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1 École Normale Supérieure de Rennes, Univ Rennes, France
killian.barrere@ens-rennes.fr

2 DIVA Group, University of Fribourg, Switzerland
firstname.lastname@unifr.ch

Abstract. DrAwME is a web app that enables to draw music, which
has been developed in the context of the European H2020 project iMuS-
ciCA. This project aims at developing an active learning platform for
the teaching of sciences through art, and especially music. This report
presents how we developed an artificial intelligence that can co-create
music from sketches with the user in DrAwME.
Music generation has greatly improved since the first research started,
mostly with the recent deep learning methods. In this report, we pro-
pose an original approach to generate music using sketches representing
sounds. We use a deep neural network capable to continue sketches of the
user to co-create a musical drawing. We generate new datasets of musical
sketches and train new models to produce drawings that sounds musical.
We also discuss the performance and results of the different generation
methods.
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1 Introduction

Music generation is still an open problem that is motivating a lot of research.
Some systems are even capable of producing music in cooperation with the users.
Meanwhile, DrAwME is a web application that let users draw music. The draw-
ing produce sounds according to a temporal axis and an axis for the frequency of
the note. It is part of the European H2020 project iMuSciCA that aims to teach
students science through arts. While the main goal of DrAwME is to draw music,
a lot of users also like to simply draw shapes that are not intended to produce
music like houses, hearts, etc. Meanwhile, the field of handwriting generation is
also producing very good results [13].

With DrAwME ’s ability to convert drawings into sounds, we wanted to try
to generate drawings that produce nice sounds. The main objective is to build
an Artificial Intelligence which is able to generate music. Another objective that
is important is to enhance the user experience. As the users are mainly young
students, it makes sense to build an Artificial Intelligence that is able to co-
create with them. We want the user to start drawing something and then ask
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the Artificial Intelligence to continue the drawing. Also, because a lot of students
like to draw simple skeches, it also makes sense to build a similar kind of Artificial
Intelligence that would complete sketches.

This report will introduce how we built such Artificial Intelligence. This
work focus on three main ideas: Sketch Generation, Music Generation and the
interactivity of the co-creation process. In particular, we will introduce a new
model that is able to generate music using an original approach: a musical sketch
dataset converted from a dataset of real music.

The remainder of this report is organized as follows. We will start by pre-
senting a short history of the different fields wthat are related to this work in
section 2. We will then focus in details on sketch-rnn [13] in section 3, because we
chose to reuse that system in our Artificial Intelligence. Later, we present every
contribution of the report, including how we created the Artificial Intelligence
in section 4, and finishing with a discussion of the different results we achieved
in section 5.

2 Related Works

2.1 Music Generation

Music generation has been sparking people’s interest for a long time. While
music was first generated with some primitive solutions, it really started to get
interesting with the possibilities computers brought. The term music generation
could be used in several fields. First the generation of a piece of audio using
already existing instruments and just telling which note is going to be played. It
could also refer the action of generating sounds to approach the sounds of already
existing instruments [8] or the process of crating new instruments. In this report,
we will be focusing on the first kind of music generation we mentionned.

This field has greatly improved thanks to the introduction of Deep Neural
Networks. While simple Neural Networks are enough to predict the next note to
be played, their inputs are independent from any outputs, and are not able to
acquire informations from the past.

Recurrent Neural Networks (RNNs) solves this problem by having some de-
pendance between inputs and outputs. Therefore, they are able to memorize
informations and reuse it for a future computation. They are used a lot when
the inputs are in a sequence format, like it is the case for text and every input
that have something to do with a time representation. They were first widely
used, but despite the introduction of new networks, they are still used today
[14] [21]. However for pieces of information buried very deep in the history, they
struggle to memorize them.

Long Short-Term Memory (LSTM) [16] have been introduced to solve this
problem. LSTM has functions doing each a unique task. The differents functions
are doing the task of receiving an input, sending an output and also choose what
information to keep and which one to lose. They are called respectively input,
output and forget gates. By having the ability to loose some information the
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network is able to keep only useful information, and therefore useful information
from a further distance in the history. Thanks to that, the process of learning
and back propagating the gradients is less impacted by the vanishing gradient
problem. The introduction of LSTM in the field of music generation greatly
helped to improve the musical structures and increased the possibility of music
generation [7].

The introduction of Reinforcement Learning also brought some new possibil-
ities to the field [20]. The main differences with the other deep learning methods
lie in the way the training is achieved. While others system are trained with a
specific target for every sound, in the case of Reinforcement Learning, we only
give a reward base on how good we think the generation is. The system then
learn by itself to go to an objective that fits what we want. Severals aproaches
[11] [18], use Reinforcement Learning in their systems.

Generative Adversarial Networks (GAN) [9] were specifically created to gen-
erate data that seems to be created by humans. They work with two networks.
The first one has to fulfill the task of generating data, while the second one
has to identify generated data from the real ones. They are trained in a pro-
cess that both are getting better and better. The main objective is to train the
first network to generate data that are able to fool the second network. While
GANs were mostly used for image generation, they have been also tried for music
generation [22] [31] [6] [11].

