Computing maximally-permissive strategies in timed games

Emily Clement¹ Thierry Jéron² Nicolas Markey³ David Mentré⁴

¹INRIA - Mitsubishi Electric, Rennes

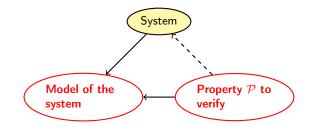
²INRIA-IRISA, Rennes

³CNRS-IRISA, Rennes

⁴Mitsubishi Electric, Rennes

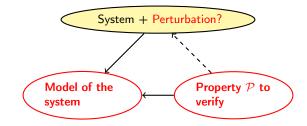
28 May 2019

Motivations: Verify properties despite perturbations



 \triangleright How to model it? Timed automata + Verification of \mathcal{P} .

Motivations: Verify properties despite perturbations



- \triangleright How to model it? Timed automata + Verification of \mathcal{P} .
- ▷ Our goal? Verify with robustness.

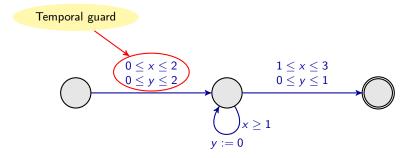
Table of contents

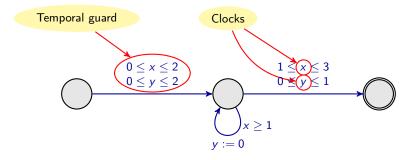
Context Timed automaton: reachability and robustness Our goal

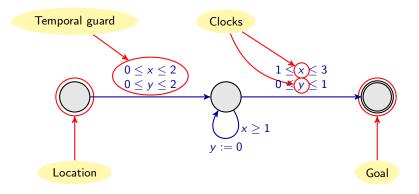
Robustness's models in timed automata

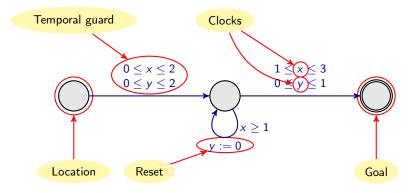
Computation of the robustness of a timed automaton

Our contribution



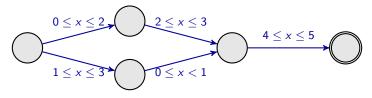






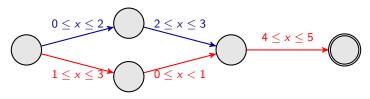
Issues for reachability & robustness

• (Temporal) reachability ?



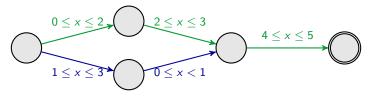
Issues for reachability & robustness

• (Temporal) reachability 🗢



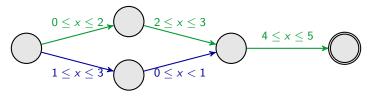
Issues for reachability & robustness

• (Temporal) reachability ✓



Issues for reachability & robustness

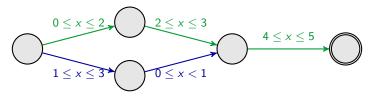
• (Temporal) reachability ✓



• Robustness ?

Issues for reachability & robustness

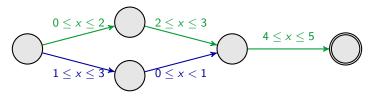
(Temporal) reachability √



• Robustness 😑

Issues for reachability & robustness

(Temporal) reachability √



Robustness √

Our goal

• Define our semantic of robustness

Our goal

- Define our semantic of robustness
- Construct an algorithm that answers the following question:

For $p \in \mathbb{R}$, a timed automaton \mathcal{A} and a configuration, is it at least p-robust?

Our goal

- Define our semantic of robustness
- Construct an algorithm that answers the following question:

For $p \in \mathbb{R}$, a timed automaton \mathcal{A} and a configuration, is it at least p-robust?

• Our Method

 Construct an algorithm that computes exactly the robustness of any automaton/configuration.

Table of contents

Context

Robustness's models in timed automata State of the art Our model

Computation of the robustness of a timed automaton

Our contribution

- Topological robustness
 - ▷ Gupta, Hezinger, Jagadeesan "Robust Timed Automata", 1997
 - \triangleright Tools: stability theorems.

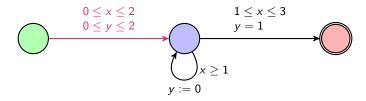
- Topological robustness
 - ▷ Gupta, Hezinger, Jagadeesan "Robust Timed Automata", 1997
 - \triangleright Tools: stability theorems.
- Guard enlargement
 - ▷ Sankur "Robustness in Timed Automata", PhD Thesis, 2013
 - \triangleright Tools: game theory.

- Topological robustness
 - ▷ Gupta, Hezinger, Jagadeesan "Robust Timed Automata", 1997
 - \triangleright Tools: stability theorems.
- Guard enlargement
 - ▷ Sankur "Robustness in Timed Automata", PhD Thesis, 2013
 - \triangleright Tools: game theory.
- Delay enlargement
 - Bouyer, Fang, Markey "Permissive strategies in timed automata and games", AVOCS'15
 - \triangleright Tools: game theory

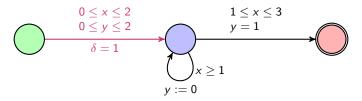
- Topological robustness
 - ▷ Gupta, Hezinger, Jagadeesan "Robust Timed Automata", 1997
 - \triangleright Tools: stability theorems.
- Guard enlargement
 - ▷ Sankur "Robustness in Timed Automata", PhD Thesis, 2013
 - \triangleright Tools: game theory.
- Delay enlargement
 - Bouyer, Fang, Markey "Permissive strategies in timed automata and games", AVOCS'15
 - \triangleright Tools: game theory
 - \triangleright A constructive algorithm: \checkmark

- Topological robustness
 - ▷ Gupta, Hezinger, Jagadeesan "Robust Timed Automata", 1997
 - \triangleright Tools: stability theorems.
- Guard enlargement
 - ▷ Sankur "Robustness in Timed Automata", PhD Thesis, 2013
 - \triangleright Tools: game theory.
- Delay enlargement
 - Bouyer, Fang, Markey "Permissive strategies in timed automata and games", AVOCS'15
 - \triangleright Tools: game theory
 - \triangleright A constructive algorithm: \checkmark
 - ▷ Multiple clocks: X.

