Oral presentation-23 November 2023 Jérémy Bettinger \& Simon Viel

Concentration inequalities for martingales

Under the direction of Bernard Delyon \& Adrien Saumard ENSAI, Rennes.

Summary

Hoeffding's inequality

Freedman's inequality

An application to matrices

Hoeffding's Inequality

Theorem (Hoeffing)

Let $\left(X_{k}\right)_{k \in \llbracket 1 ; n \rrbracket}$ be independent random variables such that :

$$
\forall k \in \llbracket 1 ; n \rrbracket, \exists a_{k}, b_{k} \in \mathbb{R} \quad a_{k} \leqslant X_{k} \leqslant b_{k} \text { a.s. }
$$

If $S_{n}=\sum_{k=1}^{n} X_{k}$ and $x \geqslant 0$, then we have :

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left(S_{n}\right)\right| \geqslant x\right) \leqslant 2 \exp \left(\frac{-2 x^{2}}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right)
$$

Hoeffding's Inequality

Theorem (Hoeffing)

Let $\left(X_{k}\right)_{k \in \llbracket 1 ; n \rrbracket}$ be independent random variables such that :

$$
\forall k \in \llbracket 1 ; n \rrbracket, \exists a_{k}, b_{k} \in \mathbb{R} \quad a_{k} \leqslant X_{k} \leqslant b_{k} \text { a.s. }
$$

If $S_{n}=\sum_{k=1}^{n} X_{k}$ and $x \geqslant 0$, then we have :

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left(S_{n}\right)\right| \geqslant x\right) \leqslant 2 \exp \left(\frac{-2 x^{2}}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right)
$$

- Our objective here is to generalise Hoeffding's inequality by replacing S_{n} by any square-integrable martingale without assuming that the increments are independent.

Azuma-Hoeffding Inequality

Theorem (Azuma-Hoeffding)
Let $\left(M_{k}\right)_{k \in \llbracket 0 ; n \rrbracket}$ be a martingale with finite variance such that $M_{0}=0$ and :

$$
\forall k \in \llbracket 1 ; n \rrbracket, \exists a_{k}, b_{k} \in \mathbb{R} \quad a_{k} \leqslant \Delta M_{k}:=M_{k}-M_{k-1} \leqslant b_{k} \text { a.s. }
$$

If $x \geqslant 0$, then we have :

$$
\mathbb{P}\left(\left|M_{n}\right| \geqslant x\right) \leqslant 2 \exp \left(\frac{-2 x^{2}}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right)
$$

Demonstration - Azuma Hoeffding

By definition, $M_{n}=M_{n-1}+\Delta M_{n}$.

Demonstration - Azuma Hoeffding

By definition, $M_{n}=M_{n-1}+\Delta M_{n}$.
Let $t>0$,

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(t M_{n}\right)\right) & =\mathbb{E}\left[\mathbb{E}\left(\exp \left(t M_{n}\right) \mid \mathcal{F}_{n-1}\right)\right] \\
& =\mathbb{E}\left[\exp \left(t M_{n-1}\right) \mathbb{E}\left(\exp \left(t \Delta M_{n}\right) \mid \mathcal{F}_{n-1}\right)\right]
\end{aligned}
$$

Demonstration - Azuma Hoeffding

By definition, $M_{n}=M_{n-1}+\Delta M_{n}$.
Let $t>0$,

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(t M_{n}\right)\right) & =\mathbb{E}\left[\mathbb{E}\left(\exp \left(t M_{n}\right) \mid \mathcal{F}_{n-1}\right)\right] \\
& =\mathbb{E}\left[\exp \left(t M_{n-1}\right) \mathbb{E}\left(\exp \left(t \Delta M_{n}\right) \mid \mathcal{F}_{n-1}\right)\right]
\end{aligned}
$$

Technical Lemma
Let X a be real-valued centered variable such that $a \leqslant X \leqslant b$ a.s. Then for all $t \geqslant 0$,

$$
\mathbb{E}(\exp (t X)) \leqslant \exp \left(\frac{t^{2}(b-a)^{2}}{8}\right)
$$

Technical Lemma
Let X a be real-valued centered variable such that $a \leqslant X \leqslant b$ a.s. Then for all $t \geqslant 0$,

$$
\mathbb{E}(\exp (t X)) \leqslant \exp \left(\frac{t^{2}(b-a)^{2}}{8}\right)
$$

Technical Lemma

Let X a be real-valued centered variable such that $a \leqslant X \leqslant b$ a.s. Then for all $t \geqslant 0$,

$$
\mathbb{E}(\exp (t X)) \leqslant \exp \left(\frac{t^{2}(b-a)^{2}}{8}\right)
$$

We apply this lemma to the conditional expectation of $X=\Delta M_{n}$ which is bounded by hypothesis and centered by the martingale property : $\mathbb{E}\left(\Delta M_{n} \mid \mathcal{F}_{n-1}\right)=0$.

