Test adaptatif d'homogénéité pour un processus de Poisson

Fabrice GRELA

Université de Rennes 1

encadré par Ronan LE GUEVEL

Mercredi 10 Janvier 2018

Bibliographie

- M. Fromont, B. Laurent et P. Reynaud-Bouret. Adaptative tests of homogeneity for a Poisson process. *Annales de l'IHP*. (2011)
- M. Fromont et B. Laurent. Adaptative goodness-of-fit tests in a density model. *Ann. Statist.* (2006)

But : construire un test d'homogénéité d'un processus de Poisson.

On suppose que l'on observe un processus de Poisson N sur [0,1].

On note:

- ➤ s l'intensité du processus par rapport à une mesure μ sur [0,1] et tel que $d\mu(x) = Ldx$ pour $L \in \mathbb{R}$,
- \triangleright S_0 l'ensemble des fonctions constantes sur [0,1].

On va construire un test adaptatif afin de tester l'hypothèse nulle (H_0) : " $s \in \mathcal{S}_0$ " contre l'alternative (H_1) : " $s \notin \mathcal{S}_0$ ".

But : construire un test d'homogénéité d'un processus de Poisson.

On suppose que l'on observe un processus de Poisson N sur [0,1].

On note:

- ➤ s l'intensité du processus par rapport à une mesure μ sur [0,1] et tel que $d\mu(x) = Ldx$ pour $L \in \mathbb{R}$,
- \triangleright S_0 l'ensemble des fonctions constantes sur [0,1].

On va construire un test adaptatif afin de tester l'hypothèse nulle (H_0) : " $s \in \mathcal{S}_0$ " contre l'alternative (H_1) : " $s \notin \mathcal{S}_0$ ".

But : construire un test d'homogénéité d'un processus de Poisson.

On suppose que l'on observe un processus de Poisson N sur [0,1].

On note:

- ➤ s l'intensité du processus par rapport à une mesure μ sur [0,1] et tel que $d\mu(x) = Ldx$ pour $L \in \mathbb{R}$,
- \triangleright S_0 l'ensemble des fonctions constantes sur [0,1].

On va construire un test adaptatif afin de tester l'hypothèse nulle (H_0) : " $s \in \mathcal{S}_0$ " contre l'alternative (H_1) : " $s \notin \mathcal{S}_0$ ".

Performance du test

Soient $\beta \in]0,1[$, une classe de fonctions \mathcal{S}_1 et ϕ_α , un test de niveau $\alpha \in]0,1[$ à valeurs dans $\{0,1\}$ qui rejette l'hypothèse nulle (\mathcal{H}_0) si $\phi_\alpha = 1$. On considère d, la distance induite par la norme $||\cdot||$ définie sur $L^2([0,1])$.

Définition : Vitesse de séparation uniforme

Si \mathbb{P}_s désigne la loi d'un processus de Poisson N d'intensité s, la vitesse de séparation uniforme sous \mathcal{S}_1 est définie par

$$\begin{split} \rho(\phi_{\alpha},\mathcal{S}_{1},\beta) &= \inf\{\rho > 0, \quad \sup_{s \in \mathcal{S}_{1},d(s,\mathcal{S}_{0}) > \rho} \mathbb{P}_{s}(\phi_{\alpha} = 0) \leq \beta\} \\ &= \inf\{\rho > 0, \quad \sup_{s \in \mathcal{S}_{1},d(s,\mathcal{S}_{0}) > \rho} \mathbb{P}_{s}(\phi_{\alpha} = 1) \geq 1 - \beta\} \end{split}$$

Définition : Vitesse de séparation minimax

La vitesse de séparation minimax sous S_1 est définie par

$$\underline{\rho}(\mathcal{S}_1,\alpha,\beta) = \inf_{\phi_\alpha} \rho(\phi_\alpha,\mathcal{S}_1,\beta).$$

Test adaptatif : test qui atteint (à un facteur logarithmique près) les vitesses de séparation minimax sur plusieurs classes d'alternatives simultanément.

