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Introduction

We will here find some solutions to the Skorokhod Embedding Problem for Random
Walks, and prove some of their properties. This problem was first presented by Anatoliy
Volodymyrovych Skorokhod (1930-2011), who was a Soviet (and then Ukrainian) mathe-
matician. His scientific works are on the theory of stochastic differential equations, limit
theorems of random processes, distributions in infinite-dimensional spaces, statistics of ran-
dom processes and Markov processes.

Originally, this problem was presented with the Brownian Motion, and in the first sec-
tion, we will show the financial reasons which make us solve this problem, and find some
“optimal” solutions. But, we will here work with simple symmetric random walks, and
show various results which are similar to results we could have with the Brownian Motion.

We consider a simple symmetric random walk Z;} (also written Zj, when A = §,), running
on IN, where A is a distribution over IN, that is to say: 1

. ﬁ(Zé‘) =A
. ifZ,Alzk;AO,then]P(ZQH :k+1) :JP(Z,Q+1 :k_l) :%
o if Z,AZ =0, then Z2+1 =0a.s.

We also assume that A is integrable.

Now, we can define the Skorokhod Embedding Problem: given y, we want to find a
stopping time T such that £ (Z3) = p.

In the second section, we will show that such a stopping time 7 exists if A and y verify a
specific condition.

Then, in the third section, we will construct two solutions to the Skorokhod Embedding
Problem, and we will prove some of their properties.

Un this paper, we will always note N = {0, 1, 2, ...} the set of non-negative integers, N* = {1, 2, ...} the
set of positive integers and RT = [0, +o0].



1 Financial Motivation

We suppose that we have an asset Sy, where t € [0, T.

The General Financial theory says that the discounted asset price e "'S;, where r is the inter-
est rate is a martingale under a probability measure Q if the model is free of arbitrage; and
Q satisfies: P(A) > 0 <= Q(A) > 0.

Then, the prices of derivatives are expectations under Q.

For example, a call option at T will pay (St — K)_, where K is the strike price. So, today, its

(arbitrage-free) price is:
C(K, T) =e"TE? [(S7 — K), ]

In practice, call options? are “liquidly traded”, so we can use them as an “input” to calibrate
the model.

Now, let’s take r = 0. We write p(x)dx the density of St under Q. Then, we have:

CKT) = [ (= K)p(y)dy

e ) = = [~ py)dy
I [C(K,T)) = p(K)

So, observing C(K, T) tells us £ (St) under Q. Let’s call p = L (S7).

What we know is:
e S (today’s stock price);
e L (S7) (under Q);
® (St)iefo 1) is a Q-martingale.

Now, we want to price “exotic” options. For example, a lookback option pays sup S;.
0<I<T

2L et’s take an example to understand what a call option is. The 30th of June, the trader A buys a call contract
for 100 shares of ABC Corp from the trader B who is the call seller. The strike price for the contract is £60 per
share, and the contract ends the 315t of December. The current price of the share is £45, and A pays a premium
up front of £15 per share, or £1,500 total. The 315t of December:

o if the share values £80, then A exercises the call option by buying 100 shares of ABC Corp from B for a
total of £6,000. If A decides to sell immediately those shares on the market, his profit will be £8,000 —
(£1,500 + £6,000) = £500.

o if the share values £50, then A will not exercise the option (i.e., A will not buy a stock at £60 per share
from B when he can buy it on the open market at £50 per share). A loses his premium, a total of £1,500. B,
however, keeps the premium with no other out-of-pocket expenses, making a profit of £1,500.



So, its current price is: EQ
0<t<T

sup St] .

Our question is: in all the models satisfying £ (St) = u and (S;) is a Q-martingale, what is

the model which maximises or minimises sup S;?
0<t<T

There is a general result which says:

“Any martingale My can be written as a time-change’ of Brownian motion*.”

Now, we have S; = By, for some time-change (7),¢[o 71- So we have: £ (Br,) = L (St) = p.
And, models satisfying £ (St) = p correspond to time changes t; satisfying £ (B, ) = .

If we assume that 7; doesn’t jump, we have: sup S; = sup By;and sup By only depends
0<t<T 0<t<T 0<t<T
on T;!

Then, actually, we want to find stopping times T = 7r, satisfying Br ~ u, and which max-

imise or minimise [E |sup Bs | . This is called the Optimal Skorokhod Embedding Problem.

s<T

To make things be easier, we will work on this problem with the Brownian Motion replaced
by a Simple Symmetric Random Walk.

8 ()40 is a time-change if:
e VYVt >0, 1 is a stopping time;

e {1+ T; is increasing.

4The Brownian motion By is the “canonical” continuous-time stochastic process. It verifies:
e {1+ B;is continuous (a.s.);

o (By —Bs) ~N(0,t—s);

o fortyg <ty <...<ty (By —By) 1L (B, —By) 1L ...

The Brownian motion can be considered as the “scaling limit of random walks”.

4



2 Necessary Condition for the Existence of a Stopping Time

Proposition 1

1. (Z}) is a martingale.

neN
2. Let T be an almost surely finite stopping time.
We have:
E [ZQ] <E [23]
Proof 1

Forn € N, wenote F,, = o (Z3,...,Z}).
We have:

e Z}is F,-measurable
e E[|Z}|] =E[Z)] <E[n+2Z}] =n+E[|Z}|] <oo
So, foralln € N, Z,Q e LL

1
e ) gl [l < 1)
=0
=z}
So (Zyy) o is a martingale.

Foralln € N, T A nis a bounded stopping time.
By Optional Stopping Theorem, we have: E [Z},,] = E [Z}].
Then, using Fatou’s lemma, because Z2,, > 0:

E [Zﬁ] —E [nirr(}o ZQM} —E [h}gg}fzﬁm} < liminfIE {Z{,‘An] —E [ZQ]

—

Definition 1 Potential

Let T be an almost surely finite stopping time.
We call potential of the distribution A at time 7 the function:

N — R*

A
Kily o EB[z2ny]

We will also note sometimes K* instead of K())‘.

Lemma 2

The knowledge of the potential K? is equivalent to the knowledge of the distribution £ (Z2).




Proof 2
If we know £ (Z2), we know of course K2 (y) for ally € N.