Therefore, for all $t \geqslant 0$:

$$
\mathbb{E}\left(\exp \left(t \Delta M_{n}\right) \mid \mathcal{F}_{n-1}\right) \leqslant \exp \left(\frac{t^{2}\left(b_{n}-a_{n}\right)^{2}}{8}\right)
$$

Therefore, for all $t \geqslant 0$:

$$
\mathbb{E}\left(\exp \left(t \Delta M_{n}\right) \mid \mathcal{F}_{n-1}\right) \leqslant \exp \left(\frac{t^{2}\left(b_{n}-a_{n}\right)^{2}}{8}\right)
$$

The previous equality

$$
\mathbb{E}\left(\exp \left(t M_{n}\right)\right)=\mathbb{E}\left[\exp \left(t M_{n-1}\right) \mathbb{E}\left(\exp \left(t \Delta M_{n}\right) \mid \mathcal{F}_{n-1}\right)\right]
$$

thus becomes

$$
\mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n-1}\right)\right] \exp \left(\frac{t^{2}\left(b_{n}-a_{n}\right)^{2}}{8}\right)
$$

By iterating the relation

$$
\mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n-1}\right)\right] \exp \left(\frac{t^{2}\left(b_{n}-a_{n}\right)^{2}}{8}\right)
$$

By iterating the relation

$$
\mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n-1}\right)\right] \exp \left(\frac{t^{2}\left(b_{n}-a_{n}\right)^{2}}{8}\right)
$$

we obtain :

$$
\mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \mathbb{E}\left[\exp \left(t M_{0}\right)\right] \exp \left(\frac{t^{2} v_{n}}{8}\right)
$$

where $v_{n}=\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}$.

By iterating the relation

$$
\mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n-1}\right)\right] \exp \left(\frac{t^{2}\left(b_{n}-a_{n}\right)^{2}}{8}\right)
$$

we obtain :

$$
\mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \mathbb{E}\left[\exp \left(t M_{0}\right)\right] \exp \left(\frac{t^{2} v_{n}}{8}\right)
$$

where $v_{n}=\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}$.
Since $M_{0}=0$, we have :

$$
\forall t \geqslant 0, \quad \mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \exp \left(\frac{t^{2} v_{n}}{8}\right)
$$

$$
\forall t \geqslant 0, \quad \mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \exp \left(\frac{t^{2} v_{n}}{8}\right) .
$$

$$
\forall t \geqslant 0, \quad \mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \exp \left(\frac{t^{2} v_{n}}{8}\right)
$$

Using Markov inequality, we obtain for all $t, x \geqslant 0$:

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp (-t x) \mathbb{E}\left(\exp \left(t M_{n}\right)\right)
$$

$$
\forall t \geqslant 0, \quad \mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \exp \left(\frac{t^{2} v_{n}}{8}\right)
$$

Using Markov inequality, we obtain for all $t, x \geqslant 0$:

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp (-t x) \mathbb{E}\left(\exp \left(t M_{n}\right)\right)
$$

which gives

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp \left(-t x+\frac{t^{2} v_{n}}{8}\right)
$$

$$
\forall t \geqslant 0, \quad \mathbb{E}\left(\exp \left(t M_{n}\right)\right) \leqslant \exp \left(\frac{t^{2} v_{n}}{8}\right)
$$

Using Markov inequality, we obtain for all $t, x \geqslant 0$:

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp (-t x) \mathbb{E}\left(\exp \left(t M_{n}\right)\right)
$$

which gives

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp \left(-t x+\frac{t^{2} v_{n}}{8}\right)
$$

We optimize in t the right bound with $t=4 x / v_{n}$.
So

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

We have shown that

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

We can obtain the following inequality in the same way by replacing M_{n} by $-M_{n}$:

$$
\mathbb{P}\left(M_{n} \leqslant-x\right) \leqslant \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

We have shown that

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

We can obtain the following inequality in the same way by replacing M_{n} by $-M_{n}$:

$$
\mathbb{P}\left(M_{n} \leqslant-x\right) \leqslant \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

We can conclude for all $x \geqslant 0$:

$$
\mathbb{P}\left(\left|M_{n}\right| \geqslant x\right)=\mathbb{P}\left(M_{n} \geqslant x\right)+\mathbb{P}\left(M_{n} \leqslant-x\right) \leqslant 2 \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

We have shown that

$$
\mathbb{P}\left(M_{n} \geqslant x\right) \leqslant \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

We can obtain the following inequality in the same way by replacing M_{n} by $-M_{n}$:

$$
\mathbb{P}\left(M_{n} \leqslant-x\right) \leqslant \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

We can conclude for all $x \geqslant 0$:

$$
\mathbb{P}\left(\left|M_{n}\right| \geqslant x\right)=\mathbb{P}\left(M_{n} \geqslant x\right)+\mathbb{P}\left(M_{n} \leqslant-x\right) \leqslant 2 \exp \left(\frac{-2 x^{2}}{v_{n}}\right)
$$

hence the desired inequality

$$
\forall x \geqslant 0 \quad \mathbb{P}\left(\left|M_{n}\right| \geqslant x\right) \leqslant 2 \exp \left(\frac{-2 x^{2}}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right) .
$$