• Delay/ No delay enlargement

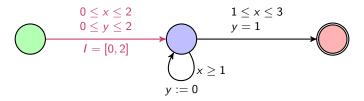


• Delay/ No delay enlargement



• No delay enlargement: We propose $\delta = 1$.

• Delay/ No delay enlargement

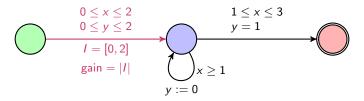


How to quantify robustness?

• **Delay enlargement**: we propose an interval I = [0, 2].

9 / 26

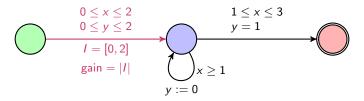
• Delay/ No delay enlargement



How to quantify robustness?

• Delay enlargement: we propose an interval *l* = [0, 2]. How to quantify the robustness: gain |*l*|

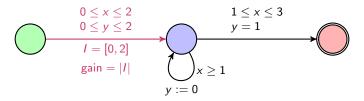
• Delay/ No delay enlargement



How to quantify robustness?

 Delay enlargement: we propose an interval *l* = [0, 2]. How to quantify the robustness: gain |*l*|
 Conditions: Every delay of δ ∈ *l* verifies the guards

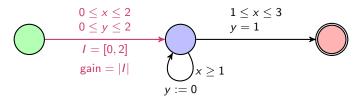
• Delay/ No delay enlargement



How to quantify robustness?

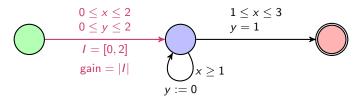
- Delay enlargement: we propose an interval *l* = [0, 2]. How to quantify the robustness: gain |*l*|
 Conditions: Every delay of δ ∈ *l* verifies the guards
- Which delay is applied ? The worst case.

Delay/ No delay enlargement



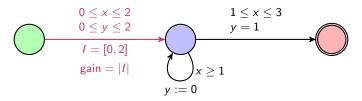
•How to model the "Best case/Worst case"?

Delay/ No delay enlargement



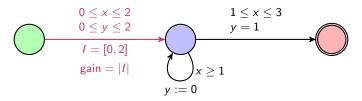
•How to model the "Best case/Worst case"?

Delay/ No delay enlargement

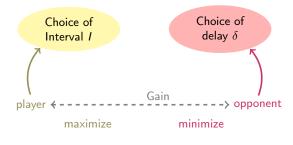


•How to model the "Best case/Worst case"?

• Delay/ No delay enlargement



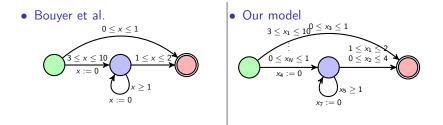
•How to model the "Best case/Worst case"?



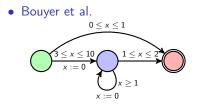
Emily Clement et al.

Computing maximally-permissive strategies in timed games

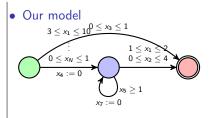
State of the art for delay enlargement: Bouyer et al. vs our model



State of the art for delay enlargement: Bouyer et al. vs our model



 \triangleright Op: min of sum of the **inverses**: \checkmark



⊳ Op: min: √

State of the art for delay enlargement: Bouyer et al. vs our model

- Bouyer et al. $0 \le x \le 1$ $3 \le x \le 10$ x := 0 $x \ge 1$ $x \ge 1$
 - \triangleright Op: min of sum of the **inverses**: \checkmark \triangleright O: \checkmark
- Our model $3 \le x_1 \le 10^0 \le x_3 \le 1$ $0 \le x_1 \le 10^0 \le x_3 \le 1$ $0 \le x_2 \le 4$ $x_7 := 0$ $x_7 := 0$

⊳ \varTheta: 🗸

Context timed automata Computation of the robustness of a timed automaton Our contribution Appendix

State of the art for delay enlargement: Bouyer et al. vs our model

- Bouyer et al. $0 \le x \le 1$ $1 \le x \le 2$ ≥ 1 x := 0
 - \triangleright Op: min of sum of the **inverses**: \checkmark ⊳ \varTheta: 🗸 ⊳ Ø...Ø. **x**
- $\triangleright \bigcirc : \checkmark$ $\triangleright \oslash : \cdot : \bigcirc : \checkmark$
- Our model $3 \le x_1 \le 10^0 \le x_3 \le 1$ $1 \leq x_1$ $0 \le x_N \le 1$ $0 \leq x_2$ $x_5 \ge 1$ $x_7 := 0$ ⊳ Op: min: √

Table of contents

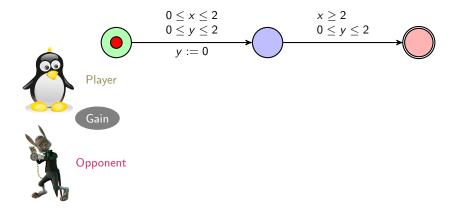
Context

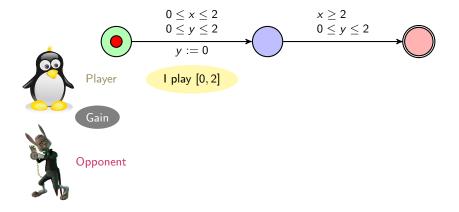
Robustness's models in timed automata

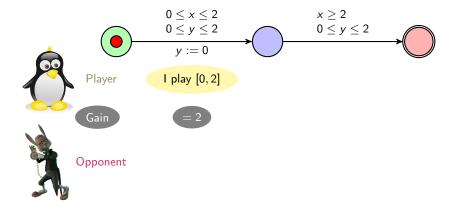
Computation of the robustness of a timed automaton Computation in our model: let's introduce players Our algorithm to compute the gain