Now, we know (K3 (y)), . and we want to know y = L (22}).

ye
o y— y—1
Wehave: K} (y) = E |2} Ay| = ;(iw)u() ;) +3/ZV ;) )+y<1—214>
y—1
:y+g(i—y)ﬂ(l)
y y—1
ThenK?(y+1)—1<¢(y)=y+1+§(i—y—1)u(i)—y—g(i—y)#(i)
-1
1 k() + L =y = 1=+ )
y ~
=1-) ()

Ity >0, (KMy+1)— w»<@@—@@4»=kﬁﬂw4+zm> —u(y)
So, u(0) =1 —K2(1) = K2(0) =1 —K2(1) and for y > 0, u(y) = —K}(y + 1) + 2K} (y) — K} (y — 1).
|

KA(y)Zi(lAy 3/+Z i—y (1)

Lemma 3

vy € N, <Z)L ANy + = Z Iz > is a martingale.
nelN*

Proof 3
LetuswrlteM Y= ZAAy—i— Z]lZA,

. M,);’y is Fj,-measurable
] <2s 2 <o
So, for all n € IN*, M/\'y eLl.

o]E[ nil

]-"n] = [ZAH Ay

Fn} + = Z ]IZA_y

A= ({22 00) b 2] 4 (200

=0

And E [Z).1 Ay

Fa)

= % ((Z)‘+1> Ay + (Z;}—l) /\y) Tz

1
HZ} <y—LE|ZigAy|F] =5 (Zh 41420 1) 1.0 = 20, = 2}
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1 1
fZy =y, E [ZQH Ay]fn] =sWty-Dln=y-3
=1
1
IfZ} >y+1,E [ZQH Ay‘fn} =5W+ =y
=1
A A 1
So E [ZHl/\y‘fn} =z} Ay—E tiey
Finally, IE [ My} | 7] —zMy+ ZHZA, = M)y

So (Mﬁ’y ) is a martingale.
nelN*

Proposition 4

Let T be an almost surely finite stopping time, y € IN*.
We have: E [Z} Ay] < E [Z} Ay].

Proof 4

For alln € N*, T A nis a bounded stopping time.
By Optional Stopping Theorem, we have: E [M/T\Ayn} =E {MA’y } =E [Z} Ay]
Also: E {M? } =E

ZAAy+ 2 ZILZA,y [ZAAy}Jr ZIP(Z)‘—y,1<T—1)

ButY P (2} =y i<t-1) si;)lP(ZiAzy)

i=0

Wehavey>0,so]P<Vi€]N*, Ziy ;éy) ZJP<Z3:0> > (;>y>0

o
So every y > 0 is transient, so Y P (Z} = y) < oo for eachy € N*.

i=0

Ay

We have E [ZQ A y} —E [MT'M} —E [ZQM A y] + %]E N
N

) Ty ] by dominated convergence.
i=0

*gOIE [Zé\ Ny ] bounded when n— o0
Finally, we have : E [Zé\ A y] <E [Z(/)\ A y].

We remark that we have shown a more precise result in this proof, that we may use in the
following:

7—1
Y ﬂzay] @
0

We can now derive from this a necessary condition to embed p, starting from A. If there is
an almost surely finite stopping time 7, such that p = £ (Z2), then we have, forally € N,
E [Z} Ay] < E[Z) Ay, that s to say :

[\18

VyelNZlAy u(i) <Y (iAy)A%)

i=0 0

In other words, the potential of y needs to be under the potential of A.

7



3 Resolution of the Skorokhod Embedding Problem

3.1 Different ways to construct a stopping time

In the next subsection, we will show that if the potential of y is under the potential of A,
we can construct a stopping time such that £ (Z}) = p. But we have to know that we
can construct such stopping times by many different ways. We will show several possible
constructions in this subsection.

For example, we can choose A = 4 and yu = %51 + %53.

N

K)\

KH

[WaY

Figure 1: The distributions A and p verify the necessary condition.

3.1.1 Stop as “early” as possible

STOP
2
3
1 T~
5 st ~ 1
2/ 1 S 1 x 3
\
\
1 \
2 \
STOP STOP

Figure 2: Behaviour of the stopped random walk. (Stop as “early” as possible)

Starting from 2, we have: P (Z =1) =P (Z} =3) = 3.
When we reach 1, we must stop, because the probability of getting stuck at 0 is positive.

8



The first time we reach 3, we stop with probability 3.
Then, we stop when we reach 1, which is done almost surely in finite time. And we can write

1 ifUu=1
inf{n e N|Z} =1} ifU=0 "

where U is a Bernoulli random variable of parameter %
Thisway, P (Z2 =3) =P (Z} =3, U=1) =3 x %=1
Andthen, P (Z} =1)=1-P(Z} =3)=1-1 = 3.
So, we have : Zé‘ ~ .

3.1.2 Stop as “late” as possible

The same as before: when we reach 1, we need to stop.

When we are in 3, then, the probability that we reach 1 before 3 again is equal to ;.

Because 1 +1 x 1 = g < %, we will always allow more than one visit to 3.

But g + % X % = % > %, so we will need to stop sometimes at the second visit to 3.

So, we want to find p such that: 1 x 2 x p+ 1 x2x (1—p)x32 =1 Wefindp = 3, the
probability of stopping at the second visit to 3.

We can write:

T:inf{TIE]N

n
zﬁ:unZﬂp3:2+u}
i—0 i

1

where U is a Bernoulli random variable of parameter g.
And, this way, Z2 ~ .

STOP
3 5 3.4
i___ 5 _1*p9
. Z_ . Z_ A STOP
3 1St ~ N zl’ld ~ 3I‘d
AN U1 4
) \4 ) \1%X79
% \ \
\ \
STOP STOP STOP

Figure 3: Behaviour of the stopped random walk. (Stop as “late” as possible)

3.1.3 Stop at the bottom or reach another point

Because Z" is a symmetric simple random walk, we know that, for x <y < z € IN, we have:
P, (Hy < H;) = %, where Hy is the first time k is reached by the random walk.

And we can use this result: P, (H; < Hy) = %

We have a stopping rule: we run to 1 or 4; if we hit 1, then we stop, else, we run to 3 and

stop.



Figure 4: Behaviour of the stopped random walk. (Stop at the bottom or reach another point)

T:inf{n €N
i=0

n
Zn=Tlorly 3y 1y, = 1}
And again Z} ~ .

3.2 The Azéma-Yor® solution
3.2.1 Illustration of the process

But we will choose another way of constructing a stopping time to show that the condition
on the potentials is sufficient, based on the potentials themselves.

We will try to construct a stopping time, such that Z? ~ A/, with the potential of A’ between
those of A and y.

In the next example, we have A = %51 + %52 + %(53 + 35—654 + %(55 and y = %(51 + %52 + %53.
The process is this one:

1. First, K* and K* split at the point (1,1). We draw a line from the point (1,1), with

the same slope as K¥ (in orange). This line touches K* at the point (4, %), whose first
coordinate is an integer. Our aim will be: constructing a stopping time 7’ such that
ZY ~ A, with A = 161 + %04 + 465.

2. Then, K" and K* split at the point (2, %) We do the same (in blue), but the intersection
point first coordinate is not an integer. Our aim will be: constructing a stopping time
7" such that Z%, ~ A", with A" = 161 + 16, + 2.6 + L47.

3. Finally, we will use the stopping time 7" = inf {n € IN‘Z,QN < 3}, because it gives:

Zi‘,/,,, ~ u. By this way, we have a stopping time 7 (the “concatenation” of the previous
stopping time constructed), such that Z? ~ p.

5Jacques Azéma (born 1939) and Marc Yor (1949-2014) published in 1979 an article called “Une solution simple
au probleme de Skorokhod” in which they exploit this process to solve the Skorokhod problem for the Brownian
motion.