L'alternative (H_1)

On suppose que $s \in L^2([0,1])$ et on définie :

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$
 et $||f||^2 = \int_0^1 f^2(x)dx$.

On introduit la base de Haar de $L^2([0,1])$, $\{\phi_0,\phi_{(j,k)},j\in\mathbb{N},k\in\{0,...,2^j-1\}\}$ où

$$\phi_0(x) = \mathbb{1}_{[0,1]}(x)$$
 et $\phi_{(j,k)}(x) = 2^{j/2}\psi(2^jx - k),$

avec
$$\psi(x) = \mathbb{1}_{[0,1/2[}(x) - \mathbb{1}_{[1/2,1[}(x).$$

On pose $\alpha_0 = \langle s, \phi_0 \rangle$ et pour tout $j \in \mathbb{N}$, $k \in \{0, ..., 2^j - 1\}$, $\alpha_{(j,k)} = \langle s, \phi_{(j,k)} \rangle$.

Définition : Besov bodies classiques

Pour $\sigma > 0$ et R > 0, on définie :

$$\mathcal{B}_{2,\infty}^{\sigma}(R) = \{ s \ge 0, s \in L^{2}([0,1]), s = \alpha_{0}\phi_{0} + \sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j,k)}\phi_{(j,k)},$$

$$\forall j \in \mathbb{N}, \sum_{k=0}^{2^{j}-1} \alpha_{(j,k)}^{2} \le R^{2}2^{-2j\sigma} \}.$$

Plus généralement, pour $p \ge 1$, R > 0 et $\sigma > \max(0, 1/p - 1/2)$:

$$\mathcal{B}_{p,\infty}^{\sigma}(R) = \{ s \ge 0, s \in L^{2}([0,1]), s = \alpha_{0}\phi_{0} + \sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j,k)}\phi_{(j,k)},$$

$$\forall j \in \mathbb{N}, \sum_{k=0}^{2^{j}-1} |\alpha_{(j,k)}|^{p} \le R^{p} 2^{-pj(\sigma+1/2-1/p)} \}.$$

Définition : Besov bodies faibles

Pour $\gamma > 0$ et R' > 0, on définie :

$$\begin{split} W_{\gamma}(R') &= \{s \geq 0, s \in L^2([0,1]), s = \alpha_0 \phi_0 + \sum_{j \in \mathbb{N}} \sum_{k=0}^{j} \alpha_{(j,k)} \phi_{(j,k)}, \\ \forall t > 0, \sum \sum_{j \in \mathbb{N}} \alpha_{(j,k)}^2 \mathbb{1}_{\alpha_{(j,k)}^2 \leq t} \leq R'^2 t^{2\gamma/(1+2\gamma)} \}. \end{split}$$

On va construire un test adaptatif, ie qui atteint à un facteur logarithmique près les vitesses de séparation minimax simultanément sur tous les espaces $\mathcal{B}_{2,\infty}^{\sigma}(R) \cap W_{\gamma}(R') \cap \mathbb{L}^{\infty}(R'')$ pour certains σ et pour tout R, R', R'' > 0.

Bilan (étapes du raisonnement)

- ► Etablir des bornes inférieures pour les vitesses de séparation uniformes relativement à la norme L^2 sur les espaces de l'alternative : déterminer $\tilde{\rho}$ tel que $\rho(S_1, \alpha, \beta) \geq \tilde{\rho}$.
- ➤ Construire un test non-asymptotique de niveau α qui est adaptatif : trouver un test ϕ_{α} tel que, pour une certaine constante (explicite) $C \geq 1$, $\rho(\phi_{\alpha}, \mathcal{S}_{1}, \beta) \leq C\tilde{\rho}$.

On aura obtenu le résultat souhaité car

$$\tilde{\rho} \leq \underline{\rho}(S_1, \alpha, \beta) \leq C\tilde{\rho}.$$

Théorème

Soient R > 0, R' > 0 et $R'' \ge 2$, soient $\alpha, \beta \in]0,1[$ vérifiant $\alpha + \beta \le 0,59$.