Bennett's Inequality

Theorem (Bennett)

Let $\left(X_{k}\right)_{k \in[1 ; n]}$ be independent random variables centered and square integrable such that :

$$
\forall k \in \llbracket 1 ; n \rrbracket, \exists b>0 \quad X_{k} \leqslant b \text { a.s. }
$$

Then for all $n \in \mathbb{N}^{*}, x \in[0 ; b]$,

$$
\mathbb{P}\left(S_{n} \geqslant x\right) \leqslant \exp \left(-\frac{x^{2}}{2\left(\operatorname{Var}\left(S_{n}\right)+b x / 3\right)}\right) .
$$

Bennett's Inequality

Theorem (Bennett)

Let $\left(X_{k}\right)_{k \in \llbracket 1 ; n \rrbracket}$ be independent random variables centered and square integrable such that :

$$
\forall k \in \llbracket 1 ; n \rrbracket, \exists b>0 \quad X_{k} \leqslant b \text { a.s. }
$$

Then for all $n \in \mathbb{N}^{*}, x \in[0 ; b]$,

$$
\mathbb{P}\left(S_{n} \geqslant x\right) \leqslant \exp \left(-\frac{x^{2}}{2\left(\operatorname{Var}\left(S_{n}\right)+b x / 3\right)}\right)
$$

- We obtain Poissonian tails that have the advantage of taking the variance into account.

Bennett's Inequality

Theorem (Bennett)

Let $\left(X_{k}\right)_{k \in \llbracket 1 ; n \rrbracket}$ be independent random variables centered and square integrable such that :

$$
\forall k \in \llbracket 1 ; n \rrbracket, \exists b>0 \quad X_{k} \leqslant b \text { a.s. }
$$

Then for all $n \in \mathbb{N}^{*}, x \in[0 ; b]$,

$$
\mathbb{P}\left(S_{n} \geqslant x\right) \leqslant \exp \left(-\frac{x^{2}}{2\left(\operatorname{Var}\left(S_{n}\right)+b x / 3\right)}\right)
$$

- We obtain Poissonian tails that have the advantage of taking the variance into account.
- Our objective here is to generalise Bennett's inequality by replacing S_{n} by any square-integrable martingale without assuming that the increments are independent.

Freedman's Inequality

Theorem (Freedman(1975))
Let $\left(M_{n}\right)_{n \in \mathbb{N}}$ be a square integrable martingale starting from 0 such that the increments $\Delta M_{k}=M_{k}-M_{k-1}, k \in \mathbb{N}^{*}$ are as bounded from above by $b \in \mathbb{R}_{+}^{*}$, then for all $n \in \mathbb{N}^{*}, x \in[0 ; b]$ and $y \in \mathbb{R}_{+}^{*}$,

$$
\mathbb{P}\left(M_{n} \geqslant n x,\langle M\rangle_{n} \leqslant n y\right) \leqslant \exp \left(-\frac{n x^{2}}{2(y+b x / 3)}\right)
$$

Freedman's Inequality

Theorem (Freedman(1975))
Let $\left(M_{n}\right)_{n \in \mathbb{N}}$ be a square integrable martingale starting from 0 such that the increments $\Delta M_{k}=M_{k}-M_{k-1}, k \in \mathbb{N}^{*}$ are as bounded from above by $b \in \mathbb{R}_{+}^{*}$, then for all $n \in \mathbb{N}^{*}, x \in[0 ; b]$ and $y \in \mathbb{R}_{+}^{*}$,

$$
\mathbb{P}\left(M_{n} \geqslant n x,\langle M\rangle_{n} \leqslant n y\right) \leqslant \exp \left(-\frac{n x^{2}}{2(y+b x / 3)}\right)
$$

Since the upper bound is homogeneous in b, in the demonstration we will assume that $b=1$, that is $\Delta M_{k} \leqslant 1$ for all $k \in \mathbb{N}^{*}$, almost surely.

Demonstration : the case of S_{n}

In order to guide our demonstration for the martingale case, we first have to understand what happens in the case of the sum of independent variables.

Demonstration : the case of S_{n}

In order to guide our demonstration for the martingale case, we first have to understand what happens in the case of the sum of independent variables.

Let X_{1}, \ldots, X_{n} be independent centered variables with finite variance and let $S_{n}=\sum_{k=1}^{n} X_{k}$, we compute the Cramér transform of S_{n}. By independence of X_{1}, \ldots, X_{n}, we have

$$
\mathcal{L}_{S_{n}}(t)=\ln \left(\mathbb{E}\left[\exp \left(t S_{n}\right)\right]\right)=\sum_{k=1}^{n} \ln \left(\mathbb{E}\left[\exp \left(t X_{k}\right)\right]\right)
$$

Demonstration: the case of S_{n}

In order to guide our demonstration for the martingale case, we first have to understand what happens in the case of the sum of independent variables.

