Table de \mathfrak{S}_4

Recasage: 161, 183.

- Étape 1 : classes de conjugaison. Il y a cinq classes de conjugaison, déterminées par le type de la permutation :

— {Id} : un élément

— les transpositions : $\binom{4}{2} = 6$ éléments

— les 3-cycles : $\binom{4}{3} \times 2 = 8$ éléments

— les 4-cycles : $4! \times \frac{1}{4} = 6$ éléments

— les doubles transpositions : $\binom{4}{2} \times \frac{1}{2} = 3$ éléments. Il y a donc cinq caractères irréductibles.

- Étape 2 : premiers caractères irréductibles. On connaît deux caractères de degré 1 : $\chi_{\rm triv}$ et χ_{ε} .

	$(\mathrm{Id})_1$	$(12)_6$	$(123)_8$	$(1234)_6$	$(12)(34)_3$
$\chi_{ m triv}$	1	1	1	1	1
χε	1	-1	1	-1	1

- Étape 3 : isométries du tétraèdre régulier. Notons T un tétraèdre régulier centré en l'origine. Notons e_1, e_2, e_3, e_4 les sommets. On définit un morphisme de groupes

$$\varphi: \begin{array}{cccc} \mathfrak{S}_4 & \to & \mathrm{Is}(T) \\ \varphi: & & & \\ \sigma & \mapsto & u: \begin{array}{cccc} T & \to & T \\ e_i & \mapsto & e_{\sigma(i)} \end{array}$$

 φ est bien définie car T est régulier et (e_1, e_2, e_3, e_4) est un repère affine. De plus, $\sigma \in \text{Ker } \varphi \Leftrightarrow \forall i, \sigma(i) = i \Leftrightarrow \sigma = \text{Id donc}$ φ est injective. Enfin, φ est surjective puisqu'une isométrie envoie un sommet sur un sommet. Donc φ est un isomorphisme.

On a donc $\varphi:\mathfrak{S}_4\to \mathrm{Is}(T)\subset O(\mathbb{R}^3)\hookrightarrow \mathrm{GL}(\mathbb{C}^3)$ donc φ induit une représentation de degré 3. Le caractère χ_3 associé est $\forall \sigma \in \mathfrak{S}_4, \ \chi_3(\sigma) = \text{Tr}(\varphi(\sigma))$. On effectue les calculs dans la base (e_1, e_2, e_3) sachant que $e_4 = -e_1 - e_2 - e_3$. On a :

$$\operatorname{Mat} \varphi((12)) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \operatorname{donc} \qquad \chi_3((12)) = 1$$

$$\operatorname{Mat} \varphi((123)) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \operatorname{donc} \qquad \chi_3((123)) = 0$$

$$\operatorname{Mat} \varphi((1234)) = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix} \qquad \operatorname{donc} \qquad \chi_3((1234)) = -1$$

$$\operatorname{Mat} \varphi((12)(34)) = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \qquad \operatorname{donc} \qquad \chi_3((12)(34)) = -1.$$

De plus, χ_3 est irréductible car

$$\langle \chi_3, \chi_3 \rangle = \frac{1}{|\mathfrak{S}_4|} \sum_{\sigma \in \mathfrak{S}_4} |\chi_3(\sigma)|^2 = \frac{1}{24} \left(3^2 + 6 \times 1^2 + 6 \times (-1)^2 + 3 \times (-1)^2 \right) = 1.$$

On complète donc la table.

	$(\mathrm{Id})_1$	$(12)_6$	$(123)_8$	$(1234)_6$	$(12)(34)_3$
$\chi_{ m triv}$	1	1	1	1	1
χε	1	-1	1	-1	1
χ3	3	1	0	-1	-1

- Étape 4 : construction d'une nouvelle représentation. Considérons la représentation $W = \operatorname{Hom}_{\mathbb{C}}(V_3, V_{\varepsilon})$. On a $\chi_W = \overline{\chi_3}\chi_{\varepsilon} = (3, -1, 0, 1, -1)$ donc χ_W est un nouveau caractère. De plus, il est irréductible car $\langle \chi_W, \chi_W \rangle = 1$. On complète donc la table :

	$(\mathrm{Id})_1$	$(12)_6$	$(123)_8$	$(1234)_6$	$(12)(34)_3$
χ_{triv}	1	1	1	1	1
χ_{ε}	1	-1	1	-1	1
χ3	3	1	0	-1	-1
χ_W	3	-1	0	1	-1

- Étape 5 : relations d'orthogonalité. Soit χ le dernier caractère irréductible. On a :

$$24 = |\mathfrak{S}_4| = \chi_{\text{triv}}(\text{Id})^2 + \chi_{\varepsilon}(\text{Id})^2 + \chi_3(\text{Id})^2 + \chi_W(\text{Id})^2 + \chi(\text{Id})^2 = 20 + \chi(\text{Id})^2$$

donc χ est de degré 2. De plus, grâce à

$$\forall \sigma \in \mathfrak{S}_4 \backslash \{\mathrm{Id}\}, \qquad 0 = \sum_{\chi' \in \mathrm{Irr}(\mathfrak{S}_4)} \chi'(\mathrm{Id}) \chi'(\sigma),$$

on obtient $\chi=(2,0,-1,0,2)$ d'où la table

	$(\mathrm{Id})_1$	$(12)_6$	$(123)_8$	$(1234)_6$	$(12)(34)_3$
$\chi_{ m triv}$	1	1	1	1	1
χε	1	-1	1	-1	1
χ	2	0	-1	0	2
χ3	3	1	0	-1	-1
χ_W	3	-1	0	1	-1

Remarque : Les sous-groupes distingués de \mathfrak{S}_4 sont les $\bigcap_{\chi \in \operatorname{Irr}(\mathfrak{S}_4)} \operatorname{Ker} \chi$ où $\operatorname{Ker}(\chi) = \{ \sigma \in \mathfrak{S}^4, \, \chi(\sigma) = \chi(\operatorname{Id}) \}$. On obtient que les sous-groupes distingués sont

$$\{\mathrm{Id}\}, \langle (12)(34)\rangle, \mathfrak{A}_4, \mathfrak{S}_4.$$