➤ Si $\sigma \ge \max(\gamma/2, \gamma/(1+2\gamma))$ alors

$$\liminf_{L\to +\infty} L^{2\sigma/(1+4\sigma)}\underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R)\cap W_{\gamma}(R')\cap \mathbb{L}^{\infty}(R''),\alpha,\beta)>0.$$

► Si $\sigma < \gamma/2$ et $\gamma > 1/2$ alors

$$\liminf_{L\to+\infty} \left(\frac{L}{\ln L}\right)^{\gamma/(1+2\gamma)} \underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R)\cap W_{\gamma}(R')\cap \mathbb{L}^{\infty}(R''),\alpha,\beta) > 0.$$

► Si $\sigma < \gamma/(1+2\gamma)$ et $\gamma \le 1/2$ alors

$$\liminf_{L\to +\infty} \left(L^{1/4} \wedge L^{2\gamma/((1+4\sigma)(1+2\gamma))} \right) \underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R) \cap W_{\gamma}(R') \cap \mathbb{L}^{\infty}(R''), \alpha, \beta) > 0.$$

Théorème

Soient R > 0, R' > 0 et $R'' \ge 2$, soient $\alpha, \beta \in]0,1[$ vérifiant $\alpha + \beta \le 0,59$.

► Si $\sigma \ge \max(\gamma/2, \gamma/(1+2\gamma))$ alors

$$\liminf_{L\to +\infty} L^{2\sigma/(1+4\sigma)}\underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R)\cap W_{\gamma}(R')\cap \mathbb{L}^{\infty}(R''),\alpha,\beta)>0.$$

► Si $\sigma < \gamma/2$ et $\gamma > 1/2$ alors

$$\liminf_{L\to+\infty} \left(\frac{L}{\ln L}\right)^{\gamma/(1+2\gamma)} \underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R)\cap W_{\gamma}(R')\cap \mathbb{L}^{\infty}(R''),\alpha,\beta) > 0.$$

► Si $\sigma < \gamma/(1+2\gamma)$ et $\gamma \le 1/2$ alors

$$\liminf_{L\to +\infty} \left(L^{1/4} \wedge L^{2\gamma/((1+4\sigma)(1+2\gamma))} \right) \underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R) \cap W_{\gamma}(R') \cap \mathbb{L}^{\infty}(R''), \alpha, \beta) > 0.$$

Objectif: Construire un test de niveau α qui atteint la borne minimax pour tester (H_0) : " $s \in \mathcal{S}_0$ " contre (H_1) : " $s \notin \mathcal{S}_0$ " à partir de l'observation d'un processus de Poisson N ou des points $\{X_I, I=1,...,N_L\}$ du processus.

On remarque que :
$$d^2(s, S_0) = \sum_{\lambda \in \Lambda_\infty} \alpha_\lambda^2$$
 où pour tout $\lambda \in \Lambda_\infty := \{(j, k), j \in \mathbb{N}, k \in \{0, ..., 2^j - 1\}\},$ $\alpha_\lambda := \langle s, \phi_\lambda \rangle = \int_0^1 \phi_\lambda(x) s(x) dx = \frac{1}{L} \int_0^1 \phi_\lambda(x) s(x) d\mu(x).$

Estimateur de
$$\alpha_{\lambda}$$
: $\widehat{\alpha_{\lambda}} := \frac{1}{L} \int_{0}^{1} \phi_{\lambda}(x) dN_{x} = \frac{1}{L} \sum_{l=1}^{N_{L}} \phi_{\lambda}(X_{l}).$

Estimateur non biaisé de α_{λ}^2 :

$$T_{\lambda} = \widehat{\alpha_{\lambda}}^2 - \frac{1}{L^2} \int_0^1 \phi_{\lambda}^2(x) dN_x = \frac{1}{L^2} \sum_{l \neq l'=1}^{N_L} \phi_{\lambda}(X_l) \phi_{\lambda}(X_{l'}).$$

ldée : construire des estimateurs de $d^2(s,\mathcal{S}_0)=\sum_{\lambda\in\Lambda_\infty}lpha_\lambda^2$ en

combinant certains $(T_{\lambda})_{{\lambda}\in\Lambda_{\infty}}$ et en rejetant l'hypothèse nulle si l'un de ces estimateurs est trop grand.