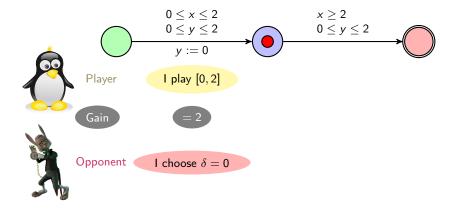
Our contribution

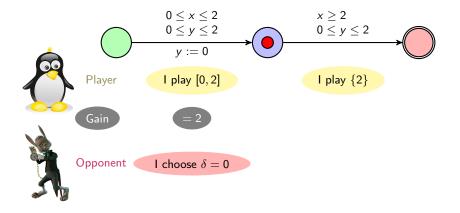
An example of gain computation

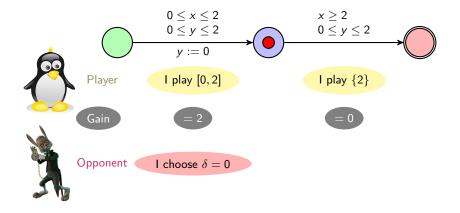




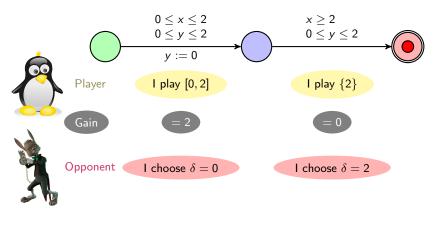




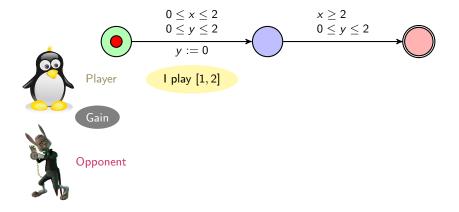


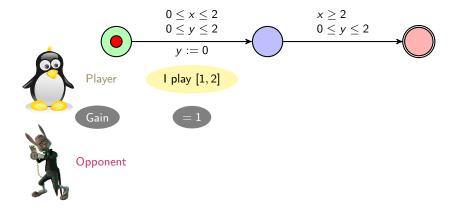


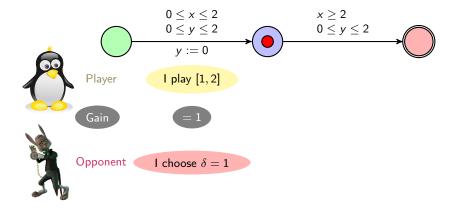
• Are we 1-robust? Let's lose! The clock values (2,2).

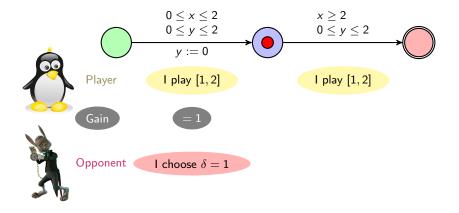


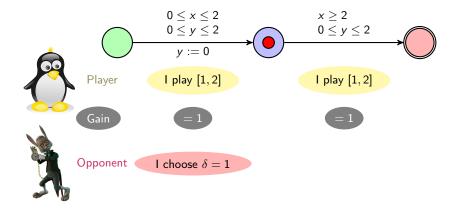
•Final gain $\min(2,0) = 0$: 🙁



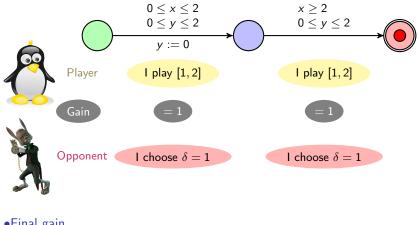








• Are we 1-robust? Let's win! The clock values (2, 1).

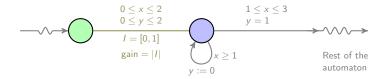


•Final gain $\min(1,1) = 1$: \bigcirc

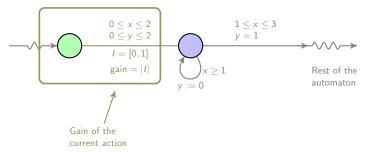
12 / 26

- The gain: a way to quantify robustness
 - \triangleright Gain \searrow = Robustness \searrow
 - ▷ A recursive calculus of a function $T_i(q, v)$.

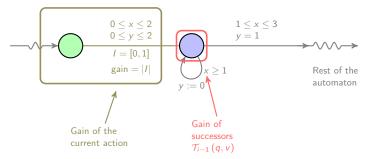
- The gain: a way to quantify robustness
 - \triangleright Gain \searrow = Robustness \searrow
 - ▷ A recursive calculus of a function $T_i(q, v)$.
- A recursive algorithm to compute the gain



- The gain: a way to quantify robustness
 - \triangleright Gain \searrow = Robustness \searrow
 - ▷ A recursive calculus of a function $T_i(q, v)$.
- A recursive algorithm to compute the gain

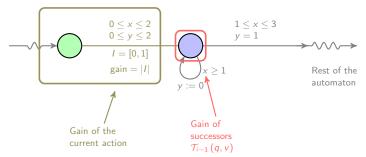


- The gain: a way to quantify robustness
 - \triangleright Gain \searrow = Robustness \searrow
 - ▷ A recursive calculus of a function $T_i(q, v)$.
- A recursive algorithm to compute the gain



What is the gain?