10



[6Y)

‘KA —

N

K*

[N

Figure 5: The potentials of the distributions A, i and of the intermediate distributions A" and
A

3.2.2 Proof that it solves the Skorokhod Problem

We will now show that this method works if we have: K* > K*.

Theorem 5 The Azéma-Yor solution for the Skorokhod Embedding Problem

Let A and u be two integrable distributions over IN.
The Azéma-Yor process shows that we have the equivalence:

e

y is embeddable starting from A < Vy € IN, ) (i Ay) u(i) <
i=0

(Eny) A @)
0

~.

Proof 5

o First, we suppose that y is a distribution bounded by N € IN.
We note x = inf {n € N|K*(n) > K#(n)} = inf {n € N|A(n) < p(n)}. We suppose A # 1, so
x < N.

X
A =1-Ypu(i) is the slope of K between x and x + 1.
i=0

1. fA=0.

X
It means that ) _ u(i) = 1.
i=0
We write T = inf {n € N|Z}} € [0,x]}. We have T < w0 a.s.
Vk € [0,x—1], P (Z} = k) =P (Z} = k) = A(k) = u(k) (because k < x).

x—1 x—1
Andthen:]P(Z;\ :x) =1- ZH’(Z%:]() =1- ) plk) = p(x).
k=0 k=0

So, we have: Z2 ~ .

11



2. IfA > 0.

We have: lim K"(x)+ (y —x)A = +ocoand lim K*(y) = E [Z}] < +oo because A is
y——+00 Yy—+oo

integrable.
Because we have K* < K*, we have two cases.

(@ Iy eN, K (x) + (y — x)A = KM y).

We define A’ by: A/ = 2‘14 06+ | A— Z A >5y+ Y A()é

i=y+1 i=y+1
K)\,
4—'——-_
_— K/\/
< Slope A
/ K#

Figure 6: An illustration of the case (a).
And T = inf {n € N|Z;} € [0,x] U [y, +oo[}.

x x—1
Wehave: A=1—Y u(i)=1- Y A(i) -
i=0 =

21_2/\(1')—)»(9(): Y A= Y Al so V() =0

i=x+1 i=y+1
(e} X o0 [ee]
A is well defined: ZA'(i) = 2 u(i) +A— 2 A(D) + 2 All) =1.
i=0 i=0 i=y+1 i=y+1

Ifk<x—1lork>y+1thenP (Z} =k) =P (Z} =k) = A(k) = \'(k).
Ifx+1<k<y—1 then P (Z} = k) = 0=\ (k).

P(Zﬁ:x):kzlp(zﬁ:x,zg:k)z
=X

—_

<

P ( Z} = k, hitting x before y from k)

k=x

= | =

gyl y—
=LA

k=x
But we have: K" (x) + (y — x)A = K*(y)

© i (EAx)p(i) + (y —x) (1 - éﬂ(ﬂ)

i=0

(i ANy)A(Q)

@m

using (1) & x + ;)(i—x)‘u(i) +y—x+ i;)(x—y)y(i) =y+ Z(;) (i—y)A(i)

_ y—1
& ) (=) + (x —yu(x ; V() + ) (=yAQ)

12



S0 KI(x) + (y = x)A = K*(y) & pu(x) = L HAG) =P (23 = x
Finally, I (zA:x>:y<> N (),
and P (2} =y) =1- Y P (2t =i) =1- L A'(i) =

i#y i#y

This way, we have: Z2 ~ A’

If k < x, KM (k) = K¢ (k), and if k >y, KV (k) = K} (k )>I<l‘(k)

Ifrx+1<k<y—1,K"(k)

> KM (x

And )’ is integrable because E [Z)‘ ] E [z}
(b) Iy € N, K¥(x) + (y — x)A < KM (y) and K¥(x) +

)+ <1
i=x+1
] =
)

=
E
(v +

=KV (x) + (k— x)A = K'(x) + Z A
i=x+1

) — KM (k).

[ZA] < co by OST.
1—x)A>KMy+1).

Figure 7: An illustration of the case (b).

We define A’ by:

u(i)

0
i) = Kf(x)+ (y+1—x)A—KMy+1)

A—[Kix)+ (y+1—x)A—KMy+1)] - z 2/\(k)

=y+

AG) B

We have: A'(y +1) = K}y +1) — [K*(x) + (y Z A(i)
i=y+2
N(y+1) > KNy +1) = KMy) i AG)
i=y-+2
My+1) 2 A(i i A(i)
i=y+1 i=y+2

My+1)>Ay+1)>0

13
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(@) + K (x)+ (y+1-x) A=K y+1)+A

-

Also: i A (i) =

i=0 =0

- [k yr1-a-Ky+ )] - L AR+ L AR
k=y+2 k=y+2
X
=Y ui)+a=1
i=0
So A’ is well defined.

Ifk < x, KY (k) = K*(k), and if k > y + 1, KY (k) = KM(k) > K (k).
If x+1<k<y,then:

k k i

KY(k) =K (x)+ ) A>K'(x)+ ) (1 - Zﬂ(D) = K"(k), so K\ > KN,
i=x+1 i=x+1 =0

We have A’ is integrable, because IE [ZS‘/} =E[Z}] = E[Z}] < coby OST.

We will construct T as said below.

distribution A distribution A’/

y+2 9 y+2

Figure 8: Illustration of what we are doing in case (b) to go from the distribution A to the
distribution A'.

IfZégxorZé‘zy—l—l,thenT:O.

14



Ifx+1< Z()\ < y —1, if we reach x before y, then T = inf{n S ]N|Z{} = x}. The

probability of this event, knowing 73, is L0

y—x
Let’s summarize: currently we have,
S y—i L .
- Y _A(%) L of the mass which is stopped in x;

¥ —
- 2 A(i) : 3; =: gy of the mass which is still running in y;

- and A(y + 1) of the mass which is stopped in y + 1.
y o
By the same way as before, K¥(x) 4+ (y — x)A < K*(y) gives u(x) > }_ ;/ ;)\(i);
i=xJ

y o
and also, K*(x) + (y +1—x)A > KMy + 1) gives u(x) < ) L11)\(1’).