Notations:

$$ightharpoonup orall J \geq 1, \quad S_J := Vect(\{\phi_0, \phi_\lambda, \lambda \in \Lambda_j\})$$
 où

$$\Lambda_J = \{(j, k) \in \{0, ..., J - 1\} \times \{0, ..., 2^j - 1\}\};$$

- $ightharpoonup D_J = 2^J$ la dimension de S_J ;
- $ightharpoonup s_J$ la projection orthogonal de s sur le modèle S_J .

On obtient une famille de sous-ensembles de $\mathbb{L}^2([0,1])$ de dimension finie : $(S_J)_{J>1}$; où S_J est appelé *modèle*.

Estimateur de d^2(s,
$$S_0$$
) : $T_J = \sum_{\lambda \in \Lambda_J} T_{\lambda}$.

On considère alors une collection de modèles $\{S_J, J \in \mathcal{J}\}$ où \mathcal{J} est un sous-ensemble fini de \mathbb{N}^* ; et la collection d'estimateurs correspondante $\{T_J, J \in \mathcal{J}\}$.

On souhaite rejeter l'hypothèse nulle s'il existe un $J \in \mathcal{J}$ pour lequel l'estimateur T_J "est trop grand".

Lemme

La loi conditionnelle de $(X_1,...,X_n)$ sachant $N_L=n$ est la loi d'un réarrangement croissant de n variables aléatoires iid notée $(\tilde{X}_1,...,\tilde{X}_n)$ de densité $\frac{s(x)}{\int_0^1 s(y)dy}\mathbb{1}_{[0,1]}(x)$.

Sous (H_0) :

- ightharpoonup s est constante sur [0,1];
- \blacktriangleright $(\tilde{X}_i)_{1 \leq i \leq n}$ iid de loi uniforme sur [0,1].

Notation : $q_J^{(n)}(u)$: le quantile d'ordre (1-u) associé à la loi de $T_J|N_L=n$ (sous (H_0)).

On obtient alors $\mathbb{P}_{(H_0)}(T_J - q_J^{(n)}(u) > 0 | N_L = n) = u \quad \forall u \in]0,1[.$

On définit alors la statistique $\mathcal{T}_{\alpha} = \sup_{J \in \mathcal{J}} (T_J - q_J^{(N_L)}(u_{J,\alpha}^{(N_L)})),$ associée au test statistique

$$\phi_{\alpha} = \mathbb{1}_{\mathcal{T}_{\alpha} > 0};$$

où $u_{J,\alpha}^{(N_L)}$ reste à déterminer pour que le test soit de niveau α .

Sous (H_0) :

- ightharpoonup s est constante sur [0,1];
- \blacktriangleright $(\tilde{X}_i)_{1 \leq i \leq n}$ iid de loi uniforme sur [0,1].

Notation : $q_J^{(n)}(u)$: le quantile d'ordre (1-u) associé à la loi de $T_J|N_L=n$ (sous (H_0)).

On obtient alors $\mathbb{P}_{(H_0)}(T_J - q_J^{(n)}(u) > 0 | N_L = n) = u \quad \forall u \in]0,1[.$

On définit alors la statistique $\mathcal{T}_{\alpha} = \sup_{J \in \mathcal{J}} (T_J - q_J^{(N_L)}(u_{J,\alpha}^{(N_L)})),$ associée au test statistique

$$\phi_{\alpha} = \mathbb{1}_{\mathcal{T}_{\alpha} > 0};$$

où $u_{J,\alpha}^{(N_L)}$ reste à déterminer pour que le test soit de niveau α .

Choix du quantile - Erreur de première espèce

Méthode 1 : Procédure de Bonferroni.