Autoencoders are used to compress the information. They are able to learn a
representation of a high dimensional set of data. This representation uses a lower
number of dimensions and is supposed to contain useful features that another
system could use to learn something. They are doing very well in the task of
generating data. They are now used in almost every music generation system
[28] [15].

Some parts of deep architectures useful for handwriting recognition and gen-
eration have been re-used to generate musics [5] [26]. Those systems reuse specific
features that are using the structures of word and sentences.

Meanwhile, DrAwME has been developed in the context of iMuSciCA which
is an european project that aim to teach students in highschool science, mu-
sic and arts. DrAwME is a JavaScript application that provides an interactive
interface converting drawings into sounds. The horizontal axis in this interface
represents the time, while the vertical axis represents the frequency of the sound
to be played and hence the notes. We can choose the waveform of the sound,
which is basically like choosing the instrument.

The ability of DrAwME to convert drawings into sounds is opening the possi-
bility to use drawing generation and convert it to sounds to have a new generator
of sounds.

2.2 Handwriting Generation

Handwriting Generation is a task that consists in creating data that an human
could have been drawing with its hand and a pen, a brush, etc. First tries in the
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field used Hidden Markov Models to learn and generate sequences of human’s
drawn shapes [27].

Later, some systems have been developed to complete the task of generating
hand’s drawings from a picture. Paul the robot [29] is one of the system that are
able to produce an hand drawing from images of a camera. For the same task,
Reinforcement Learning has also been used [30]. The results are drawings of a
good quality and looks to be human.

RNN and Gaussian Mixture Models have then been used in most of the
systems following the works achieved by Graves [10]. As for the topic of music
generation, LSTMs have been preferred for their possibilities to learn longer-
range context. They have been used [32] to recognize and also generates chinese
characters. Sketch-RNN [13] uses LSTM and Gaussian Mixture Models to gen-
erate sketches. It will be presented in more details in section 3.

2.3 Co-creation

This section will try to give a quick history of how systems are used to help users
in a cooperative fashion during their creation process. This is one of the main
objectives of our Artificial Intelligence.

ChordRipple [17] is one system that is able to help musicians to select chords.
They start by giving the chords they want to play, and then the system is able
to generate additional chords, or even modify the chords that the user choose.
According to the article, it helped musician during their creation process.

Using a Recurent Neural Network, Hadjeres and Nielsen are able to produce
a system capable to learn a musical style and then to generate music that match
this style while respecting constraints given by the users [14].

With Generative Adversarial Networks, it is possible to create networks ca-
pable or generating music that sounds nice and that also could be used to play
music in cooperation with the user [6].

The Artificial Intelligence Duet [1] let you play a musical duet with an Artifi-
cial Intelligence. The user can start playing some notes and after a few moments,
the system start to play notes in response to what the user played.

3 Sketch-RNN

This section is a continuation of section 2. We introduce the sketch-rnn [13]
system in detail because it is the model we use to produce every result in the
next sections.

We will speak about the different data formats (In this case, data are sketches.)
in section 3.1. Then we explain in section 3.2 the architecture of the system fol-
lowed by a detailed look at the loss function used in section 3.3. We then continue
by explaining how the number of classes affect the performance of the network
in section 3.4. Finally, we briefly show some use-cases of sketch-rnn in section
3.5.

For additional informations, we highly recommend reading the original paper
[13].
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3.1 Sketch formats

In this section we explain the two data representations used in sketch-rnn.
The first one is representing each point of the sketch with three values [10].

The first and second values represent the x and y relative coordinates with the
previous point. The third value is a boolean that is telling if the pen is touching
the paper, or equally if a stroke is being drawn.

Following the principle of the first format, a second one has been proposed
[13]. It is using five values rather than three. The first two are still the x and
y relatives coordinates. The last three values are labelled p1, p2 and p3 and
represent various informations about the pen state. p1 tells if the pen is currently
touching the paper and if a stroke will be drawn connecting the current point
to the next point. p2 indicates that the pen will be lifted up after drawing the
current stroke and that the next stroke will not be drawn. The next five values
will then say where to replace the pen to start the drawing of a new stroke.
Finally, p3 indicates that after drawing the current stroke, the sketch will be
finished. The second format is the one used to represent every point of the
sequence of the sketch in sketch-rnn [13].

3.2 Description of the models

Fig. 1. Picture representing the conditional sketch-rnn model (taken from [13]).

This section presents the two different architectures of sketch-rnn introduced
by Ha and Eck [13].

Variational Auto Encoder The first one is called the conditional model and
works according to the process of Variational Autoencoder [19]. Its main goal
is, given a complete sketch drawn by the user, to create sketches that look like
the input while keeping features learned during the training. Figure 1 shows a
representation of the model.