Loy+1—i y—i\, .
So: pu(x —Ux<2(yy+1_x—yy_x>/\(z)

LDy +y—x—[y—0y—-)+y—i,,.
<L - DF+1-%) M

1 N
< A(i) .
y—}—l—xé}%y—x (l)
~—_———
:Uy
_ . oy =N
Also Py (Hy < Hyy1) = - o we note: p = o
Then, with probability p, we run to x or y + 1 from y, and with probability 1 — p, we
stay at y.
The distribution of the mass between these three points is now this one:
—inxiop 4 P
in x: UX+y+1—x'
- iny: oy(1—p) = N(y);
_ ; . y—x
andiny+1: A(y +1) +p0yy+1_x.
Y i—x 1 [ x—l
But we have: ) AdD) = Y (i—x)A>) = ) (i—x)A()
=YX y—x|izo i=0
L A0+ Y - 0A) — (K x)]
y - X _1:0 i=0
1 [ 5 A
= [P v -0 DA - K ) 4 x
L i=0
A _ A Y
y—=* i=0
KM (y) — K (x) K (y) - KA( iy

—1 =1-
" + Z A7) and oy =
Let’s now check that what is currently in y + 1 is exactly A’ (y +1).
Recall that we have the following relations:

So: 0y =

My+1)=a-N(y) — Z A
i=y+2

KMy+1) = ) + Z Ai
i=y+1

15



y_
)\(y+l)+p(ry7y+lix

=Ay+1)+ (0 = N(y)) %

KM (y) — KA( / y—x
=Ay+1)+ [ L= 1+ A —AHNyHD+ Y M) ) e

:A@+m+—£%}xw+n+ S wa_K“”—A@+n—A)

y+1 y+1—x y—x
S ErAAs)
+y+1_x(K”w—K%w—wy—wAw+1»—w—xm+wy+1—wAw+1D
B %N(y* Dy g (KA(y) +Aly+1) —KMx) = (y - x)A)
=jrTot Y
" y+1— (KVHU —i_;fﬁ)ﬂ(wl) —KMx) - <y—x>A>
__y—x i e .
= y+iox y+1)+ yFi—x (KA(erl) —K'x) - (y—x)A —i%zA(z)>
= mA,(y+l)+]/—HllﬂCA/(y+l)
=MNy+1)

And we have:
- fork<x—lork>y+2,P(Z} =k) =P (Z} =k) = Alk) = A’ (k);
- forx+1<k<y—1,P(Z} =k) =0=A(k);
- fork =y ork =y + 1, we have shown that: P (2} = k) = A/ (k);
- so, then, we have, for k = x: P (Z = x) = A (x).
This way, we have Z ~ A,
In both cases, the point at which the two potentials split increases, and this proves that
the algorithm works and ends a.s. in a finite time.

e Now, we treat the case in which y is not bounded but only integrable.

n—1 n—1
We write: pi, = Y p(i)é; + (1 -) y(i)) On

i=0 i=0

y v+ Y (- y)pli) = KA (y) fy<n—1
Kin(y) =y+ ) (i—y)ua(i) = =0 I
= v+'T (=Dl + (- ) (1— v u(i)) ify > n
=0 i=0
But, if y > n: ( (1—2}4 ) Z (n—y)u(i)
Yy 0
=Y (n—yu@)+ Y, (n—yu@)
i=n i=y+1
_ i (i~ yu(i) + i (n;, i (i) + ; (=)
Yy
<Y (i—y)ui) = K'(y).

n
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So, we have: Yy € N, Kt (y) < K*(y) < KMy).

And, because y; is bounded, we know that there exists a stopping time 7, (given by the Azéma-
Yor process) such that Zi‘n ~ Up.

I suppose that Z;\n <n-1

Because Vz € [0,n], K'1(z) = KFn+1(z), the first steps (ie: until what we called x reaches n) of
the process we used to construct 7, and 7,11 are exactly the same.

So, if we have Zé\n < n —1, then, we have Zg\nﬂ = Z%‘.
We write 7 = liminf 7,,, and then, for k € N: P (Z2=k) =P (zﬁm = k) = g1 (k) = u(k).

In the proof, it appears clearly that the Azéma-Yor solution is, more concretely, the strategy
we called “Stop at the bottom or reach another point” (see paragraph 3.1.3, page 9).

3.2.3 Properties of the Azéma-Yor solution

In everything following, we will use this notation:
Z)} = max {Z{“i € [[O,n]]}

And we will now write T4y the stopping time given by the Azéma-Yor process.

Proposition 6 Bounding the maximum knowing the stopping point

Let A and u two integrable distributions, with K¥ < K2
There exists an increasing function f : N — IN U {oo}, such that:

72 =x= f(x—1)< 72 < f(x)

TAY — T TAy

Proof 6

Now, we define:
e x1, the point where the potentials K* and K* split;

® X, ..., Xu, ... the atoms of y which are in |x1,00[, such that x1 < xp < ... < x, < ...
Recall that # can have a finite number of atoms.

We write \g = A, Ay = A, Ay = (X)), ...; because the notation “prime” is not really good in this
proof.

Also, y1, Y2, -+, Yn, --. € RT are such that: the tangent of K* between x; and x;, hits K*-1 at a
point whose abscissa is yy.

Finally, Ap:= Y u(i).
=X 41
I've got:
y >y e KN (y) < K () + (y — ) B,

because the function y — K¥ (x;) + (y — xx) Ay — K™-1(y) decreases when y € [xy, co[ and values 0
when y = y;.
This also gives me:

Yt > |yi] -
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We have: K* (xx) + (v — xi) Ay is the value at y of the right-tangent to K* at point x; and: K (xgq) +
(y — Xgr1) Ag1 is the value at y of the right-tangent to K* at point xj 1.

But for y > xi 1, K¥ (x11) + (¥ — Xer1) Bigr < K (xpp1) + (¥ — xuq1) B = K (xp) + (v — xi) B
The right hand side hits K1 at yy; the left hand side hits K*+-1 at a point we call y;, ey
It’s now obvious that we have: y; < y;_ ;-

Ify, ;> |vi) +1, thenyq =y}, because after |y | 4 1, we have KM-1 = K™,

And if |y 4| = |yk41], let’s suppose that yiq < [y

It would mean that the mean of the slope of K* between x;, 1 and |y | (> Ay) is less than the mean
of the slope of KM+1 between xj1 and |Vk11] (= Agy1)- And this is a contradiction, because we know
Ak > Dy

Now, we suppose that xy is not the biggest atom of p.

1. If yr € IN.
The Azéma-Yor process says that if we reach y;, we wait at y;. But if not, we stop at xy.
It means that the biggest point we have reached is < y; — 1 if we stop at x;.
And it’s also > zp := min {z > x|Ax_1(z) > 0}.

If k > 1, then we have: KM-1 (x;) = K¥ (x) = K¥ (x_1) + (xx — x5_1) M1 < KM2 (x;) (be-
cause there’s no y-atom between xj_1 and xy).

We have K (xg_1) + (|yk—1) +1 = x5—1) k1 > K2 ([yx_1] 4+ 1), because yx—1 < [yx—1] +
1.

So xx < |yx_1] +1, thatis to say: xx < |yx_1], and zg = |yx_1], because A;_; has no atom
between x;_q and |y;_1 | (the potential is a non-broken line between those points).

X1 and y;—1 ifk=1

Finally, if we stop in xy, it means that my maximum is between : e and y—1 Hk>1

2. Ifyy € N.
The Azéma-Yor process now says that if we reach |y |, we can: reach and stop at xy, or wait at
|y |, or even reach and wait at |y | + 1.
But it’s quite the same: if we stop at xy, the biggest point we can have reached is |y |.

