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Summary

Hoeffding’s inequality

Freedman’s inequality

An application to matrices



Hoeffding’s Inequality

Theorem (Hoeffing)
Let (Xk)k∈J1;nK be independent random variables such that :

∀k ∈ [[1; n]], ∃ak , bk ∈ R ak ⩽ Xk ⩽ bk a.s.

If Sn = ∑n
k=1 Xk and x ⩾ 0, then we have :

P(|Sn − E(Sn)| ⩾ x) ⩽ 2 exp
(

−2x2

∑n
k=1(bk − ak)2

)
.

▶ Our objective here is to generalise Hoeffding’s inequality by
replacing Sn by any square-integrable martingale without
assuming that the increments are independent.
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Azuma-Hoeffding Inequality

Theorem (Azuma-Hoeffding)
Let (Mk)k∈[[0;n]] be a martingale with finite variance such that
M0 = 0 and :

∀k ∈ [[1; n]], ∃ak , bk ∈ R ak ⩽ ∆Mk := Mk − Mk−1 ⩽ bk a.s.

If x ⩾ 0, then we have :

P(|Mn| ⩾ x) ⩽ 2 exp
(

−2x2

∑n
k=1(bk − ak)2

)
.



Demonstration - Azuma Hoeffding

By definition, Mn = Mn−1 + ∆Mn.

Let t > 0,

E(exp(tMn)) = E[E(exp(tMn)|Fn−1)]

= E[exp(tMn−1)E(exp(t∆Mn)|Fn−1)].

Technical Lemma
Let X a be real-valued centered variable such that a ⩽ X ⩽ b a.s.
Then for all t ⩾ 0,

E(exp(tX )) ⩽ exp
(

t2(b − a)2

8

)
.
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We apply this lemma to the conditional expectation of X = ∆Mn
which is bounded by hypothesis and centered by the martingale
property : E(∆Mn|Fn−1) = 0.
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Therefore, for all t ⩾ 0 :
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(

t2(bn − an)2

8

)
.

The previous equality

E(exp(tMn)) = E[exp(tMn−1)E(exp(t∆Mn)|Fn−1)]

thus becomes

E(exp(tMn)) ⩽ E[exp(tMn−1)] exp
(

t2(bn − an)2

8

)
.
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By iterating the relation
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(
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)
,

we obtain :

E(exp(tMn)) ⩽ E[exp(tM0)] exp
(

t2vn
8

)
where vn = ∑n

k=1(bk − ak)
2.

Since M0 = 0, we have :

∀t ⩾ 0, E(exp(tMn)) ⩽ exp
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∀t ⩾ 0, E(exp(tMn)) ⩽ exp
(

t2vn
8

)
.

Using Markov inequality, we obtain for all t, x ⩾ 0 :

P(Mn ⩾ x) ⩽ exp(−tx)E(exp(tMn))

which gives

P(Mn ⩾ x) ⩽ exp
(
−tx +

t2vn
8

)
.

We optimize in t the right bound with t = 4x/vn.
So

P(Mn ⩾ x) ⩽ exp
(
−2x2

vn

)
.
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We have shown that

P(Mn ⩾ x) ⩽ exp
(
−2x2

vn

)
.

We can obtain the following inequality in the same way by
replacing Mn by −Mn :

P(Mn ⩽ −x) ⩽ exp
(
−2x2

vn

)
.

We can conclude for all x ⩾ 0 :

P(|Mn| ⩾ x) = P(Mn ⩾ x) + P(Mn ⩽ −x) ⩽ 2 exp
(
−2x2

vn

)
hence the desired inequality

∀x ⩾ 0 P(|Mn| ⩾ x) ⩽ 2 exp
(
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∑n
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)
.
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Bennett’s Inequality
Theorem (Bennett)
Let (Xk)k∈J1;nK be independent random variables centered and
square integrable such that :

∀k ∈ [[1; n]], ∃b > 0 Xk ⩽ b a.s.

Then for all n ∈ N∗, x ∈ [0; b],

P(Sn ⩾ x) ⩽ exp
(
− x2

2(Var (Sn) + bx/3)

)
.

▶ We obtain Poissonian tails that have the advantage of taking
the variance into account.