On pose, pour tout $J \in \mathcal{J}$, pour tout $n \in \mathbb{N}$,

$$u_{J,\alpha}^{(n)}=\frac{\alpha}{|\mathcal{J}|}.$$

Méthode 2 : d'après l'article [2]

L'article suggère de poser, pour tout $J \in \mathcal{J}$, pour tout $n \in \mathbb{N}$,

$$u_{J,\alpha}^{(n)}=e^{-W_J}u_{\alpha}^{(n)}$$

οù

$$u_{\alpha}^{(n)} = \sup\{u \in]0,1[, \sup_{s \in \mathcal{S}_{\mathbf{0}}} \mathbb{P}_{s}\left(\sup_{J \in \mathcal{J}} (T_{J} - q_{J}^{(n)}(ue^{-W_{J}})) > 0 | \mathit{N_{L}} = n\right) \leq \alpha\},$$

et $\{W_J, J \in \mathcal{J}\}$ une famille de poids positifs tel que $\sum e^{-W_J} \leq 1$.

Théorème

On suppose que $s \in \mathbb{L}^{\infty}([0,1])$ et que $L \geq 1$. On fixe les niveaux $\alpha, \beta \in]0,1[$, et on considère le test ϕ_{α} de niveau α construit dans la section précédente. S'il existe des constantes $C_1(\alpha,\beta,||s||_{\infty})$, $C_2(\alpha,\beta)$, C_3 , $C_4(\beta)$ et C_5 tel que s vérifie

$$d^{2}(s, S_{0}) > \inf_{J \in \mathcal{J}} \{ ||s - s_{J}||^{2} + C_{1}(\alpha, \beta, ||s||_{\infty}) \frac{\sqrt{D_{J}}}{L} + C_{2}(\alpha, \beta) \frac{D_{J}}{L^{2}} + \left(C_{3} \int_{0}^{1} s(x) dx + C_{4}(\beta) \right) \left(\frac{\sqrt{D_{J}W_{J}}}{L} + \frac{W_{J}}{L} \right) + C_{5} \frac{D_{J}W_{J}^{2}}{L^{2}} \},$$

alors

$$\mathbb{P}_s(\phi_\alpha = 0) \leq \beta.$$

Démonstration :

On pose $E_{\Lambda_J} = \sum_{j/(j,k) \in \Lambda_J} 2^j$.

Proposition

Soient $s \in \mathbb{L}^{\infty}([0,1])$ et $\alpha,\beta \in]0,1[$. On suppose qu'il existe une quantité positive $A_{J,\alpha,\beta}$ tel que $\mathbb{P}_s(q_J^{(N_L)}(u_{J,\alpha}^{(N_L)}) \geq A_{J,\alpha,\beta}) \leq \frac{\beta}{3}$. S'il existe des constantes positives $C_1(\beta,||s||_{\infty})$ et $C_2(\beta)$ telles que

$$d^2(s,S_0) > \inf_{J \in \mathcal{J}} \{||s - s_J||^2 + C_1(\beta,||s||_{\infty}) \left(\frac{\sqrt{D_J}}{L} + \frac{\sqrt{E_{\Lambda_J}}}{L^{3/2}}\right) + C_2(\beta) \frac{E_{\Lambda_J}}{L^2} + A_{J,\alpha,\beta}\},$$

alors $\mathbb{P}_s(\phi_{\alpha}=0) \leq \beta$.

Lemme

Soient $\tilde{X}_1,...,\tilde{X}_n$ des variables aléatoires iid uniformément distribuées sur [0,1]. Il existe une constante C>0 tel que pour tout x>0,

$$\mathbb{P}\left(T_J \geq \frac{Cn}{L^2}\left(\sqrt{D_J x} + x + \frac{E_{\Lambda_J} x^2}{n \vee 1}\right)\right) \leq 2,77e^{-x}.$$