What we did in the previous case remains the same and:

if we stop in xy, it means that my maximum is between : L}/I)il ] zﬁj g}j ﬁ i i 1 .
fG) = j+3 if j <x
flxx) = we—1 if x is a p-atom of case 1.
So, we can define f by pieces: | f (x;) = |yi] if x; is a p-atom of case 2.
£ = f i€ Pl
fG) = © if j > x; and xy is the biggest atom of p

And one can check that f is an increasing function, such that: if we stop at x;, my maximum is
between f (xx — 1) and f (xy).

Theorem 7 Maximisation of the probability of reaching a point

Let A and u be two integrable distributions, with K¥ < K*,
Toy maximises the quantity IP (Zii‘ > x), where x € IN, over all the almost surely finite

stopping times T such that Z2 ~ .
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Proof 7

We will first find a family of bounds of this probability when 7 is a general stopping time such that
Zi‘ ~ u, and then, we will show that IP (Z

Tay = x) is equal to one of these bounds.

e Wetakez € N,z < x.
We can show that we have:

Z>x = x—z X—z ﬂfézx )
(22 - 2) 7 A N ifz < Z)
e - X — T —_— - =
If Z) > x, then, ~— 7+ ¢ Tl = E Zg=x !
x—z X—z =X e > 1= ifz > 72
. 2-2), x-z) (22 -2),
Y ( + T _ T .
And if Z2 < x, then, — el oy >0= ]le>
Now, we have also:
(Ztnn—2),  x-2} X
VneN, —2 + ) — <
x—z  x—z ZaxxSx—z
e (Z/\/\ ) x— 272 -z X
If 7} < zand Z}., > x, then — " + ML = A < )
A = T = Xz + X—2z  Zi>x X—z T XxX—z
(Z An T Z) X — ZA X
If 72 < zand Z},, < x, then ~—~ + 4 g =0< .
A = AN Xz X—2z  Zi2x T x—z
(Zmn - Z) x— 272 X—z X
If Z}., > zand Z},, > x then 4 Thn = < )
Thn AL = X~z X—2z Zim2X x—z T X—2Z
— Zing — 2 x — 74 72 X
Andif Z2,, > zand Z2,, < x, then (Zenn =2)., + e Ztan "2 g < .
X—z X—z TAnS X—2z X—z
So, by bounded convergence, we can take the expectancy in (3) and get:
_ Z)‘ — Z) _ Z)\
A ( T + X T
P(Zi>x) <E [+ —HE[lelsz}

The first part of the right hand side is all right, because it is independent from t: £ (Z}) = p.
Let’s work on the second part!

Z/\
E |: X —2z Z)‘>x:| Z E |: —z Z)‘>x:u S_y:|

We now have two cases:

1 x—7} z}
- Ify > x, then ZT > X, and [E ﬁﬂﬂzxﬂzé\:y =E ﬁﬂz\ =y|"

x—Z2
- Ify < x, then (}CHAH’JI AL ) is a martingale, where Hy = inf {i € ]N|Zl.)L = x} can

be equal to .

Z/\
nAH. . A . A s .
Tzkll _yis Z,p,-measurable and integrable (because Z; is a martingale).
X — ZA
(n+1)AHy A A
And]E Tﬂzé\:y ZO/\HX’ ceey Z}’l/\Hx
z} -z .
E |l |7, Z’\} =Tk, ifn+1<H,
= ot ' .
0 = T lnty L. if n > H,
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Also, this martingale is bounded by 0 and i, this way we can apply the Optional

Stopping Th E Z%H’fﬂ o )
topping Theorem: T, ey TE|—— o, | =1, (v).
-7 [x — 7Z* -Z
TAHy — | - TTAHy - T TTAH -
But E Y —2z ﬂzé‘:y =E X—z ﬂzé‘zyﬂzﬁac +E X—z ﬂzéy12¢<x‘|
[x —Z}, - 72
=B\ S g7, | TR [ xX—z /\yIlZAQ]
=0
x— 272
=E | x—z ’\*yIlZ/\<x
—zA B —- 73 xX—y
So: ]E[ y—z Z=y1705x } - { vz Z=y| T =)
. x— 72 >
Finally, E {x— be] yZ E [ — zA>xﬂZS—y}

-¥

]
y=0

_ Z/\} Z

. A x=1 -

This way, we have shown that for all z < x, we have:

(Z')L’L_Z)+ .7C—Z.L)—L
- —HE[x—z]lex}'

P(ﬂzx)gm

and the right hand side is totally independent from t!

Now, our goal is to show that we have, for one zp < x:

A A
(ZTAY ZO)Jr ZTAYH 4
z2 >x - + 74 >y’ ( )

Tay = X —2p X — 20 TAY =

Then, we will do the same as before: take the expectancy, to have:

A
(ZTAY B ZO)+ X = Z‘/L’\Ay
— |+ E | — &1 .
X —2zp X —zg Zrgy2X

And because in the right hand side we will be able to replace T4y by any other T verifying
Z? ~ u, and because of what we showed before, we will have:

P(Z%, >x)=E

for all almost surely finite stopping time T such that Z ~ y, P (Z{}AY > ) > P (Z7% > x)

z3 Zp (Zryy — 20)
We have: (4) < =2 g = 2T T4
e have: (4) & 20 \ZI o p——
if 22, > Z} —z0= (28, —20), © Zi, —20>0
if 23, < 0 = (28 —20), & Z3,-20<0
We know that there exists f 1ncreasing, such that:
Zy, =z = f(z=1) < 23, < f(2).
So:
Z} >z=f(z-1)<Z}, and Z}, < f(z—1)=Z} <z
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3.3

ZQ‘AY <z= 7} < f(z)and Z}, > f(z) = ZQ\AY > z.

We choose:
zop =min{z € N|f(z) > x}.

This way, we have:

<zg= 272} —2z<0;

A
<zg+1=1Z Tay

ZA FA A
7y, <x= 7} < f(z0) =2 Tay

TAY TAY

A

A
TAYZZO:>Z —Z()ZO.

Z)L Zx:>Z‘/L’\Ay>f(ZO_1):>ZA TAY

Tay TAY>Z()—1:>Z

And this way we prove that (4) is true for at least this zp = min {z € IN|f(z) > x}, and the
theorem is proved.

The Root’s barrier® solution

3.3.1 Illustration of the process

This construction is the strategy we called “Stop as late as possible” (see paragraph 3.1.2,
page 9).

Let’s have a look on what happens to the potential when we work like this. In this example,
we have A = 16, + 303 + 164 and p = 161 + 503 + 1566.

What we do in this example is this:

1.

We see that the two potentials (red and green) are equal in 1, an atom of u. It means
that we will always stop everything when we will reach the point 1.

First, we will see what would happen if we stopped nothing at time 0 in points 3 and
6. We get the dashed orange potential (partly above the blue one), of the distribution:
%51 + %(52 + %(53 + ‘11(54 + %(55. The dashed part goes below the potential of u. So we
needed to stop some mass at time 0 at the point 3. The choice we make is to stop at 3 at
time 0 with probability % (the proof will explain this choice), and always after time 0.
We obtain this distribution, whose potential is in blue:

o+ ix1n+ (3 4+2x D)o+ 1 x 10 +105 =161 + 560 + 505+ Hoa+ 16

g1 T3 A g02T (g T3 7272)03T 3201 gt — g0l ™ 130271 120371 1204 7T §U-

We are at time 1 now. And we always have to stop when we reach 1 or 3.