▶ Our objective here is to generalise Bennett’s inequality by
replacing Sn by any square-integrable martingale without
assuming that the increments are independent.
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Freedman’s Inequality

Theorem (Freedman(1975))
Let (Mn)n∈N be a square integrable martingale starting from 0
such that the increments ∆Mk = Mk − Mk−1, k ∈ N∗ are as
bounded from above by b ∈ R∗

+, then for all n ∈ N∗, x ∈ [0; b]
and y ∈ R∗

+,

P(Mn ⩾ nx , ⟨M⟩n ⩽ ny) ⩽ exp
(
− nx2

2(y + bx/3)

)
.

Since the upper bound is homogeneous in b, in the demonstration
we will assume that b = 1, that is ∆Mk ⩽ 1 for all k ∈ N∗, almost
surely.
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Demonstration : the case of Sn

In order to guide our demonstration for the martingale case, we
first have to understand what happens in the case of the sum of
independent variables.

Let X1, . . . , Xn be independent centered variables with finite variance
and let Sn = ∑n

k=1 Xk , we compute the Cramér transform of Sn.
By independence of X1, . . . , Xn, we have

LSn(t) = ln(E[exp(tSn)]) = ∑n
k=1 ln(E[exp(tXk)]).

Thus, using the concavity of the logarithm yields

1
nLSn(t) ⩽ ln

(
1
n

n

∑
k=1

E[exp(tXk)]

)
.
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1
nLSn(t) ⩽ ln

(
1
n

n

∑
k=1

E[exp(tXk)]

)
.

Let X be a random variable with distribution 1
n ∑n

k=1 PXk .
By the construction of X , 1

n ∑n
k=1 E[exp(tXk)] = E[exp(tX )].

Lemma
Suppose that X ≤ 1 as, E[X ] = 0 and E[X 2] = v = Var (Sn)/n.
Let ξ ∼ v

1+v δ1 +
1

1+v δ−v be a centered Bernoulli random variable
with variance v , then almost surely

E[exp(tX )] ⩽ E[exp(tξ)] =
v

1 + v et +
1

1 + v e−vt .
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We obtain the upper bound for the Cramér transform
LSn(t) ⩽ nLv (t) where Lv (t) = ln(vet + e−vt)− ln(1 + v).

We now compute the Fenchel-Legendre derivative of Lv and we
eventually find L∗

v (x) = x+v
1+v ln(1+ x

v ) +
1−x
1+v ln(1− x) that can be

lower-bounded by x2

2(v+x/3) .

Using Cramér’s inequality finally leads to Bennett’s inequality

P(Sn ⩾ nx) ⩽ exp
(
− nx2

2(v + bx/3)

)
.
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Demonstration : adaptation to the martingale case

Similarly to what we have seen for the sum of independent
variables, we introduce Lv : t 7→ ln(vet + e−vt)− ln(1 + v)

and the random variable Wn(t) = exp(tMn − ∑n
k=1 LVk (t))

where

Vk = ⟨V ⟩k − ⟨V ⟩k−1 = E[(Mk − Mk−1)
2 | Fk−1].

The same technical lemma than previously ensures that
E[exp(t∆Mk) | Fk−1] ⩽ E[exp(tξ)] with ξ a centered Bernoulli
variable with variance Vk conditionnally to Fk−1.
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We obtain E[exp(t∆Mk) | Fk−1] ⩽ exp(LVk (t)) almost surely.

Recall that Wn(t) = exp(tMn − ∑n
k=1 LVk (t)). Then we get

E[Wn(t) | Fn−1] = Wn−1(t)E[exp(t∆Mn) | Fn−1] exp(−LVn(t))
⩽ Wn−1(t).

It means that (Wn(t))n∈N is a supermartingale starting from 1
and for all n ∈ N, E[Wn(t)] ⩽ 1.
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End of the demonstration

Let An denote the event (Mn ⩾ nx , ⟨M⟩n ⩽ ny).
For t ∈ R∗

+, using Markov’s inequality yields

P(An) ⩽ E[exp(tMn − tnx)1⟨M⟩n⩽ny ].

