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This article is about sums of squares (sos) over k-subsets hypercubes. This has a lot of applications
in areas such as combinatorial optimization, decision problems and proof complexity.

Notation
We will consider the following 2-subset hypercube Vn := {0, 1}(

n
2), and polynomial functions over it. To

define them, let R[x] := R[xij | 1 ≤ i < j ≤ n] and the ideal In := ⟨x2
ij − xij | 1 ≤ i < j ≤ n⟩. The

set of polynomial functions on Vn, denoted by R[Vn], is the quotient R[x]/In. Note that this set is in
bijection with the square-free polynomials in R[x]. Now we define a natural action of the symmetric
group Sn on R[Vn]: σ · xij := xσ(i)σ(j). We will work on polynomials with degree at most d, denoted by
R[Vn]≤d. We will also need some notation about the representations of the symmetric group Sn. The
irreducible Sn-modules are indexed by the partitions λ of n, that we write λ ⊢ n. Since V := R[Vn]≤d is
a Sn-module, it has an isotypic decomposition V =

⊕
λ⊢n Vλ with Vλ = Smλ

λ where Sλ is the irreducible
Sn-module associated to λ, and mλ ∈ N. If τλ is a tableau of shape λ, let Rτλ be the row group of τλ,
that is the subgroup of Sn that leaves each row of τλ invariant. Now we define Wτλ to be the subspace
of Vλ consisting of all points fixed by Rτλ .

1 Cornerstone of the paper: a result of Gatermann and Parrilo
The main point of the article is to present some improvements of a result of Gatermann and Parrilo.

1.1 The result
This result tells us the structure of symmetry-reduced sos-expressions for Sn-invariant d-sos polynomials,
and shows that we can search for such sos expressions by solving a SDP of size

∑
λ⊢n mλ.

Theorem 1 (Gatermann-Parrilo, 2004)
Suppose p ∈ R[Vn] is Sn-invariant and d-sos. For each partition λ ⊢ n, fix a tableau τλ of shape λ
and choose a vector space basis {bτλ1 , . . . , bτλmλ

} for Wτλ . Then for each partition λ of n there exists a
mλ ×mλ psd matrix Qλ such that

p =
∑
λ⊢n

tr(QλY
τλ) (1)

where Y τλ
ij := sym(bτλi bτλj ).

1.2 Improvements
The main aim of the article is to provide two improvements of this result:

- proving that one can bound the number of partitions in the sum independently of n, and that each
mλ is bounded above by a quantity independent of n;

- proving that one can relax the conditions on the living space of the bτλi s.

It also turns out that the methods used also have applications to combinatorial problems.

2 Bounding the number or partitions
The following results shows that we can restrict our attention on some specific partitions.
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Theorem 2
The dimension mλ of Wτλ for any tableau of shape λ is zero unless λ ≥lex (n− 2d, 12d).

It allows us to bound the number of partitions needed in the sum of (1) independently on n.

Proposition 1
The number of partitions λ such that mλ is not zero is bounded above by p(0)+p(1)+ . . .+p(2d) where
p(i) is the number of partitions of i.

3 Finding spanning sets

3.1 More general spanning sets
The following theorem allows us to look for other spanning sets than bases for the Wτλ .

Theorem 3
Suppose p ∈ R[Vn] is Sn-invariant and d-sos. For each partition λ ⊢ n, fix a tableau τλ of shape λ
and let {pτλ1 , . . . , pτλlλ } be a set of polynomials whose span contains Wτλ . Then for each partition λ of n
there exists a mλ ×mλ psd matrix Qλ such that

p =
∑
λ⊢n

tr(QλY
τλ)

where Y τλ
ij := sym(pτλi pτλj ).

Now our concern is to find such spanning sets that yield succinct d-sos expressions for Sn-invariant
polynomials. Moreover, we want these polynomials to be easier to enumerate, in order to have a general
expression.

The idea is to substitute a tableau τλ by its hook, i.e we keep the first row of length λ1 and we put
n− λ1 rows of length 1 underneath, and then to take the symmetrizations of monomials (symτλ

(xm) =
1

|Rτλ
|

∑
s∈Rτλ

s · xm) by these tableaux to get the desired polynomials.

3.2 Construction of polynomials with flags
From the previous spanning sets, we will now construct two more polynomials families. The main point
with these polynomials is that they can be computed thanks to graph theory and flags.

