

## Master Ingénierie mathématique, Univ. Nantes Option Mathématiques et applications, ECN

Statistique Inférentielle.

Anne Philippe Université de Nantes, LMJL

## Fiche 3. Régions et intervalles de confiance

EXERCICE 1. SITUATION GAUSSIENNE

Soit  $X_1, \ldots, X_n$  un *n*-échantillon distribué suivant la loi normale de paramètres  $(\mu, \sigma^2)$ . On veut estimer  $\mu$ .

On note

- $q_{\alpha}$  le quantile d'ordre  $\alpha$  de la loi normale standard
- $-t_{n,\alpha}$  le quantile d'ordre  $\alpha$  de la loi de Student à n degrés de liberté.

si  $\sigma^2$  est connue,

$$I_n = \left[\bar{X}_n - \frac{q_{1-\alpha/2}\sigma}{\sqrt{n}}; \bar{X}_n - \frac{q_{\alpha/2}\sigma}{\sqrt{n}}\right]$$

est un intervalle de confiance de niveau  $1-\alpha$  pour le paramètre  $\mu$  c'est à dire

$$P_{\mu}(\mu \in I_n) = 1 - \alpha$$

si  $\sigma^2$  est inconnue, on pose

$$\sigma_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

et

$$I'_{n} = [\bar{X}_{n} - \frac{t_{n-1,1-\alpha/2}\hat{\sigma}_{n}}{\sqrt{n}}; \bar{X}_{n} - \frac{t_{n-1,\alpha/2}\hat{\sigma}_{n}}{\sqrt{n}}]$$

est un intervalle de confiance de niveau  $1 - \alpha$ .

- 1) Simuler N = 1000 échantillons de taille n = 10 iid suivant la loi normale de paramètres (1,1)
- 2) Calculer pour chaque échantillon les régions de confiance  $I_n$  et  $I_n'$  au niveau 95%
- 3) Représenter les régions de confiance (on peut se limiter aux 100 premières) et utiliser des couleurs pour distinguer les intervalles qui contiennent  $\mu = 1$ .

- 4) Evaluer la fréquence de l'évènement  $\mu$  appartient à l'intervalle de confiance. Commenter le résultat.
- 5) Reprendre les questions 1) -> 4) avec n = 50

## EXERCICE 2. SITUATION ASYMPTOTIQUE

On suppose que  $X_1, \ldots, X_n$  sont iid,  $L^2$ 

On construit un intervalle de confiance sur la moyenne à partir de la loi limite de

$$\sqrt{n}(\bar{X}_n - \mathbb{E}(X_1))$$

On obtient un intervalle asymptotiquement de niveau  $1-\alpha$  en prenant

$$I_n(X_1, \dots, X_n) = \left[ \bar{X}_n - q_{1-\alpha/2} \frac{S_n}{\sqrt{n}} ; \bar{X}_n - q_{\alpha/2} \frac{S_n}{\sqrt{n}} \right]$$

où

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 et  $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ 

On considère  $(X_1, ..., X_n)$  iid suivant la loi de student à 3 ddl. On veut estimer le niveau exact de l'intervalle de confiance  $\beta_n = P_{\theta}(\theta \in I_n)$  en fonction de n par la simulation. On utilise la méthode de Monte Carlo suivante :

- étape 1 On simule N échantillons indépendants de taille n suivant la loi de Student à 3 ddl
- étape 2 Pour chacun des échantillons, on calcule l'intervalle de confiance :  $I_n(i)$ ,  $i = 1, \ldots, N$
- étape 3 On approche la probabilité  $\beta_n$  par

$$\hat{\beta}_n(N) := \frac{1}{N} \sum_{i=1}^N \mathbb{I}_{I_n(i)}(\theta)$$

avec N grand.

- 1) Justifier la méthode
- 2) Pour n = 15, simuler N = 10000 échantillons et représenter  $\hat{\beta}_n(N)$  en fonction de N. En déduire une estimation de  $\beta_n$
- 3) Reprendre la question précédente pour n=25,50,100,500. Superposer les différentes courbes.
- 4) Faire le lien entre les résultats numériques et le niveau asymptotique des intervalles de confiance.

## Exercice 3. Choix de l'estimateur de la variance

Soit  $X_1, \ldots, X_n$  iid suivant la loi exponentielle de paramètre  $\theta^{-1}$  — La densité s'écrit  $f_{\theta}(x) = \theta^{-1}e^{-x\theta^{-1}} \mathbb{I}_{\mathbb{R}^+}(x)$ 

- On a  $E_{\theta}(X) = \theta$  et  $\operatorname{Var}_{\theta}(X) = \sigma^2 = \theta^2$
- Convergence en loi

$$\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \theta) \xrightarrow{loi} N(0, 1)$$

On peut estimer la variance  $\sigma^2$  par les estimateurs consistants suivant :

- la variance empirique  $S_n^2$
- la méthode des moments : on estime  $\sigma^2 = h(\theta)$  par  $h(\bar{X}_n) = \bar{X}_n^2$

On peut donc construire les intervalles de confiance de niveau asymptotique  $1-\alpha$  suivant

$$I_n(X_1, \dots, X_n) = \left[ \bar{X}_n - q_{1-\alpha/2} \frac{S_n}{\sqrt{n}} \; ; \; \bar{X}_n - q_{\alpha/2} \frac{S_n}{\sqrt{n}} \right]$$

ou

$$I'_n(X_1, \dots, X_n) = \left[ \bar{X}_n - q_{1-\alpha/2} \frac{\bar{X}_n}{\sqrt{n}} ; \bar{X}_n - q_{\alpha/2} \frac{\bar{X}_n}{\sqrt{n}} \right]$$

On note

$$\beta_n = P_{\theta} (\theta \in I_n)$$
$$\beta'_n = P_{\theta} (\theta \in I'_n)$$

- 1) Pour  $\theta = 1$  et n = 25, 50, 100, 200, simuler N = 10000 échantillons et superposer les courbes  $N \mapsto \hat{\beta}_n(N)$  et  $N \mapsto \hat{\beta}'_n(N)$ . En déduire des valeurs approchées de  $\beta_n$  et  $\beta'_n$ .
- 2) Même question pour  $\theta = 2$
- 3) Commenter les résultats obtenus