So,

P(An) ⩽ E

[
exp

(
tMn −

n

∑
k=1

LVk (t)
)

exp
( n

∑
k=1

LVk (t)− tnx
)

1⟨M⟩n⩽ny

]

Since the function v 7→ Lv (t) is concave and non-decreasing, we
have 1

n ∑n
k=1 LVk (t) ⩽ L⟨M⟩n/n(t) ⩽ Ly (t) on the event An.
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P(An) ⩽ E[exp
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⩽ E[Wn(t)] exp(nLy (t)− tnx).

In the end, we find that

P(An) ⩽ exp(−nL∗
y (x)).

Since we have already computed the Legendre-Fenchel derivative
of Ly , the proof is complete.
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An application to matrices

Theorem
Let p < n ∈ N∗, A ∈ Mp,n(R) with coefficients bounded by b > 0.
Let π be a uniformy distributed random variable on the set of
one-to-one maps from J1; pK to J1; nK and let S = ∑p

i=1 A[i , π(i)].

Then for all x ∈ R∗
+,

P(|S − E[S ]| ⩾ x) ⩽ 2 exp
(
− x2

4(θv + 2xb/3)

)
where
▶ v = 1

n ∑p
i=1 ∑n

j=1 A[i , j ]2

▶ θ = −α − 1+α
α ln(1 − α)

▶ α = p/n.



We set, for all i ∈ J1; pK, Fi = σ(π(1), . . . , π(i)) and
Mi = E[S | Fi ]− E[S ]. Then (Mi )i∈J1;pK is a martingale.

But given Fi , π|Ji+1;pK is uniformly distributed on the set of
one-to-one maps from Ji + 1; pK to J1; nK\{π(1), . . . , π(i)}.

Thus by defining mi (k, :) = E[A[k, π(i + 1)] | Fi ], we obtain
mi (k, :) = 1

n−i ∑j ̸∈{π(1),...,π(i)} A[k, j ] which in turn gives

∆Mi = A[i , π(i)]− mi−1(i , :) +
p

∑
k=i+1

[mi (k, :)− mi−1(k, :)].

We eventually find that |∆Mi | ⩽ 4b as since

mi (k, :)− mi−1(k, :) =
1

n − i (mi−1(k, :)− A[k, π(i)]).
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Applying Freedman’s inequality to both M and −M yields

P(|Mp | ⩾ x) ⩽ 2 exp
(
− x2

2(∥⟨M⟩p∥∞ + 4bx/3)

)
.

We admit that ⟨M⟩p ⩽ 2θv almost surely where

v =
1
n

p

∑
i=1

n

∑
j=1

A[i , j ]2 ; θ = −α − 1 + α

α
ln(1 − α) ; α =

p
n

giving the result.

▶ We would like to have a similar result for square matrices.
▶ Because the constant θ is not defined for α = 1, that is

p = n, we will decompose the matrix into two rectangular
matrices and apply the previous result twice.
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The square matrix version

Let n ⩾ 2, A ∈ Mn(R), π ∼ U (Sn) and S = ∑n
i=1 A[i , π(i)].

Set v = 1
n ∑n

i ,j=1 A[i , j ]2 and suppose that |A[i , j ]| ⩽ b for all
i , j ∈ J1; nK.

Now write a decomposition S = P + Q with P = ∑p
i=1 A[i , π(i)]

and Q = ∑n
i=p+1 A[i , π(i)] where p = ⌊ n

2⌋.

Let x ∈ R∗
+, we have :

P(|S −E[S ]| ⩾ x) ⩽ P(|P −E[P ]| ⩾ x/2)+P(|Q −E[Q]| ⩾ x/2).

In the end, we get P(|S − E[S ]| ⩾ x) ⩽ 4 exp
(
− x2

16(θv+xb/3)

)
with the constant θ = 5

2 ln(3)− 2
3 .
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Remark

Defining S = ∑n
i=1 A[i , π(i)], we have shown that :

P(|S − E[S ]| ⩾ x) ⩽ 4 exp
(
− x2

16(θv + xb/3)

)
with the constant θ = 5

2 ln(3)− 2
3 .

Remark
When (x1, y1), . . . , (xn, yn) are iid observations of a distribution P
and A[i , j ] = f (xi , yj), this inequality may be used for a test of
independence of the marginals of P.



Questions

Do you have any
questions ?
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