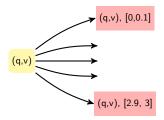
- The gain: a way to quantify robustness
 - \triangleright Gain \searrow = Robustness \searrow
 - ▷ A recursive calculus of a function $T_i(q, v)$.
- A recursive algorithm to compute the gain



Gain of the automaton: minimum of current gain and the gain of the successors

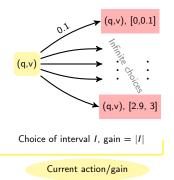
What is the gain ?

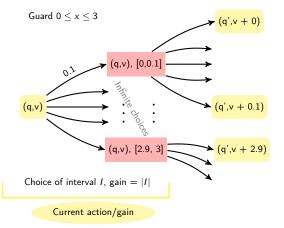
Guard $0 \le x \le 3$

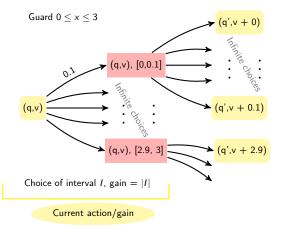


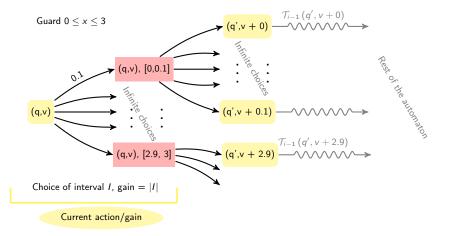
What is the gain ?

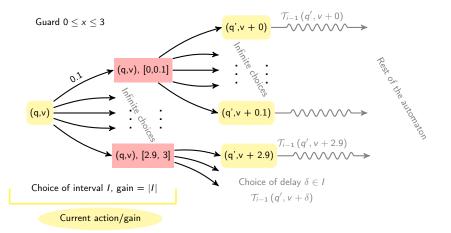
Guard $0 \le x \le 3$

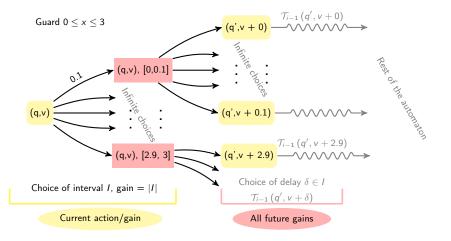




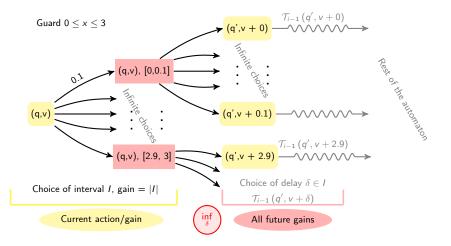




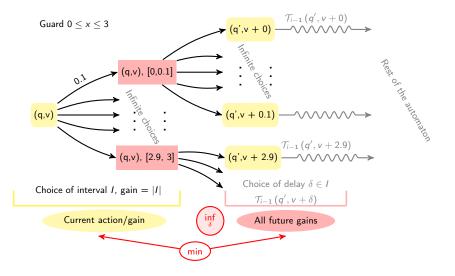


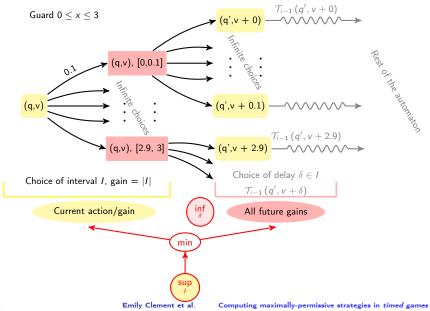


What is the gain ?

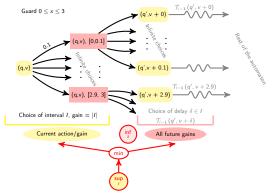


Computing maximally-permissive strategies in timed games





What is the gain ?



Issues: How to compute the gain?

- inf / sup: infinite choices & opposite strategies
- Tetermine a finite number of strategies to test of the two players:

inf \Rightarrow min and sup \Rightarrow max.

Table of contents

Context

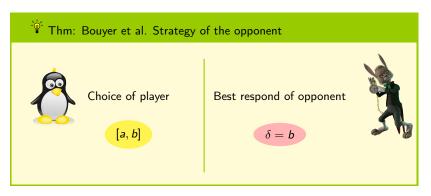
Robustness's models in timed automata

Computation of the robustness of a timed automaton

Our contribution Computation for the model of linear automata More general models Future work and open questions

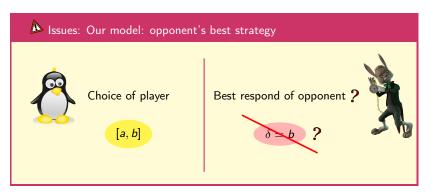
For linear automata: Strategy of the opponent

We will restrict to linear automata, *i.e* we don't consider



For linear automata: Strategy of the opponent

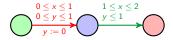
We will restrict to linear automata, *i.e* we don't consider



For linear automata: Counter-example and results for our model

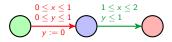
lssues: opponent's strategy	
Choice of player [a, b]	Best respond of opponent ?

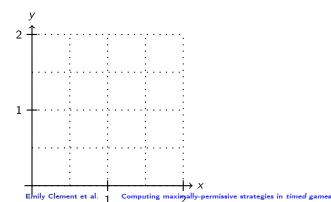
For linear automata: Counter-example and results for our model



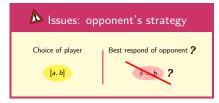
For linear automata: Counter-example and results for our model

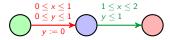
lssues: opponent's strategy	
Choice of player	Best respond of opponent ?