Then, we carry on. We obtain the yellow potential at time 2, assuming that we stop
nothing at 6. The matching distribution is:

(3+3) 01+ (m+ 5+ )05+ 0+ 505+ 106 = 261+ 303+ 04 + 205+ 120

81T 24)91 T \24 T 127 24) 93T 16947 2495 T 1696 — 6C1 T 3937 1694 T 2495 T 166

If we carry on, we will find a time 7 at which we will have to stop at 6 too. And the
potentials we will draw will move towards the potential of y.

®D.H. Root published in 1969 “The existence of certain stopping times on Brownian motion” in which he presents
this class of solutions.
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Figure 9: The potentials of the distributions A, i and of the intermediate ones.

3.3.2 Proof that it solves the Skorokhod Problem

Theorem 8 The Root’s barrier solution for the Skorokhod Embedding Problem

Let A and u be two integrable distributions over IN.
The Root’s barrier process works if we have:

Wy EeN, f;)aw)y(i) < é(iwm(i).

Proof 8

We write A, (x) the mass which is in x at step 1, and py,, the probability of stopping at x at step n,
knowing that we are currently in x.
We get the following equalities:

i An(x = 1) + prnn(x) + B, (x 1) ifx>1
pO,nAn (O> + _51’" )\n<1) ifx=0

\V/n c N, /\l’lJrl (x) - {

(We can see that the case x = 0 is the same as the first one if we say A,(—1) = 0.)

In the following, we will use the fact that we know: pg, = 1 for all n € IN, which means that we
always stop when we reach 0.
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We have:
x—1

KAt () = x+ ) (i = 2)Anga(7)

x—1 ) 1— Piin ) x—1 ) ) x—1 ) 1— Pitin '
=x+) (i— x)#/\n(z 1)+ Y (= x)pinra(i)+ Y (i — x)f')\n(z +1)
i=0 i=0 i=0
x—2 1— pi -1 X 1— pi
=x+ (i+1—x)Tl"An 2 i— x)pinAn( )+2(i—1—x)Tl’"/\n(i)
i=0 i=0 i=0
x721_ . ) x—2 ) — 1—p; )
R D O WO RS ST P W() Z O pinn(i) — A1)
i=0 i=0 i=0 i=0
X
1—
+ ) (=)= )
i=0
_ x—1
N L R B e N VRS B (R Lt LY WE)
i=0
x—1 1— Prn x—1 — Pin
Y (= )P i)+ (= 1) P (1) + T (- 1), )
i=0 i=0
1 _ px,n x—1
—x—— An(x) 4+ Y (i = x)An(i)
i=0
— KM(x) — 1 P50 ().
The stopping time we are constructing implies that the sequence (py,) follow the rules:
if pyn >0, then py i1 =1
if u(x) =0and x # 0, thenVn € N, py,, =0
poo =1
! K (x) = (KM (x) = 3,1 (x) )

and

If KM1(x) — ZA,_1(x) < K*(x), then, we write p,, 1 = 1
2 ’ j/\nfl(x)

px/n - 1.

If we reach this case, then, we will have: Vm > n, KM (x) = K¥(x).

1
If KM-1(x) — E)Ln_l(X) > K¥(x), we write py,,—1 = 0.
This way, we always have K* (x) > K#(x).
Now, what we need to show is that:

p(x) > 0= In € N, K (x) < K*(x).

We will show this by contradiction: let x be an atom of u such that Vn € IN, KM (x) > K¥(x).
We define those numbers:

yo :=max{y € [0,x— 1H\y =0or (u(y) >0and In € N, KM (y) = K'(y)) }

y1 := min {y € [x+ 1,00[[’;1(]/) >0and 3n € N, KM (y) = K”(y)} (it may not be defined!)

1. We suppose that y; exists.
We write: 79 = min {n € ]N|K)‘” (0) = K¥ (yo) and KM (y1) = K¥ (y1) }.
Now, I've got:
Vn Z no, Pyo,n = py1,n =1
VneN,Vz e yo+1,y1 —1], pzn =0

The second fact is because of the definition of 1o and y;.
We will never stop between yg + 1 and x, and never between x and y; — 1.
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Because we know that if we are between 1 and y;, I'm sure that we will hit one of them and
then stop, we have:
Vz € [yo+1Ly1 — 1], Au(2) —2.0.
Also, we recall that we have Vn > ny, KM (yo) = K (y) and K™ (y1) = K* (y1).
So, between yg and y1, the potential of A, has for limit the straight line between the points

(vo, K (o)) and (y1, K¥ (y1))-
That is to say:

vz € Tyo+ Lyn — 1], KM (2) — K¥ () + W) =K W0)

n—o0 Y1 — Yo o ]/0) ’

But, because of its decreasing slope, we know that K* is concave.
So K* is over its chords, and we finally have:

K(5) = K (yo) + <=0 (3 ) — ) =

So, it means that: K¥(x) > 1i_r>n K (x). Which gives us our contradiction.
n—oo

2. We suppose that y; doesn’t exist in this 2"? case.
We write now 719 := min {n € N|K¥* (o) = K* (yo)}.
And we’ve got now:
Vn > ng, Pyon = 1
Vz>yo+1,Vn €N, pyn =0

It means that we will stop at y after step 1y, and we never stop strictly over yj.
If we are over 1y, we are then sure that we will hit g in a finite time.
So,Vz > yo, A(z) — Oand Vn = ng, K¥ (yo) = KM (o).

n—oo

And it means Vz > g, KM (z) —= K (yo).
But K¥ (x) > K (yo) + (x) (x — y0) > K¥(30) = lim K (x).
And we finally have a contradiction.

So we have: Vx atom of y, Ing € N, Vi > ng, KM (x) = K¥(x).

Then, because we never stop at points which are not atoms of y, K tends to a straight line between
two consecutive atoms of .

It’s the same as K*!

So, we finally have: Vx € IN, K (x) — Ki'(x).

But A, is the law of Z2,,,, so the limit Z2 has law p because the limit of K is K¥.

In the beginning of the previous proof, we have proved a relation which true for any
stopping time T:

B 1—]P(T:n}Z£‘M:y)IP(

Wy € N, K ) (1) = K () . Zi =) ©)

3.3.3 Properties of the Root’s barrier solution

Now, we will write T the stopping time given by this process.
We also write:
AKM(y) = KMy +1) = 2K*(y) + KMy — 1) = —A(y).