Let X_{1}, \ldots, X_{n} be independent centered variables with finite variance and let $S_{n}=\sum_{k=1}^{n} X_{k}$, we compute the Cramér transform of S_{n}. By independence of X_{1}, \ldots, X_{n}, we have

$$
\mathcal{L}_{S_{n}}(t)=\ln \left(\mathbb{E}\left[\exp \left(t S_{n}\right)\right]\right)=\sum_{k=1}^{n} \ln \left(\mathbb{E}\left[\exp \left(t X_{k}\right)\right]\right)
$$

Thus, using the concavity of the logarithm yields

$$
\frac{1}{n} \mathcal{L}_{S_{n}}(t) \leqslant \ln \left(\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(t X_{k}\right)\right]\right)
$$

$$
\frac{1}{n} \mathcal{L}_{S_{n}}(t) \leqslant \ln \left(\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(t X_{k}\right)\right]\right)
$$

Let X be a random variable with distribution $\frac{1}{n} \sum_{k=1}^{n} P_{X_{k}}$. By the construction of $X, \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(t X_{k}\right)\right]=\mathbb{E}[\exp (t X)]$.

$$
\frac{1}{n} \mathcal{L}_{S_{n}}(t) \leqslant \ln \left(\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(t X_{k}\right)\right]\right)
$$

Let X be a random variable with distribution $\frac{1}{n} \sum_{k=1}^{n} P_{X_{k}}$. By the construction of $X, \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(t X_{k}\right)\right]=\mathbb{E}[\exp (t X)]$.

Lemma

Suppose that $X \leq 1$ as, $\mathbb{E}[X]=0$ and $\mathbb{E}\left[X^{2}\right]=v=\operatorname{Var}\left(S_{n}\right) / n$. Let $\xi \sim \frac{v}{1+v} \delta_{1}+\frac{1}{1+v} \delta_{-v}$ be a centered Bernoulli random variable with variance v, then almost surely

$$
\mathbb{E}[\exp (t X)] \leqslant \mathbb{E}[\exp (t \xi)]=\frac{v}{1+v} e^{t}+\frac{1}{1+v} e^{-v t}
$$

We obtain the upper bound for the Cramér transform
$\mathcal{L}_{S_{n}}(t) \leqslant n L_{v}(t)$ where $L_{v}(t)=\ln \left(v e^{t}+e^{-v t}\right)-\ln (1+v)$.

We obtain the upper bound for the Cramér transform
$\mathcal{L}_{S_{n}}(t) \leqslant n L_{v}(t)$ where $L_{v}(t)=\ln \left(v e^{t}+e^{-v t}\right)-\ln (1+v)$.

We now compute the Fenchel-Legendre derivative of L_{v} and we eventually find $L_{v}^{*}(x)=\frac{x+v}{1+v} \ln \left(1+\frac{x}{v}\right)+\frac{1-x}{1+v} \ln (1-x)$ that can be lower-bounded by $\frac{x^{2}}{2(v+x / 3)}$.

We obtain the upper bound for the Cramér transform
$\mathcal{L}_{S_{n}}(t) \leqslant n L_{v}(t)$ where $L_{v}(t)=\ln \left(v e^{t}+e^{-v t}\right)-\ln (1+v)$.

We now compute the Fenchel-Legendre derivative of L_{v} and we eventually find $L_{v}^{*}(x)=\frac{x+v}{1+v} \ln \left(1+\frac{x}{v}\right)+\frac{1-x}{1+v} \ln (1-x)$ that can be lower-bounded by $\frac{x^{2}}{2(v+x / 3)}$.

Using Cramér's inequality finally leads to Bennett's inequality

$$
\mathbb{P}\left(S_{n} \geqslant n x\right) \leqslant \exp \left(-\frac{n x^{2}}{2(v+b x / 3)}\right)
$$

Demonstration : adaptation to the martingale case

Similarly to what we have seen for the sum of independent variables, we introduce $L_{v}: t \mapsto \ln \left(v e^{t}+e^{-v t}\right)-\ln (1+v)$

Demonstration : adaptation to the martingale case

Similarly to what we have seen for the sum of independent variables, we introduce $L_{v}: t \mapsto \ln \left(v e^{t}+e^{-v t}\right)-\ln (1+v)$ and the random variable $W_{n}(t)=\exp \left(t M_{n}-\sum_{k=1}^{n} L_{v_{k}}(t)\right)$ where

$$
V_{k}=\langle V\rangle_{k}-\langle V\rangle_{k-1}=\mathbb{E}\left[\left(M_{k}-M_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right] .
$$

Demonstration : adaptation to the martingale case

Similarly to what we have seen for the sum of independent variables, we introduce $L_{v}: t \mapsto \ln \left(v e^{t}+e^{-v t}\right)-\ln (1+v)$ and the random variable $W_{n}(t)=\exp \left(t M_{n}-\sum_{k=1}^{n} L_{V_{k}}(t)\right)$ where

$$
V_{k}=\langle V\rangle_{k}-\langle V\rangle_{k-1}=\mathbb{E}\left[\left(M_{k}-M_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right] .
$$

The same technical lemma than previously ensures that $\mathbb{E}\left[\exp \left(t \Delta M_{k}\right) \mid \mathcal{F}_{k-1}\right] \leqslant \mathbb{E}[\exp (t \xi)]$ with ξ a centered Bernoulli variable with variance V_{k} conditionnally to \mathcal{F}_{k-1}.

