
< O (IulFreaqae) + lunl Brvagg ) o = wallpzrsogey
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By Sobolev’s embedding theorem, [|un||20+2(ga) is bounded and |[u — upl| 2042pay — 0,
which concludes the proof that V is a C! functional on H'(R?).

C Compactness lemmas

To prove the existence of a ground state, we use the following, more general that needed,
compactness lemma, due to Strauss [14]. The following proof is due to H. Berestycki and
P.-L. Lions [4].

Lemma C.1

] Let P,Q : R — R be two continuous functions satisfying
P(s)
— 0 C.1
Q(8) Isl=-+oo (G
Let (uy) be a sequence of measurable functions R? — R such that
sup/ |Q(un(z))|dr < +o0. (C.2)
neN JRd
and
P(up(z)) = v(z) a.e. in RY, (C.3)
Then for any bounded Borel set B one has
P(u, - .
[ 1P (@)~ v(@lde 0
If one further assumes that Pls)
s
— 4
Q(S) s—0 0 (C )
and
up () \I—> 0 uniformly with respect to n, (C.5)
r|—+00
then (P(uy))nen converges to v in L'(R?).

To prove this, we will need the following results, that we prove as in [9].
Theorem C.2 (Egorov)
Let (E,X, ) be a measure space such that u(E) < oo. Let fn, f be measurable

functions such that (f,) converges to f almost everywhere on E. Then, for all € > 0,
there exists A € ¥ such that u(A) < € and (f,) converges uniformly to f on E\A.

> For n,k > 1 define
1
Epn = ﬂ {x €E, |filx)— f(x)] < k:}

For k > 1,



SO

p| U Ern | = lim pu(Epy).

n—-4o00
n>1

Since, (f,) converges to f almost everywhere on F, for all k£ > 1,

lim p(Bepn) =p | | Ben | = n(E).

n—+00
n>1

Then, for € > 0, since u(E) < oo, for any k > 1, there exists ng > 0 such that
#(Eimy) > p(E) — 2.

Now, set

A= J(B\Egp,)-

k>1

We have p(A) < e and E\A = m E} p, so that
k>1

Vk > 1,Vi > ng, Vo € E\ A, |fi(x) — f(z)] <

=

and (f,) converges uniformly to f on F\A.

Lemma C.3

LY(E).

g

Let (E,%, i) be a measure space such that u(E) < oo, fn, f € L*(E) such that f, — f
almost everywhere in E and (f,) is uniformly integrable. Then, f, converges to f in

> Let € > 0 be constant. The uniform integrability implies that there exists > 0 such

that for all A € 3,

|A] < ¢ = sup/ |fruldp < e.
neNJA

Indeed, for any K > 0,

/ fuldu = / Fuldu + / Fuldu
A {Ifn|<K}INA {|fn|>K}INA

< Ku(A)+

for K large enough so that, if u(A4) < e(2K)~! = §, we have the result.

But, by Egorov’s theorem, there exists A € ¥ such that pu(A) < § and (f,,) converges

uniformly to f in E\A. Then,

/ fo— fldz < w(B) sup |fulx) — f(2)] —— 0
E\A zeB\A n—+o0

40



so there exists ng € N such that
Vn > no, / |fr — fldz <e.
E\A

Then, for n > ny,

[it=fiae < [ iga-sidos [ (fldo+ [ |fide
E E\A A A
< 2€+/ |f|dz
A
< 25+1iminf/ | fr|dz < 3e
Fatou neN A
—_—

<e

Let us now prove the compactness lemma.
> Let us first prove that P(uy) is uniformly integrable on B. By condition (C.1)), there
exists C' > 0 such that

Vo €RY, |P(un(2))] < C(1+1Q(un(2))])-

Thus, by condition (C.2)), P(u,) € L*(B). This implies, by Fatou’s lemma:

/B\v(m)]d:c = /B

lim inf / (P ()]
neN B

lim inf P(u,(z))| dz

neN

IN

IN

lilgleglfC' <\B[ +/B|Q(un(:1:))]dx> < 00,

because of (C.2), ie. v € L'(B) as well. Next, define

inf {[s], [P(s)] > K} if {|s], |P(s)] = K} # &

p: K >0 { K otherwise.