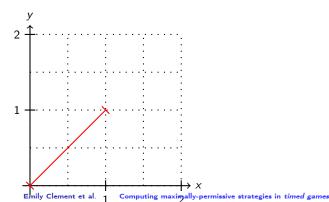




For linear automata: Counter-example and results for our model

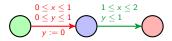


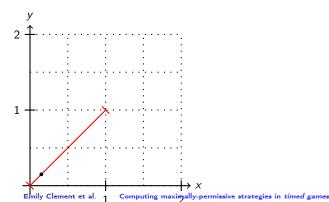




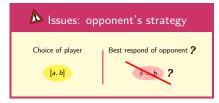
For linear automata: Counter-example and results for our model

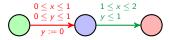
lssues: opponent's strategy	
Choice of player	Best respond of opponent ?

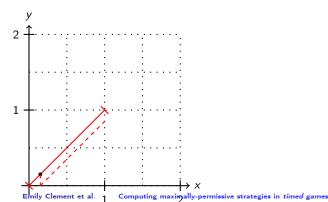




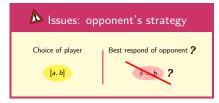
For linear automata: Counter-example and results for our model

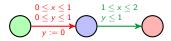


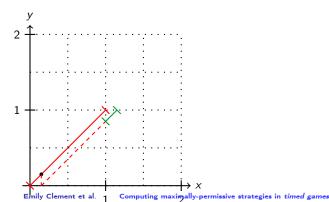




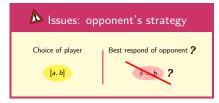
For linear automata: Counter-example and results for our model

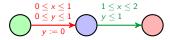


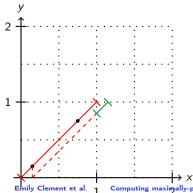




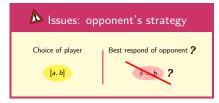
For linear automata: Counter-example and results for our model

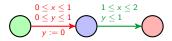


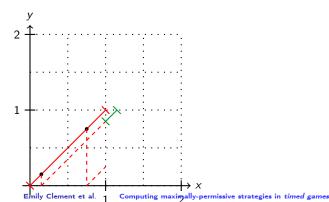




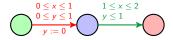
For linear automata: Counter-example and results for our model

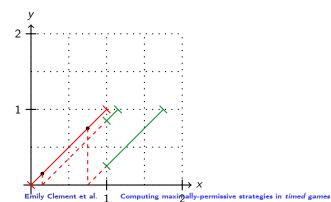




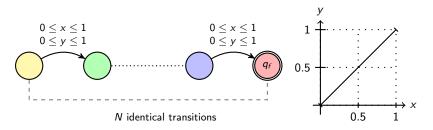


For linear automata: Counter-example and results for our model

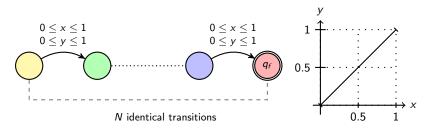




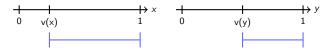
For linear automata: examples of computation of the gain •Identical guards



For linear automata: examples of computation of the gain •Identical guards



•The strategy of the player and the opponent



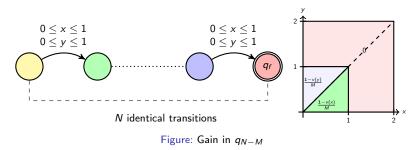
We divide the remaining time by M

We divide the remaining time by M

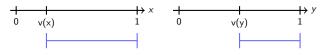
Figure: Time left for each clock

Emily Clement et al.

For linear automata: examples of computation of the gain •Identical guards



•The strategy of the player and the opponent



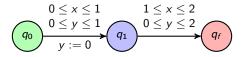
We divide the remaining time by M

We divide the remaining time by M

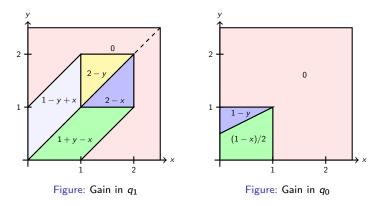
Figure: Time left for each clock

Emily Clement et al.

A more complicated example

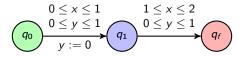


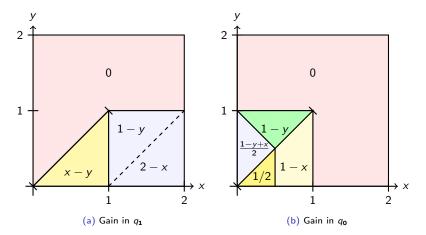
• The computation of the gain



Emily Clement et al.

Other examples





Emily Clement et al.

- Intuition for the form of $v \mapsto T(q, v)$
 - $\triangleright~$ Computable cutting of zones

• Intuition for the form of $v \mapsto T(q, v)$

- ▷ Computable cutting of zones
- $\triangleright\,$ Piece-wise affine function, with computable pieces and coefficients

• Intuition for the form of $v \mapsto T(q, v)$

- $\triangleright~$ Computable cutting of zones
- ▷ Piece-wise affine function, with computable pieces and coefficients

• Our method

 $\triangleright~$ Compare all the choices, zone by zones

• Intuition for the form of $v \mapsto T(q, v)$

- ▷ Computable cutting of zones
- ▷ Piece-wise affine function, with computable pieces and coefficients

• Our method

- $\triangleright~$ Compare all the choices, zone by zones
- ▷ Solve the maximization / a and b of min (b a, f(a), g(b)), where f and g are affine functions.