Definition
Let 0 ≤ t ≤ f ≤ n.

- An intersection type T of size t is a simple graph T on t vertices labeled by distinct elements of
[t];

- A T -flag F of size f is a simple graph on f vertices with t vertices labeled by distinct elements
of [t] which induce a copy of T in F . We denote by Ff

T the set of all T -flag of size f , up to
isomorphism.

One can now consider, for Θ ∈ Inj([t], [n]), the set InjΘ(V (F ), [n]) of injective functions h : V (F ) → [n]
that respect Θ, i.e. h(v) = Θ(i) for any vertex v ∈ V (F ) labeled i. These definitions lead us to our first
interesting family of polynomials.

Definition
For T, f and Θ fixed, we define for F ∈ Ff

T :

gΘF :=
∑

h∈InjΘ(V (F ),[n])

∏
{i,j}∈E(F )

xh(i),h(j).

Remark 1:
Since our graphs are simple, gΘF is square-free. Moreover, it is possible to rewrite these polynomials in
terms of the previous symmetrizations :

gΘF =
(n− t)!

(n− f)!
symhook(τλ)

(xm)

where xm =
∏

{i,j}∈E(F )

xh(i),h(j) for any h ∈ InjΘ([f ], [n]).
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Now we introduce another family of polynomials than span Wτλ . For that, for a fixed intersection
type T , we construct a natural order over the set Ff

≥T of T ′-flags such that T is a subgraph of T ′, denoted
by ≤.

Definition
For a flag F ∈ Ff

≥T we define

dΘF :=
∑

F ′∈Ff
≥T

F ′≥F

(−1)|E(F ′)|−|E(F )|gΘF ′ .

Theorem 4
For the tableau τλ, the vector space Wτλ is spanned on one hand by the polynomials g

Θτλ

F for F ∈ F2d
T

where |T | = n− λ1 and on the other hand by the polynomials d
Θτλ

F for F ∈ F2d
T where |T | = n− λ1.

According to Theorems 3 and 4, we can express a certificate for a Sn-invariant and d-sos polynomial
with those flag-based polynomials. Moreover, thanks to the restricted set of partitions we are considering
and the properties of intersection types, one can prove that the size of the psd matrices obtained in the
certificate does not depend on n.

3.3 Restricting to flag sos expressions
However, in the literature, more is known about more restricted flag expressions. Thus we will show that
those ones, which we refer to as flag sos expressions, suffice for our certificates.

Definition
Let Θ0 ∈ Inj([f ], [n]) and F, F ′ ∈ Ff

T where |T | = t. We define

EΘ0
[dΘ0

F dΘ0

F ′ ] =
1

| Inj([f ], [n])|
∑

Θ∈Inj([f ],[n])

dΘF d
Θ
F ′

Definition
Let dΘ,T,f = (dΘF )F∈Ff

T
be the vector of flag polynomials for a fixed intersection type T , flag size f ,

and labeling Θ. A flag sos is a sos expression of the form∑
T,f

tr
(
RT,fEΘ[dΘ,T,f tdΘ,T,f ]

)
.

The key argument for the following theorem is that for two flags F, F ′ with different intersection type
of size t, the product dΘF d

Θ
F ′ is zero.

Theorem 5
If p is a Sn-invariant and d-sos polynomial, then p is also 2d-flag sos.

4 Example in combinatorics
Here is an example where the method developed has applications to a combinatorial problem.

Theorem 6 (Kővari-Sós-Turán)
Let G be a n-vertices graph not containing a C4 (the cycle on four vertices). Then the number of edges
of G is at most 1

2n
3/2 +O(n).

Proof: We just give an overview of the proof. We consider

s =
∑

1≤i<j≤n

xij

and
I = ⟨x2

ij − xij ∀1 ≤ i < j ≤ n, xijxjkxklxli ∀i, j, k, l⟩.
Note that for a graph G, s(1G) is the number of edges of G, and the variety of I consists exactly

of the characteristic vectors of graphs avoiding 4-cycles. Thus, to prove the theorem it suffices to show
that n+ 2

n−1s−
2

(n2)
s2 is 2-sos modulo I. Indeed it will imply that s(1G) = |E(G)| ≤ n+

√
4n3−3n2

4 for all

C4-free graph G. The method developed enables to provide such a certificate. □
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