We obtain $\mathbb{E}\left[\exp \left(t \Delta M_{k}\right) \mid \mathcal{F}_{k-1}\right] \leqslant \exp \left(L_{V_{k}}(t)\right)$ almost surely.

We obtain $\mathbb{E}\left[\exp \left(t \Delta M_{k}\right) \mid \mathcal{F}_{k-1}\right] \leqslant \exp \left(L_{V_{k}}(t)\right)$ almost surely.

Recall that $W_{n}(t)=\exp \left(t M_{n}-\sum_{k=1}^{n} L_{V_{k}}(t)\right)$. Then we get

$$
\begin{aligned}
\mathbb{E}\left[W_{n}(t) \mid \mathcal{F}_{n-1}\right] & =W_{n-1}(t) \mathbb{E}\left[\exp \left(t \Delta M_{n}\right) \mid \mathcal{F}_{n-1}\right] \exp \left(-L_{V_{n}}(t)\right) \\
& \leqslant W_{n-1}(t)
\end{aligned}
$$

We obtain $\mathbb{E}\left[\exp \left(t \Delta M_{k}\right) \mid \mathcal{F}_{k-1}\right] \leqslant \exp \left(L_{V_{k}}(t)\right)$ almost surely.

Recall that $W_{n}(t)=\exp \left(t M_{n}-\sum_{k=1}^{n} L_{V_{k}}(t)\right)$. Then we get

$$
\begin{aligned}
\mathbb{E}\left[W_{n}(t) \mid \mathcal{F}_{n-1}\right] & =W_{n-1}(t) \mathbb{E}\left[\exp \left(t \Delta M_{n}\right) \mid \mathcal{F}_{n-1}\right] \exp \left(-L_{V_{n}}(t)\right) \\
& \leqslant W_{n-1}(t)
\end{aligned}
$$

It means that $\left(W_{n}(t)\right)_{n \in \mathbb{N}}$ is a supermartingale starting from 1 and for all $n \in \mathbb{N}, \mathbb{E}\left[W_{n}(t)\right] \leqslant 1$.

End of the demonstration

Let A_{n} denote the event ($M_{n} \geqslant n x,\langle M\rangle_{n} \leqslant n y$). For $t \in \mathbb{R}_{+}^{*}$, using Markov's inequality yields

$$
\mathbb{P}\left(A_{n}\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n}-t n x\right) \mathbb{1}_{\langle M\rangle_{n} \leqslant n y}\right] .
$$

End of the demonstration

Let A_{n} denote the event $\left(M_{n} \geqslant n x,\langle M\rangle_{n} \leqslant n y\right)$.
For $t \in \mathbb{R}_{+}^{*}$, using Markov's inequality yields

$$
\mathbb{P}\left(A_{n}\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n}-t n x\right) \mathbb{1}_{\langle M\rangle_{n} \leqslant n y}\right] .
$$

So,
$\mathbb{P}\left(A_{n}\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n}-\sum_{k=1}^{n} L_{V_{k}}(t)\right) \exp \left(\sum_{k=1}^{n} L_{V_{k}}(t)-t n x\right) \mathbb{1}_{\langle M\rangle_{n} \leqslant n y}\right]$

End of the demonstration

Let A_{n} denote the event $\left(M_{n} \geqslant n x,\langle M\rangle_{n} \leqslant n y\right)$.
For $t \in \mathbb{R}_{+}^{*}$, using Markov's inequality yields

$$
\mathbb{P}\left(A_{n}\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n}-t n x\right) \mathbb{1}_{\langle M\rangle_{n} \leqslant n y}\right] .
$$

So,
$\mathbb{P}\left(A_{n}\right) \leqslant \mathbb{E}\left[\exp \left(t M_{n}-\sum_{k=1}^{n} L_{V_{k}}(t)\right) \exp \left(\sum_{k=1}^{n} L_{V_{k}}(t)-t n x\right) \mathbb{1}_{\langle M\rangle_{n} \leqslant n y}\right]$

Since the function $v \mapsto L_{v}(t)$ is concave and non-decreasing, we have $\frac{1}{n} \sum_{k=1}^{n} L_{V_{k}}(t) \leqslant L_{\langle M\rangle_{n} / n}(t) \leqslant L_{y}(t)$ on the event A_{n}.