• Intuition for the form of $v \mapsto T(q, v)$

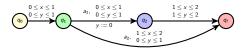
- ▷ Computable cutting of zones
- ▷ Piece-wise affine function, with computable pieces and coefficients

• Our method

- $\triangleright~$ Compare all the choices, zone by zones
- ▷ Solve the maximization / a and b of min (b a, f (a), g (b)), where f and g are affine functions.
- ▷ Compare all the choices/gains and conclude.

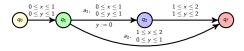
The case of non-linear automata

• A counter example of our opponent strategy



The case of non-linear automata

• A counter example of our opponent strategy



• Gain and counter example: the gain function $v \mapsto T(q_1, v)$

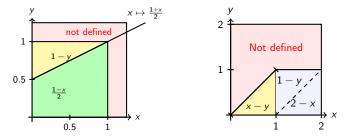
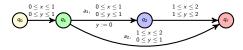


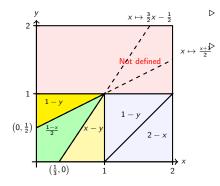
Figure: The gain function $v \mapsto T(q_1, v)$ depending on the action chosen (a₁ at left, a₂ at right)

The case of non-linear automata

• A counter example of our opponent strategy



• Gain and counter example: the gain function $v \mapsto T(q_1, v)$

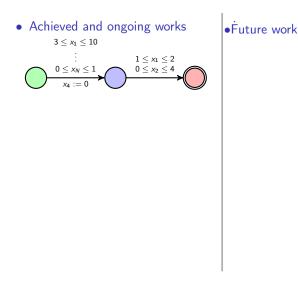


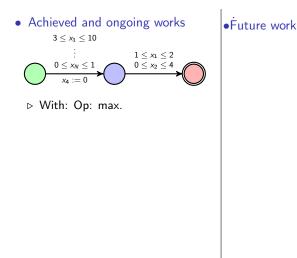
- ▷ Limits between 2 zones: $\Delta = 1/3 x$.
- Choosing a in the green zone and b in the yellow zone, the opponent must decide of a delay with the following gain function:

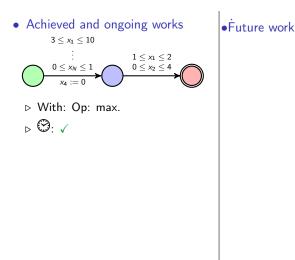
$$\min\left(\inf_{\delta\in[a,\Delta]}\frac{-x-\delta+1}{2},\inf_{\delta\in[\Delta,b]}(x+\delta)\right)$$

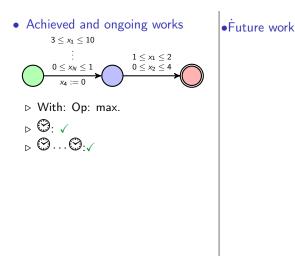
Computing maximally-permissive strategies in timed games

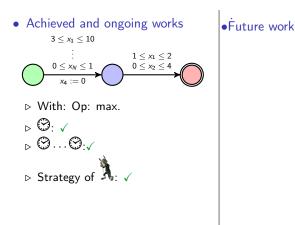
Emily Clement et al.

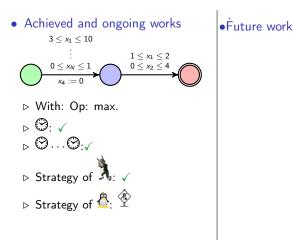




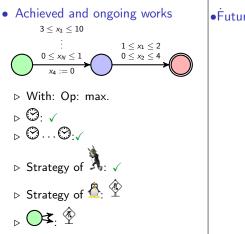




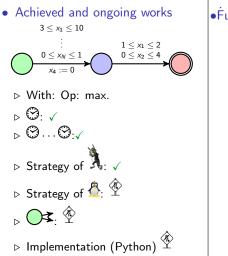




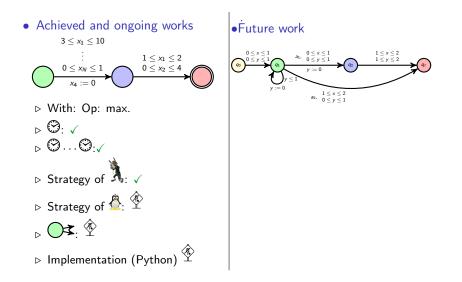
Emily Clement et al. Computing maximally-permissive strategies in *timed games*

