Page Personnelle d'Emeline Luirard

Stages de recherche

Stage de M2 (mars-juillet 2019, Rennes)

Sous l'encadrement de Mihai Gradinaru. J'ai tout d'abord étudié un article de Nicolas Fournier et Camille Tardif. Ensuite, je me suis intéressée au comportement asymptotique d'une solution d'EDS cinétique (vitesse et position) non-homogène en temps et dirigée par un mouvement Brownien. Voici le rapport, ainsi que le beamer. Attention, la deuxième partie de ces documents contient des erreurs. Voir le preprint correspondant pour une correction.

Séminaire de M2 (septembre-décembre 2018, Rennes)

Sous l'encadrement de Mihai Gradinaru. J'ai étudié l'inégalité de Wald et son fort intérêt pour la résolution du problème d’arrêt optimal pour le mouvement Brownien. Voici le rapport, ainsi que le beamer.

Stage de M1 (juin-juillet 2017, Mannheim)

Sous l'encadrement d'Andreas Neueunkirch. Un stage consacré à la résolution des équations aux dérivées partielles à l'aide du mouvement Brownien. Voici le rapport de stage.

Stage de L3 (juin-juillet 2016, Lyon)

Sous l'encadrement de Jean-Claude Sikorav. Ce fut un stage d'initiation à la topologie algébrique et aux surfaces de Riemann de genre un. Voici le rapport de stage.

Papiers de recherche

2022

Asymptotic behavior of a kinetic inhomogeneous stochastic system in the harmonic potential, avec Thomas Cavallazzi, en préparation.
We consider a particle, evolving in a harmonic potential and subject to a time-inhomogeneous frictional force and a random force. Its velocity is solution of a stochastic differential equation driven by an \(\alpha\)-stable process and the frictional force is of the form \(t^{-\beta}F(v)\). We identify three regimes for the behavior in long-time of the couple velocity-position, with a suitable rescaling.

Décembre 2021

Kinetic time-inhomogeneous Lévy-driven model, avec Mihai Gradinaru, soumis.
Disponible sur HAL.
We study a one-dimensional kinetic stochastic model driven by a Lévy process, with a non-linear time-inhomogeneous drift. More precisely, the process \((V,X)\) is considered, where \(X\) is the position of the particle and its velocity \(V\) is the solution of a stochastic differential equation with a drift of the form \(t^{-\beta}F(v)\). The driving noise can be a stable Lévy process of index \(\alpha\) or a general Lévy process under appropriate assumptions. The function \(F\) satisfies a homogeneity condition and \(\beta\) is non-negative. The behavior in large time of the process \((V,X)\) is proved and the precise rate of convergence is pointed out by using stochastic analysis tools. To this end, we compute the moment estimates of the velocity process.

Mars 2021

Asymptotic behavior for a time-inhomogeneous Kolmogorov type diffusion, avec Mihai Gradinaru, soumis.
Disponible sur HAL.
We study a kinetic stochastic model with a non-linear time-inhomogeneous drag force and a Brownian-type random force. More precisely, the Kolmogorov type diffusion \( (V,X) \) is considered. Here \(X\) is the position of the particle and \(V\) is its velocity and is solution of a stochastic differential equation driven by a one-dimensional Brownian motion, with the drift of the form \(t^{-\beta}F(v)\). The function \(F\) satisfies some homogeneity condition and \(\beta\) is positive. The behaviour of the process \((V,X)\) in large time is proved and the precise rate of convergence is pointed out by using stochastic analysis tools.

Exposés

  • Décembre 2021 - Forum des Jeunes Mathématicien.ne.s, (Besançon, 25)
  • Juin 2021 - Journées des Probabilités, (Guidel, 56)
  • Avril 2021 - Séminaire de l'équipe de probabilités de l'Institut de Recherche Mathématiques de Rennes (IRMAR).
  • Mars 2021 - Séminaire étudiant Toulouse.
  • Mars 2021 - Rencontres Doctorales Lebesgue.

Conférences

  • Décembre 2021 - Forum des Jeunes Mathématicien.ne.s, Institut Mathématiques de Bourgogne (IMB)
  • Juin 2021 - Journées des Probabilités, Institut de Recherche Mathématiques de Rennes (IRMAR).
  • Juin 2020 - Journées des Probabilités, Institut de Recherche Mathématiques de Rennes (IRMAR). Annulées.
  • Juin 2019 - Journées des Probabilités, Centre de Mathématiques Appliquées de l'École Polytechnique (CMAP).

Ecosse-2019