Let’s have a look to what we also showed in the proof.
At step n, we have two cases:
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o If P (Stopping at y at step n|Z) = y) =0,
then Kﬂ)(\R/\(n_H)(y) = K%q/\n (y) + %AZK’)E\R/\n (y) 2 KV (y)

o Elsewehave K ., (y) = K'(y) > K, (y) + 387Ke0,(y).
In other words,

o IFKF(y) <KD, en) V),

o Else K'(y) = K} 1,11y (y) and K3, 1, () + 38°K5, 0 (y) < K'(y) = K, 10y ()
It means that (Ky), o = (K3 an) o SOIVes all these equations:
1
i € N, ¥y € N, Kyuay) = max { K1), Kolo) + 30%K,) ©)

Definition 2 Super-solutions to (6)

Let (I?;) N be a sequence of functions over IN.
ne

We say that (I?;) N is a super-solution to (6), if and only if:
ne

— N 1
Ko = K" and Vn € N, Vy € N, max {K”(y), K (y) + EAZK,Z (y)} < Ky11(y).

Proposition 9 Link between the Skorokhod Embedding Problem and (6)

Let T be any solution to the Skorokhod Embedding Problem, with starting distribution A
and target distribution ', with KM > KW,

The sequence (K7,,), . iS a super-solution to (6).

Proof 9

Obviously, we have: K}, , = K*, and Vn € N, K,, > K* > K.
Then, using (5), we have, forally € N and n € IN:

Pl(r=nlzr —
- SR =y (2 )

K/r\A(nH)(y) = K3
= Kinn (v) — P(r# n|224\m =Y P (Z{rl/\n = y)
= K/T\/\n(y) - %IP (T # nand Z’{'\/\n = y)

But, P (7 # nand Z3), = y) <P (23, =y) = —A*Ku,(y).

S0, K 41) (1) = Kbn(y) = 5P (v # mand 28y, = y) > Kl () + 382K, (1.
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Lemma 10

If (Ky),c is a solution to (6) and (IC ) N is a super-solution to (6),
neN__
Then, we have: Vn € N, Vy € IN, K,,(y) < Ky (y).

Proof 10

This can be proved by induction.

o Ifn=0:
We have Vy € N, Ko(y) = Ko(y), because we know Ky = K* = K.

e If n > 0,Isuppose Vy € N, K;,,_1(y) < K, 1(y).
Let’s take y € IN.
If Ka(y) = KF(y), then Ky (y) > KF(y) = Ka(y)-

Else, Ky (y) = Ku—1(y) + %Aan—l(]/) =Ky 1(y) + % (Kua(y+1) = 2K, 1(y) + Ky-1(y — 1))
= 3Ka 1y = 1)+ 5K a(y+1)
< %Ej(y —1)+ %I?,:l(y +1) (by induction)
< Koo1(y) + %Azﬁz\-/l(y)
< Ku(y)

Proposition 11 7z maximises the expectancy of T A n

Let T be any solution to the Skorokhod Embedding Problem, with starting distribution A
and target distribution y’, with KH > KM,

We have:
VneN, E[tr An] > E[TAn|

Proof 11
Thanks to Proposition 9 and Lemma 10 (see pages 25 and 26), we have:
Vn € N/ V]/ € N/ K{"R/\n (y) S K;\/\n (y)

Also, using (2) (see page 7), we have:

1
¥n €N, ¥y € N, K} (y) = KM (y) - 5B

TAn—1

E I Y .
Zh =y

i=0 i
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\ 1 > TAn—1 RAN—1
We have, finally: Z( ren(y) — KT/\n(y)) =5 YE| ) Tz, Z Tz,
y=0 y=0 i=0
<0
1 TAn—1 oo wRAN—1 oo
=3Bl Y Yly, - ) Yln,
i=0 y=0 i=0 y=0
1
= ElE[TAn—TR/\n]

Theorem 12 7z maximises the expectancy of f(7) for every concave increasing f

Let T be any solution to the Skorokhod Embedding Problem, with starting distribution A
and target distribution ', with KM > KW,
Let f : N — R be a concave and increasing function.

We have:
E [f ()] =z E [f(7)]

Proof 12
If E [f (Tr)] = oo, the result is obvious.

We now suppose that E [f (Tr)] < .
For k > 1, we define:

Af(k) = fk+1) =2f (k) + f(k=1) = (f(k+1) = f(k)) = (f(K) = f(k = 1)).

Because f is concave, we have: A?f (k) < 0, forall k > 1.

Let’s suppose that f is bounded.
We will prove this formula:

Vi e N, f(n) = £(0) — ¥ (kAn)APf(K) )

k=1

We have, forn € N, and N > n:
N

Y (kAn)A%f (k)

k=1

= kazf(k) +n ﬁ A%f(k)
k=1

k=n+1
n N
:kZ[kf<k+1)—2kf<k>+kf<k—1)]+nk2 [f(k+1) —2f (k) + f(k—1)]
=1 =n+1
n+1 n n—1 N+1
=Y (k=1f(k)+ Y —2kf(k)+ Y (k+1)f(k)+n| Y f(k)+ Z —2f(k +Zf ]
k=2 k=1 k=0 k=n-+2 k=n-+1

:ki:(k—1—2k+k—|—1)f(k)+nf(n+1)—2f(1)—(n+1)f(n)+2f(1)+1f(0)
=2
=0

2 0f(k) + fF(N+1)+ f(N) —=2f(N) —=2f(n+1) + f(n +1) + f(n)

k=n+2

=nf(n+1) = (n+1)f(n) + f(0) + nf(N+1) —nf(N) —nf(n+1) +nf(n)
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So finally:
N
2 (k An)A*f(k) = f(0) — f(n) +n[f(N +1) = f(N)]

But because f is concave bounded, we have: f(N +1) — f(N) — 0, and:

N—oo

o]

Y. (kAn)A2f(k) = f£(0) — f(n).

k=1

This way, we prove (7).

Then, using Proposition 11 (see page 26), we have, supposing f bounded, and knowing A% f(k) < 0

(e ) (e )

E[f(7)] = f(0) = Y EkAT]A*f(k) < f(0) — ) E[kAR] A*f(k) = E[f (tr)]

k=1 k=1

Then, if f is not bounded, for all N € IN, we have: fy := f A N is bounded, concave and increasing.
So, forall N € IN, we have: E [fy(7)] < E [fy (Tr)]-

Also, we have, forall N € N: f(0) A0 < fx(7) < fn+1(7) and the same with tx.

So, we can use the monotone convergence for both sides, and we have: E[f(7)] < E [f (tr)]-

Proposition 13 Expectancy of solutions to the Skorokhod Embedding Problem

Let T be any solution to the Skorokhod Embedding Problem, with starting distribution A
and target distribution y, still both integrable.

1. If A and y have different means, that is to say, if }  yA(y) > Y yu(y)
y=0 =
Then E[t] =

2. If A and p have the same mean, that is to say, if Y yA(y) = Y yu(y)

y=0
And if A has a finite 2" moment: ) | A(y) < oo,
y=0
Then E[t] = Y y*(u(y) — A(y)) (this quantity might be infinite).
y=0

Proof 13

1. We know, thanks to Proposition 1 (see page 5), that (Z;) is a martingale.
Because we know that it is a martingale with bounded differences, we can apply the Optional
Stopping Theorem with any 7 integrable.
This way we have:

E[r] <o —E |2} =E|[7}] = ioy)\(y)
=

28



So, by taking the contrapositive:

E[2)] # ¥ yAly) = Elr] = o0

y=0
Because we know E {Zé\] =Y yuly) # Y yA(y), we get E [1] = oco.
y=0 y=0
2. We write F, =0 (2, ..., Z})).