Therefore

$$
\begin{aligned}
\mathbb{P}\left(A_{n}\right) & \leqslant \mathbb{E}\left[\exp \left(t M_{n}-\sum_{k=1}^{n} L_{V_{k}}(t)\right) \exp \left(n L_{y}(t)-t n x\right) \mathbb{1}_{\langle M\rangle_{n} \leqslant n y}\right] \\
& \leqslant \mathbb{E}\left[W_{n}(t)\right] \exp \left(n L_{y}(t)-t n x\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathbb{P}\left(A_{n}\right) & \leqslant \mathbb{E}\left[\exp \left(t M_{n}-\sum_{k=1}^{n} L_{v_{k}}(t)\right) \exp \left(n L_{y}(t)-t n x\right) \mathbb{1}_{\langle M\rangle_{n} \leqslant n y}\right] \\
& \leqslant \mathbb{E}\left[W_{n}(t)\right] \exp \left(n L_{y}(t)-t n x\right)
\end{aligned}
$$

In the end, we find that

$$
\mathbb{P}\left(A_{n}\right) \leqslant \exp \left(-n L_{y}^{*}(x)\right)
$$

Therefore

$$
\begin{aligned}
\mathbb{P}\left(A_{n}\right) & \leqslant \mathbb{E}\left[\exp \left(t M_{n}-\sum_{k=1}^{n} L_{V_{k}}(t)\right) \exp \left(n L_{y}(t)-t n x\right) \mathbb{1}_{\langle M\rangle_{n} \leqslant n y}\right] \\
& \leqslant \mathbb{E}\left[W_{n}(t)\right] \exp \left(n L_{y}(t)-t n x\right)
\end{aligned}
$$

In the end, we find that

$$
\mathbb{P}\left(A_{n}\right) \leqslant \exp \left(-n L_{y}^{*}(x)\right)
$$

Since we have already computed the Legendre-Fenchel derivative of L_{y}, the proof is complete.

An application to matrices

Theorem

Let $p<n \in \mathbb{N}^{*}, A \in M_{p, n}(\mathbb{R})$ with coefficients bounded by $b>0$.
Let π be a uniformy distributed random variable on the set of one-to-one maps from $\llbracket 1 ; p \rrbracket$ to $\llbracket 1 ; n \rrbracket$ and let $S=\sum_{i=1}^{p} A[i, \pi(i)]$.

Then for all $x \in \mathbb{R}_{+}^{*}$,

$$
\mathbb{P}(|S-\mathbb{E}[S]| \geqslant x) \leqslant 2 \exp \left(-\frac{x^{2}}{4(\theta v+2 x b / 3)}\right)
$$

where

- $v=\frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{n} A[i, j]^{2}$
- $\theta=-\alpha-\frac{1+\alpha}{\alpha} \ln (1-\alpha)$
- $\alpha=p / n$.

We set, for all $i \in \llbracket 1 ; p \rrbracket, \mathcal{F}_{i}=\sigma(\pi(1), \ldots, \pi(i))$ and $M_{i}=\mathbb{E}\left[S \mid \mathcal{F}_{i}\right]-\mathbb{E}[S]$. Then $\left(M_{i}\right)_{i \in \llbracket 1 ; p \rrbracket}$ is a martingale.

We set, for all $i \in \llbracket 1 ; p \rrbracket, \mathcal{F}_{i}=\sigma(\pi(1), \ldots, \pi(i))$ and $M_{i}=\mathbb{E}\left[S \mid \mathcal{F}_{i}\right]-\mathbb{E}[S]$. Then $\left(M_{i}\right)_{i \in \llbracket 1 ; p \rrbracket}$ is a martingale.

But given $\mathcal{F}_{i}, \pi_{\mid \llbracket i+1 ; p \rrbracket}$ is uniformly distributed on the set of one-to-one maps from $\llbracket i+1 ; p \rrbracket$ to $\llbracket 1 ; n \rrbracket \backslash\{\pi(1), \ldots, \pi(i)\}$.

We set, for all $i \in \llbracket 1 ; p \rrbracket, \mathcal{F}_{i}=\sigma(\pi(1), \ldots, \pi(i))$ and $M_{i}=\mathbb{E}\left[S \mid \mathcal{F}_{i}\right]-\mathbb{E}[S]$. Then $\left(M_{i}\right)_{i \in \llbracket 1 ; p \rrbracket}$ is a martingale.

But given $\mathcal{F}_{i}, \pi_{\mid \llbracket i+1 ; p \rrbracket}$ is uniformly distributed on the set of one-to-one maps from $\llbracket i+1 ; p \rrbracket$ to $\llbracket 1 ; n \rrbracket \backslash\{\pi(1), \ldots, \pi(i)\}$.