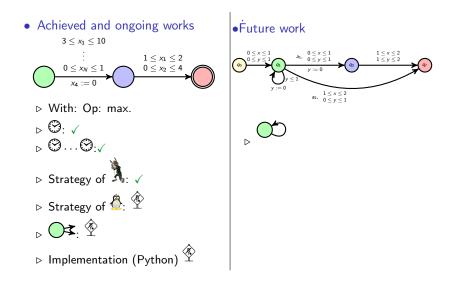


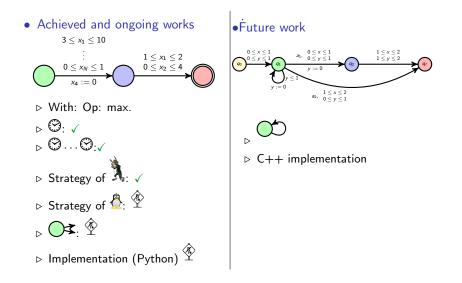
• Future work

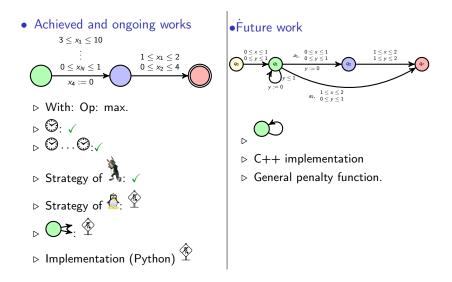


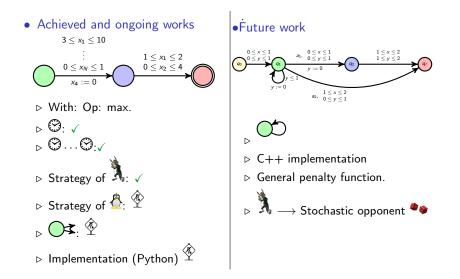
• Future work

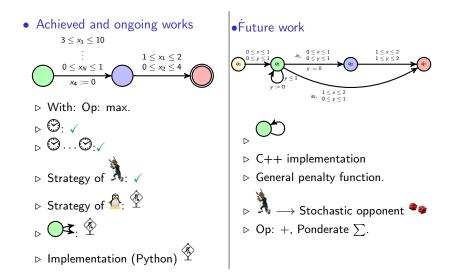












What is the penalty?

• The penalty for our model

For any winning configuration (q, v), for i > 0,

$$\mathcal{P}_{i}(q, v) = \min_{a \in \mathsf{Act}} \inf_{l \in \mathcal{D}(v, \mathsf{inv}(q))} \max\left(\frac{1}{|l|}, \sup_{\delta \in I} \mathcal{P}_{i-1}(\mathit{succ}(v, q, \delta, a))\right)$$

• Example of computation of $\mathcal{P}_i(q, v)$ (Our model)

Step i = 0, Initialization

$$\begin{array}{c} \begin{array}{c} (\mathbf{q},\mathbf{v}) & 0 \leq x \leq 2 \\ \hline (\mathbf{q}',\mathbf{v}') & 0 \leq x \leq 3 \\ \hline \mathcal{P}_0(\mathbf{q},\mathbf{v}) = +\infty \end{array} \end{array} \xrightarrow{\begin{array}{c} 0 \leq x \leq 3 \\ \hline (\mathbf{q}'',\mathbf{v}') \\ \hline \mathcal{P}_0(\mathbf{q}'',\mathbf{v}') = +\infty \end{array} \xrightarrow{\begin{array}{c} 0 \leq x \leq 3 \\ \hline \mathcal{P}_0(\mathbf{q}'',\mathbf{v}') \\ \hline \mathcal{P}_0(\mathbf{q}'',\mathbf{v}') = 0 \end{array}$$

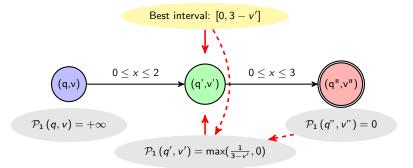
• The penalty for our model

For any winning configuration (q, v), for i > 0,

$$\mathcal{P}_{i}(q, v) = \min_{a \in \mathsf{Act}} \inf_{I \in \mathcal{D}(v, \mathsf{inv}(q))} \max\left(\frac{1}{|I|}, \sup_{\delta \in I} \mathcal{P}_{i-1}\left(\mathsf{succ}\left(v, q, \delta, a\right)\right)\right)$$

• Example of computation of $\mathcal{P}_i(q, v)$ (Our model)

Step i = 1, Comparison



• The penalty for our model

For any winning configuration (q, v), for i > 0,

$$\mathcal{P}_{i}(q, v) = \min_{a \in \mathsf{Act}} \inf_{I \in \mathcal{D}(v, \mathsf{inv}(q))} \max\left(\frac{1}{|I|}, \sup_{\delta \in I} \mathcal{P}_{i-1}\left(\mathsf{succ}\left(v, q, \delta, a\right)\right)\right)$$

• Example of computation of $\mathcal{P}_i(q, v)$ (Our model)

$$\mathcal{P}_{1}(q,v) \xrightarrow{0 \leq x \leq 2} \mathcal{P}_{2}(q',v') \xrightarrow{0 \leq x \leq 3} \mathcal{P}_{1}(q'',v'')$$

$$\mathcal{P}_{2}(q',v') = \frac{1}{3-v'} \qquad \mathcal{P}_{1}(q'',v'') = 0$$

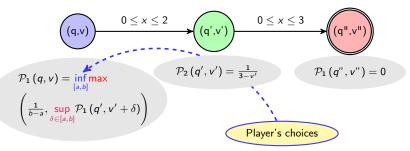
$$\left(\frac{1}{b-a}, \sup_{\delta \in [a,b]} \mathcal{P}_{1}(q',v'+\delta)\right)$$

• The penalty for our model

For any winning configuration (q, v), for i > 0,

$$\mathcal{P}_{i}(q, v) = \min_{a \in \mathsf{Act}} \inf_{I \in \mathcal{D}(v, \mathsf{inv}(q))} \max\left(\frac{1}{|I|}, \sup_{\delta \in I} \mathcal{P}_{i-1}\left(\mathsf{succ}\left(v, q, \delta, a\right)\right)\right)$$

• Example of computation of $\mathcal{P}_i(q, v)$ (Our model)

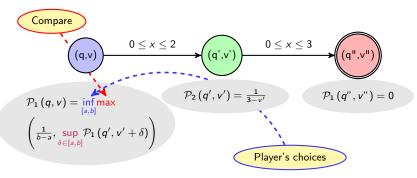


• The penalty for our model

For any winning configuration (q, v), for i > 0,

$$\mathcal{P}_{i}(q, v) = \min_{a \in \mathsf{Act}} \inf_{I \in \mathcal{D}(v, \mathsf{inv}(q))} \max\left(\frac{1}{|I|}, \sup_{\delta \in I} \mathcal{P}_{i-1}\left(\mathsf{succ}\left(v, q, \delta, a\right)\right)\right)$$

• Example of computation of $\mathcal{P}_i(q, v)$ (Our model)