We have:
2 n—1
e Foreachn € N, (Z,);) — Z ]lZ‘)\#O is F,;-measurable.
i=0 '
e Foreachn € N,

2 n—1
(z) - L1z

=l

because A has a finite moment of order 2.

E

<E [(zg +n)2} = 1+ 2 |Z3 | + E [(ZQ)Z] <o,

o Finally, we have:
0 ifzZ} =0
E[(2),,)%] 7] = 2
(Z0)|7] { V(2 =1+ 1 (2 +1)2 = (22)2+1 #6740
S0, E [(2),1)°] 7] = (7)

Tz
) n 2 n-—1
And: E (ZQH) - Z(;)HZ?#O‘FJ = (Zﬁ) - E)lz?ﬂ'
1= 1=

2 n-—1
This way, we prove that ((Zﬁ) - Z 1, 7&0) is a martingale.
i=0 ' nelN

(a) If T is bounded, we can use the Optional Stopping Theorem, and we have:
2 -1 2 [ee)
(22) = L] =E| (@) ] = L2
i=0 y=0

We can see that if we write T A Hy instead of T, we still get an embedding of . So, we do

not change anything if we suppose that we always stop the first time we reach 0.
T—1

2)112? #01 — E[].

2 o
Finally, we get: E[7] = E {(Z;\) } Y PAy).
y=0

So, if T is bounded, we get:

E

SoE

(b) If T is unbounded, then, for all n € IN, we have: T A n is a bounded stopping time.
Let's write iy = L (Z35,).
Because T A n is integrable, thanks to what we did in the beginning of this proof, we know
that A and y,, have the same mean m.
So, we can apply the case 2. (a), and we get:

E[tAn] = foyz (ny) - A))
L
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LIF Y yPuly) < oo
y=0
We have, using (1) (see page 6):

y—1
K'y) =y + ;) (i—y)A%)

=yt L)~y A0 - L (-0
i= i= i=y

=t Y (v - DA
i=y

Let’s note v any distribution with a finite 2" moment and mean

> [k - K )] = X3 1) ()~ A)
y=0 y=0i=y
= i Xl: (y —1) (v(i) — A(i)) (we can use Fubini: see below)
i=0y=0
=Y (i) + Al & J;l)i
i=0
S [i 2 (i) = A) + Y iv(i) — 2 iA )
i=0 i=0 i=0
— 5 LA ) - A0)
One equality uses Fubini; S(l)iv(s]/e have to show:
Y 3 iy i) = A0 = o )~ a0 < ¥ S+ A < o
i=0y=0 i=0 i=0 i=0

And it’s true, because A and v have finite 2" moments.
We know that p, = £ (Z2,,,) has mean m.

E {(zﬁm)z] <E [(Zé‘+ (mn))z} <E {(zg+n)1 <E {(zg)z] + 21 [Z(ﬂ 1% < oo

So, we can use the previous equality with v = p;,.
Finally,

oo

ElrAn = Y202 (u(y) - Aw) = -2 1 [K() K],
y= y=

On the left, I can use monotone convergence because (T A 1),y is increasing:

lim E[t An] = E[1].

n—o0

On the right, because K" (y) = K2,,(y) is decreasing with n (because T A 1 is in-
creasing) and =2 W wecan do the same and get:

Tim Y [k () - K )] = ¥ [K4() — KA ).

y=0 y=0

So, we have, because A and u have the same mean m, and y has a finite 20d moment:

Elt] = 2 [K'(y) ~ KM0)] = X2 #2(u(y) — A)).
y=0 y=0
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ii. If ) vuly) =
We still have:

E[tAn) = io 7 (in() = A(y))
L

Because (Zé‘/\n)2 is non-negative, we can use Fatou’s lemma and get:
i 2
y);oyzﬂ(y) {hmmf (z2) } < liminfE {( Yan) ] = lim ); Y pn(y)

So, using monotone convergence for [E[T A n]:

[]—}}gr;o]E[TAn]—hm Zyyn > o0.
Finally,
E[t] = 00 = Z%)yz(#(y) —Ay)
y=

Theorem 14 7z minimises Var(7)

We suppose that A and u are two integrable distributions, with the same mean, and we
suppose that A has a finite 2"¢ moment.

Let T be any solution to the Skorokhod Embedding Problem, with starting distribution A
and target distribution j; we suppose E [7?] < co.

We have: Var(7) is well defined and

Var (1r) < Var(71)

Proof 14

We define, for N € IN:

B B » [ 2Nx—N? ifx<N
) =2NGeAN) - eanE = { 1F TN RSN

This way, fy is continuously differentiable, and:

2N —2x ifx < N
ful = { SN TE RS

So, f} is decreasing and non-negative; and finally fy is increasing and concave.

We can use Theorem 12 (see page 27), and we get:
E [fy (tr)] > E [fn(7)] <= 2N E [t AN] — E [(TR A N)z} >2NE[tAN]—E [(r AN) }
(t

<:>2N(IE[TR/\N]—IE[T/\N])zlE[(TR/\N)} AN) }
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But we have: E[t1] —E[tAN|=E[01l;cny+ (T — N)l;>n] =E[(T — N)4].
So: 2N (E [tx] —E [(tk = N),] —E[t] + E[(t = N)4]) > E |:(TR /\N)z] —E[(tAN).

And thanks to Proposition 13 (see page 28), we have: E[t] = E [1g].
Finally, we have:

2N (E[(t—N)4] —E[(tg —=N),]) > E [(TR A N)z} ~E {(r A N)Z} )

We suppose [E [TE’} < oo.

T (e} o [ee]
We have: E {73} =3E [/ s? ds] =3E [/ %> dS] = 3/ E [szﬂrgs} ds = 3/ s*P (T >s) ds
0 0 0 0

So, because s*IP (T > s) > 0 and E [1°] < oo, we know that: s°P (T > s) =20

In other words: c

Vs>0,EIsge]R,Vszsg,]P(725)g—z
s

Finally, we have: %]E [(T—5)+] =E[Ll>s] =P (t >s)and forall N > s,:

g1 €
> < S dr=N|-Z| = =) =
NE [(t — N/ (t>r)dr N/ dr = [ T’}N N(O—i—N) €
If we do N — oo in the equality (8), we get (using monotone convergence on the right-hand side):
0>E [rﬁ] —E [rﬂ
But thanks to Proposition 13, we have:

Var(7) > Var (1)
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Thanks

I would like to thank Alexander Cox for his availability, and for all his help before and
during all my course.

Also, thanks to Caroline, Terry and Oliver who welcomed me during my course, and
who also made me enjoy my trip to England.
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