Thus by defining $m_{i}(k,:)=\mathbb{E}\left[A[k, \pi(i+1)] \mid \mathcal{F}_{i}\right]$, we obtain $m_{i}(k,:)=\frac{1}{n-i} \sum_{j \notin\{\pi(1), \ldots, \pi(i)\}} A[k, j]$

We set, for all $i \in \llbracket 1 ; p \rrbracket, \mathcal{F}_{i}=\sigma(\pi(1), \ldots, \pi(i))$ and $M_{i}=\mathbb{E}\left[S \mid \mathcal{F}_{i}\right]-\mathbb{E}[S]$. Then $\left(M_{i}\right)_{i \in \llbracket 1 ; p \rrbracket}$ is a martingale.

But given $\mathcal{F}_{i}, \pi_{\mid \llbracket i+1 ; p \rrbracket}$ is uniformly distributed on the set of one-to-one maps from $\llbracket i+1 ; p \rrbracket$ to $\llbracket 1 ; n \rrbracket \backslash\{\pi(1), \ldots, \pi(i)\}$.

Thus by defining $m_{i}(k,:)=\mathbb{E}\left[A[k, \pi(i+1)] \mid \mathcal{F}_{i}\right]$, we obtain $m_{i}(k,:)=\frac{1}{n-i} \sum_{j \notin\{\pi(1), \ldots, \pi(i)\}} A[k, j]$ which in turn gives

$$
\Delta M_{i}=A[i, \pi(i)]-m_{i-1}(i,:)+\sum_{k=i+1}^{p}\left[m_{i}(k,:)-m_{i-1}(k,:)\right]
$$

We set, for all $i \in \llbracket 1 ; p \rrbracket, \mathcal{F}_{i}=\sigma(\pi(1), \ldots, \pi(i))$ and $M_{i}=\mathbb{E}\left[S \mid \mathcal{F}_{i}\right]-\mathbb{E}[S]$. Then $\left(M_{i}\right)_{i \in \llbracket 1 ; p \rrbracket}$ is a martingale.

But given $\mathcal{F}_{i}, \pi_{\mid \llbracket i+1 ; p \rrbracket}$ is uniformly distributed on the set of one-to-one maps from $\llbracket i+1 ; p \rrbracket$ to $\llbracket 1 ; n \rrbracket \backslash\{\pi(1), \ldots, \pi(i)\}$.

Thus by defining $m_{i}(k,:)=\mathbb{E}\left[A[k, \pi(i+1)] \mid \mathcal{F}_{i}\right]$, we obtain $m_{i}(k,:)=\frac{1}{n-i} \sum_{j \notin\{\pi(1), \ldots, \pi(i)\}} A[k, j]$ which in turn gives

$$
\Delta M_{i}=A[i, \pi(i)]-m_{i-1}(i,:)+\sum_{k=i+1}^{p}\left[m_{i}(k,:)-m_{i-1}(k,:)\right]
$$

We eventually find that $\left|\Delta M_{i}\right| \leqslant 4 b$ as since

$$
m_{i}(k,:)-m_{i-1}(k,:)=\frac{1}{n-i}\left(m_{i-1}(k,:)-A[k, \pi(i)]\right) .
$$

Applying Freedman's inequality to both M and $-M$ yields

$$
\mathbb{P}\left(\left|M_{p}\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{x^{2}}{2\left(\left\|\langle M\rangle_{p}\right\|_{\infty}+4 b x / 3\right)}\right)
$$

Applying Freedman's inequality to both M and $-M$ yields

$$
\mathbb{P}\left(\left|M_{p}\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{x^{2}}{2\left(\left\|\langle M\rangle_{p}\right\|_{\infty}+4 b x / 3\right)}\right)
$$

We admit that $\langle M\rangle_{p} \leqslant 2 \theta v$ almost surely where

$$
v=\frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{n} A[i, j]^{2} ; \quad \theta=-\alpha-\frac{1+\alpha}{\alpha} \ln (1-\alpha) ; \quad \alpha=\frac{p}{n}
$$

giving the result.

Applying Freedman's inequality to both M and $-M$ yields

$$
\mathbb{P}\left(\left|M_{p}\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{x^{2}}{2\left(\left\|\langle M\rangle_{p}\right\|_{\infty}+4 b x / 3\right)}\right)
$$

We admit that $\langle M\rangle_{p} \leqslant 2 \theta v$ almost surely where

$$
v=\frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{n} A[i, j]^{2} ; \quad \theta=-\alpha-\frac{1+\alpha}{\alpha} \ln (1-\alpha) ; \quad \alpha=\frac{p}{n}
$$

giving the result.

- We would like to have a similar result for square matrices.

Applying Freedman's inequality to both M and $-M$ yields

$$
\mathbb{P}\left(\left|M_{p}\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{x^{2}}{2\left(\left\|\langle M\rangle_{p}\right\|_{\infty}+4 b x / 3\right)}\right)
$$

We admit that $\langle M\rangle_{p} \leqslant 2 \theta v$ almost surely where

$$
v=\frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{n} A[i, j]^{2} ; \quad \theta=-\alpha-\frac{1+\alpha}{\alpha} \ln (1-\alpha) ; \quad \alpha=\frac{p}{n}
$$

giving the result.