Then, since P is continuous, ¢(K) K4> +00. By definition of ¢, we have
—+00

/ Plun(a))lde < [ P (o))l
{IP(un(2))|>k}NB {lun ()20 (K)}NB
Now, by condition (C.1f), there exists a function e such that

VseR,  |P(s)] <e(s)Q(s)
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with £(s) ——— 0. Then,

|s]—4o00
/ Plun(2))ldz < / E (un(2))|Qtn () dz
{IP(un(z))|>K}NB {lun(z)|>0(K)}NB
< Ce(p(K) /B 1Quun(2))]dz
< Ce(K)

with e(K) ST 0. This shows the uniform integrability and, thanks to lemma |C.3
—+00

P(uy,) converges to v in L'(B).

Let us now prove the second part. Let ¢ > 0. Thanks to conditions (C.4]) and (C.5),
there exists Ry > 0 such that

2> Ry = VneN, [Plun(2)) < el Qun(a))].

Therefore, P,(u,) and,by Fatou’s lemma, v are in L*(R?) and

/ |P(un(2))|dz < =C, / ()| < £C.
2 Ro} {fel2Ro}

But from the first part of the lemma, there exists ng such that for n > ny,

[ 1P ~ vl < ¢
|z|<Ro

¥n > no, /R P(un(2)) — v(@)|dz < (20 + 1)e.

To prove the stability of the ground state, we estimate (L_v,v) for v € H'(R?) satisfying
some constraint. We need the following lemma.

Lemma C.4

Let 1 < p < oo and (fu)nen be bounded in LP(R?). If (f,,) converges almost everywhere
to some function f, then f € LP(R?) and (f,) converges weakly to f in LP(R?).

> We follow the proof in [II] (p. 256).
We begin by proving that f € Lp(Rd). Define

Vn € N = inf f.
nelN,  gn=nf Jr
Then, for any n € N, g, is a measurable nonnegative function such that g, < |f,| almost

everywhere. Thus, g, € LP (Rd) for all n € N. Since g, < gn+1 a.e and (g,) converges a.e
to | f], by the monotone convergence theorem, f € LP(R%).
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Now, we prove that it suffices to show that if (f,) is bounded in LP(R%) and converges
weakly to 0 in LP (Rd) and a.e to a function f, then, necessarily, f = 0 a.e. Indeed suppose
that this is true. (f,,) is bounded in LP(R?) so, since LP(R?) is reflexive for 1 < p < oo,
there exists h € LP(R?) such that (f,), up to a subsequence, converges weakly to h in
LP(RY). Then, (f, — h) is a bounded sequence converging weakly to 0 in LP(RY) and a.e
to f — h. Under our assumption, this implies h = f and the lemma is proved.

We suppose now on that (f,) is a bounded sequence in LP(R?) converging weakly to 0
and a.e to f. Let K C R? be a compact set and define

Sk ={z € K, f(z) > 0}.
Since f is measurable, so is Sk. For n € N, define
% ={x € Sk, fo(zx) >0} and By ={z € Sk, fn(z) <0}

which are also measurable sets.
Since (1 B;{) converges to 0 a.e and 1 Br < 1k which is integrable, the dominated

convergence theorem ensures that (1py) converges to 0 in LY(R%). Then, by Holder’s

inequality
;
/ fndx| < (/ \fn|pdx> (/ 1pn d:n) — 0.
B Rd rRe n—oo

n
K
~~

bounded

Moreover, since S C K which is compact, 1g, € L*(RY) for any s > 1. Since (f,)
converges weakly to 0 in LP(R?), this implies that

fpdz — 0.
Sk n—-+o0o

Thus,

fndz = frndx — fndz — 0.
A7, Sk By, nrheo

Since fn1ar is nonnegative almost everywhere, this means that (fnl A%) converges to 0 in

LY(R?), so, up to a subsequence, (fnlap) converges to 0 a.e. Since (f,lap ) converges a.e
to flg,, this implies
f(z) <0 a.e in K.

Since K is arbitrary, we have f < 0 almost everywhere in R?. Replacing f,, by (—f) shows
that f > 0 almost everywhere in R?, so f = 0 a.c in R%. U
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