Proposition

On suppose que $\ln \ln L \geq 1$. On fixe les niveaux $\alpha, \beta \in]0,1[$ et on considère ϕ_{α} , le test défini précédemment avec $\mathcal{J} = \{1,...,\lfloor \log_2(L^2/(\ln \ln L)^3 \rfloor\}$ et $W_J = \ln |\mathcal{J}|$ pour tout $J \in \mathcal{J}$. Pour tout $\sigma > 0$, R > 0 et R'' > 0, s'il existe une constante $C(\alpha,\beta,R'',\sigma)$ tel que pour tout $s \in \mathcal{B}_{2,\infty}^{\sigma}(R) \cap \mathbb{L}^{\infty}(R'')$ satisfaisant

$$d^{2}(s, S_{0}) > C(\alpha, \beta, R'', \sigma) \left(R^{2/(4\sigma+1)} \left(\frac{\sqrt{\ln \ln L}}{L}\right)^{4\sigma/(4\sigma+1)} + R^{2} \left(\frac{(\ln \ln L)^{3}}{L^{2}}\right)^{2\sigma} + \frac{\ln \ln L}{L}\right),$$

alors

$$\mathbb{P}_s(\phi_\alpha=0)\leq \beta.$$

Corollaire

Il existe des constantes positives $L_0(\sigma)$ et $C(\alpha, \beta, R, R'', \sigma)$ tel que, si $L > L_0(\sigma)$, alors

$$\rho(\phi_{\alpha}, \mathcal{B}_{2,\infty}^{\sigma}(R) \cap \mathbb{L}^{\infty}(R''), \beta) \leq C(\alpha, \beta, R, R'', \sigma) \left(\frac{\sqrt{\ln \ln L}}{L}\right)^{2\sigma/(4\sigma+1)}.$$

Pour L suffisament grand, le test atteint la borne inférieur déterminée précédemment pour la taux de séparation minimax simultanément sur tous les espaces $\mathcal{B}_{2,\infty}^{\sigma}(R) \cap W_{\gamma}(R') \cap \mathbb{L}^{\infty}(R'')$ avec $\sigma \geq \max(\gamma/2, \gamma/(1+2\gamma))$ à un facteur logarithmique près.

Introduction Bornes inférieurs pour les vitesses de séparation uniformes Test d'homogénéité Conclusion

➤ Un autre test basé sur une méthode de seuillage.

Théorème

Soient R > 0, R' > 0 et $R'' \ge 2$, soient $\alpha, \beta \in]0,1[$ vérifiant $\alpha + \beta \le 0,59$.

► Si $\sigma \ge \max(\gamma/2, \gamma/(1+2\gamma))$ alors

$$\liminf_{L\to +\infty} L^{2\sigma/(1+4\sigma)}\underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R)\cap W_{\gamma}(R')\cap \mathbb{L}^{\infty}(R''),\alpha,\beta)>0.$$

▶ Si $\sigma < \gamma/2$ et $\gamma > 1/2$ alors

$$\liminf_{L\to+\infty} \left(\frac{L}{\ln L}\right)^{\gamma/(1+2\gamma)} \underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R)\cap W_{\gamma}(R')\cap \mathbb{L}^{\infty}(R''),\alpha,\beta) > 0.$$

ightharpoonup Si $\sigma < \gamma/(1+2\gamma)$ et $\gamma \leq 1/2$ alors

$$\liminf_{L\to +\infty} \left(L^{1/4} \wedge L^{2\gamma/((1+4\sigma)(1+2\gamma))} \right) \underline{\rho}(\mathcal{B}_{2,\infty}^{\sigma}(R) \cap W_{\gamma}(R') \cap \mathbb{L}^{\infty}(R''), \alpha, \beta) > 0.$$

- ➤ Un autre test basé sur une méthode de seuillage.
- ➤ Dans [2], on considère des tests construits à partir de la base de Fourier.

- ➤ Un autre test basé sur une méthode de seuillage.
- ➤ Dans [2], on considère des tests construits à partir de la base de Fourier.
- ➤ Etude numérique : évaluer la performance des tests d'un point de vue pratique (estimer la puissance des tests sous plusieurs alternatives par la méthode de Monte-Carlo).