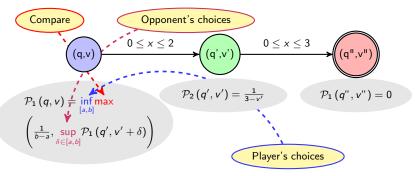


• The penalty for our model

For any winning configuration (q, v), for i > 0,

$$\mathcal{P}_{i}(q, v) = \min_{a \in \mathsf{Act}} \inf_{I \in \mathcal{D}(v, \mathsf{inv}(q))} \max\left(\frac{1}{|I|}, \sup_{\delta \in I} \mathcal{P}_{i-1}\left(\mathsf{succ}\left(v, q, \delta, a\right)\right)\right)$$

• Example of computation of $\mathcal{P}_i(q, v)$ (Our model)

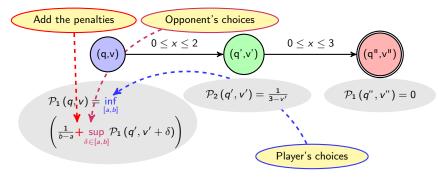


• The penalty for our model

For any winning configuration (q, v), for i > 0,

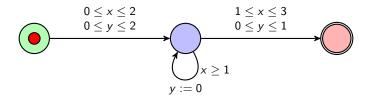
$$\mathcal{P}_{i}(q, v) = \min_{a \in \mathsf{Act}} \inf_{I \in \mathcal{D}(v, \mathsf{inv}(q))} \max\left(\frac{1}{|I|}, \sup_{\delta \in I} \mathcal{P}_{i-1}\left(\mathsf{succ}\left(v, q, \delta, a\right)\right)\right)$$

• Example of computation of $\mathcal{P}_i(q, v)$ (Bouyer et al.)



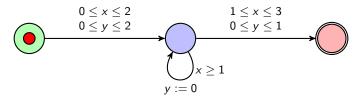
• A two-clock automaton

- \bigcirc Clock (x, y) values (0, 0).



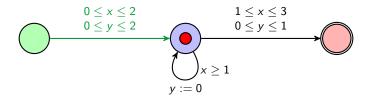
• A two-clock automaton

- \bigcirc Clock (x, y) values (0, 0).
- We propose a delay $\delta=1.5$



• A two-clock automaton

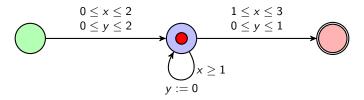
- \bigcirc Clock (x, y) values (1.5, 1.5).



25 / 26

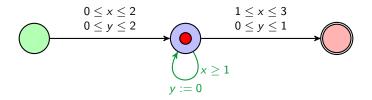
• A two-clock automaton

- \bigcirc Clock (x, y) values (1.5, 1.5).
- We propose a delay $\delta=1$



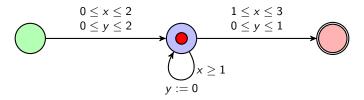
• A two-clock automaton

- \bigcirc Clock (*x*, *y*) values (2.5, 0).



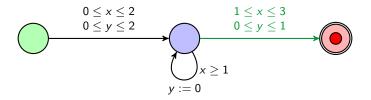
• A two-clock automaton

- \bigcirc Clock (*x*, *y*) values (2.5, 0).
- We propose a delay $\delta=0.5$



• A two-clock automaton

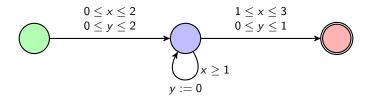
- \bigcirc Clock (x, y) values (3, 0.5).

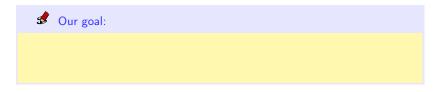


25 / 26

• A two-clock automaton

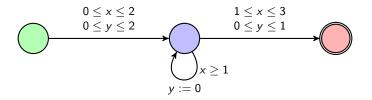
- \bigcirc Clock (x, y) values (3, 0.5).

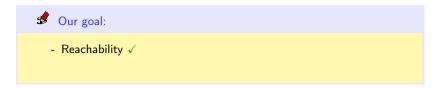




• A two-clock automaton

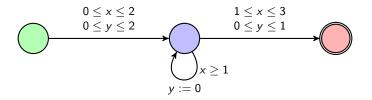
- \bigcirc Clock (x, y) values (3, 0.5).

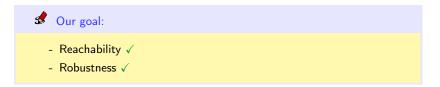


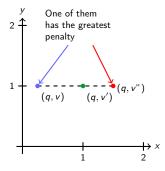


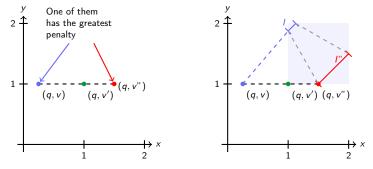
• A two-clock automaton

- \bigcirc Clock (x, y) values (3, 0.5).



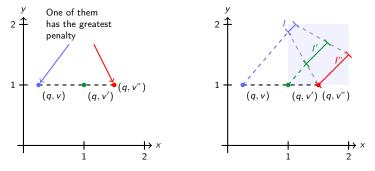






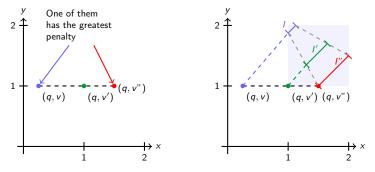
• Step of the proof

 \triangleright Take two arbitrary (enabled) interval I, I''.



• Step of the proof

- \triangleright Take two arbitrary (enabled) interval I, I''.
- \triangleright Construct I' s.t the inequality works.



• Step of the proof

- \triangleright Take two arbitrary (enabled) interval I, I''.
- \triangleright Construct I' s.t the inequality works.
- \triangleright Take the optimum intervals I, I''.