- We would like to have a similar result for square matrices.
- Because the constant θ is not defined for $\alpha=1$, that is $p=n$, we will decompose the matrix into two rectangular matrices and apply the previous result twice.

The square matrix version

Let $n \geqslant 2, A \in M_{n}(\mathbb{R}), \pi \sim \mathcal{U}\left(\mathfrak{S}_{n}\right)$ and $S=\sum_{i=1}^{n} A[i, \pi(i)]$. Set $v=\frac{1}{n} \sum_{i, j=1}^{n} A[i, j]^{2}$ and suppose that $|A[i, j]| \leqslant b$ for all $i, j \in \llbracket 1 ; n \rrbracket$.

The square matrix version

Let $n \geqslant 2, A \in M_{n}(\mathbb{R}), \pi \sim \mathcal{U}\left(\mathfrak{S}_{n}\right)$ and $S=\sum_{i=1}^{n} A[i, \pi(i)]$. Set $v=\frac{1}{n} \sum_{i, j=1}^{n} A[i, j]^{2}$ and suppose that $|A[i, j]| \leqslant b$ for all $i, j \in \llbracket 1 ; n \rrbracket$.

Now write a decomposition $S=P+Q$ with $P=\sum_{i=1}^{p} A[i, \pi(i)]$ and $Q=\sum_{i=p+1}^{n} A[i, \pi(i)]$ where $p=\left\lfloor\frac{n}{2}\right\rfloor$.

The square matrix version

Let $n \geqslant 2, A \in M_{n}(\mathbb{R}), \pi \sim \mathcal{U}\left(\mathfrak{S}_{n}\right)$ and $S=\sum_{i=1}^{n} A[i, \pi(i)]$. Set $v=\frac{1}{n} \sum_{i, j=1}^{n} A[i, j]^{2}$ and suppose that $|A[i, j]| \leqslant b$ for all $i, j \in \llbracket 1 ; n \rrbracket$.

Now write a decomposition $S=P+Q$ with $P=\sum_{i=1}^{p} A[i, \pi(i)]$ and $Q=\sum_{i=p+1}^{n} A[i, \pi(i)]$ where $p=\left\lfloor\frac{n}{2}\right\rfloor$.

Let $x \in \mathbb{R}_{+}^{*}$, we have :
$\mathbb{P}(|S-\mathbb{E}[S]| \geqslant x) \leqslant \mathbb{P}(|P-\mathbb{E}[P]| \geqslant x / 2)+\mathbb{P}(|Q-\mathbb{E}[Q]| \geqslant x / 2)$.

The square matrix version

Let $n \geqslant 2, A \in M_{n}(\mathbb{R}), \pi \sim \mathcal{U}\left(\mathfrak{S}_{n}\right)$ and $S=\sum_{i=1}^{n} A[i, \pi(i)]$. Set $v=\frac{1}{n} \sum_{i, j=1}^{n} A[i, j]^{2}$ and suppose that $|A[i, j]| \leqslant b$ for all $i, j \in \llbracket 1 ; n \rrbracket$.

Now write a decomposition $S=P+Q$ with $P=\sum_{i=1}^{p} A[i, \pi(i)]$ and $Q=\sum_{i=p+1}^{n} A[i, \pi(i)]$ where $p=\left\lfloor\frac{n}{2}\right\rfloor$.

Let $x \in \mathbb{R}_{+}^{*}$, we have :
$\mathbb{P}(|S-\mathbb{E}[S]| \geqslant x) \leqslant \mathbb{P}(|P-\mathbb{E}[P]| \geqslant x / 2)+\mathbb{P}(|Q-\mathbb{E}[Q]| \geqslant x / 2)$.

In the end, we get $\mathbb{P}(|S-\mathbb{E}[S]| \geqslant x) \leqslant 4 \exp \left(-\frac{x^{2}}{16(\theta v+x b / 3)}\right)$
with the constant $\theta=\frac{5}{2} \ln (3)-\frac{2}{3}$.

Remark

Defining $S=\sum_{i=1}^{n} A[i, \pi(i)]$, we have shown that:

$$
\mathbb{P}(|S-\mathbb{E}[S]| \geqslant x) \leqslant 4 \exp \left(-\frac{x^{2}}{16(\theta v+x b / 3)}\right)
$$

with the constant $\theta=\frac{5}{2} \ln (3)-\frac{2}{3}$.

Remark

When $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are iid observations of a distribution P and $A[i, j]=f\left(x_{i}, y_{j}\right)$, this inequality may be used for a test of independence of the marginals of P.

Questions

Do you have any questions?

References:
[1] Bercu, Delyon and Rio, Concentration inequalities for sums and martingales (2015).
[2] Chung and Lu, Concentration inequalities and martingale inequalities: a survey (2006).

Happy birthday Nolwenn!