The sketch-rnn model following the Variational Auto Encoder structure is
starting with an Encoder. This first layer is composed of a Bidirectional Recur-
rent Network [25] followed by Fully Connected Layers. A Bidirectional Recurrent
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Network is the combination of two RNN, one for each direction. In the context
of sketch drawing, the first direction represents the drawing of the sketch from
the start to the end. The second direction represents the drawing in the re-
verse order. This Encoder is mainly in charge of creating a latent vector that is
representing the input with some useful features. This latent vector is more or
less randomly modified (depending on a parameter called the temperature τ) to
produce a wider range of prediction later.

LSTM is described as the best RNN model for the encoder [13], but others
still seem relevant to this task.

The second part of the network is called the Decoder. It is an RNN that
works with the sequence of the sketch given in the drawing direction. It takes as
inputs the same sketch given to the encoder which is concatenated along with the
latent vector firstly generated by the Encoder. The latent vector is representing
the input sketch and also some features about it that are supposed to help the
Decoder to generates sketches.

For each stroke of the sketch it is outputting parameters to generate the
relative coordinate of the next point, that is also representing the next stroke and
a pen state. They are parameters for a Gaussian Mixture Model more precisely.
Briefly, it is producing means, standard deviations and correlation coefficients
for a Bivariate Normal distribution (For more information, please read [13].).
This distribution is then able to generate points in two dimensions.

The best models described are first Hyper RNNs [12] because of their ability
to change the shape of the network that makes them very competitive when it
comes to generation. LSTMs are still producing good results and can be used
without loosing too much quality [13].

Decoder Only The second architecture, which is named the unconditional
model [13], only use the Decoder to generate sketches. The latent vector gen-
erated in the conditional mode is replaced by a randomly generated vector fol-
lowing the normal distribution. Strictly speaks, it is not a decoder and only a
regular RNN.

In the process of completing sketches given by the users, we will only be
using the unconditional mode. To do that, we first generate a random latent
vector, and start by feeding the Decoder RNN with the input while ignoring the
output. Then by using the output of the Decoder to generate next points, we
can continue to feed the Decoder and generate new values.

3.3 Loss Function

In sketch-rnn, the loss function used is a weighted sum of two terms. Without
detailing each term, the whole equation for the loss look like:

Loss = LR + wKL ∗ LKL (1)

The first term is called the reconstruction cost (LR in equation (1)). It is
used in both conditional and unconditional models. It is representing the error
between the parameters produced by the decoder and the given input sketch.
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The second term is called the Kullback Leibler Divergence cost (LKL in
equation (1)). It is telling how close the encoder is of producing a random latent
vector. This term is only used with the conditional model.

wKL then represent the weight attributed to the Kullback Leibler Divergence
cost (LKL). LKL is only used while using the conditional model (introduced in
section 3.2). The goal of wKL is to control by how much the Encoder can produce
random latent vectors. When wKL → 0, the model is getting closer and closer
to a model using only the Decoder.

Every detail on how each term is computed can be found in the original
articles [13] [10].

3.4 Number of Class

As the task of sketch-rnn is more about sketch generation than predicting the
class of the sketch the user drawn, the number of class that the model is train to
generate impact more the model. Usually each model of sketch-rnn is trained on
a single class. For instance, a model could be trained only with drawings of cat
and will be able to generate drawings of cat. By using a single class, the network
usually generates nice and coherent sketches. Training a model on multiple class
is not that easy. The main reason is that the model has to learn to be coherent
in the drawing it is generating. While the model is producing mostly coherent
sketch for a small number of classes (less than 10) , it is producing strange results
with a large number of classes (more than 10). These drawings more or less look
like a mean of every sketch.

3.5 Results obtained

This section will show some use-cases of sketch-rnn. Again, here we will briefly
introduce some possibilities. More possibility are shown in the original paper
[13].

Conditional Reconstruction Using an input from a user, the model is able
to produce similar looking sketches. In order to do that, we first need to feed
the Encoder (introduced in section 3.2) with the input of the user. Then we add
to the extracted features some randomness and feed everything to the Decoder.
By using different (thanks to the random part) but still close latent vectors, the
Decoder is able to produce similar looking sketches. By modifying the tempera-
ture τ (which is in charge of how big the random changes are) , the network can
produce from very strict looking sketches to completely different sketches.

Predicting Endings of Sketches One other possibility is to use the uncon-
ditional model (which is introduced in section 3.2) to predict the ending of an
incomplete sketch started by the user. We start by generating a random latent
vector from the normal distribution and feed it concatenated with what the user
started to draw to the Decoder. We then start generating points when the last
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point of the input sketch has been feed, and reuse these points to draw the next
strokes on screen and also to continue feeding the Decoder.

This section explained quickly what was sketch-rnn. More informations about
sketch-rnn can be found in the original paper [13]. We will be using this model
in the section to come. We will focus on the prediction of incomplete sketches
for the rest of the paper as this is something very close to what we want.

4 Contribution

This section is introducing the different contributions I brought to DrAwME
which is a JavaScript application converting user’s drawing into sounds. Pre-
sented in section 2.1, sketch-rnn and the others contributions that are not di-
rectly linked to these two. The main objective was to integrate sketch-rnn within
DrAwME and the different contributions are always connected to this objective.
The contributions will be introduced in three main axes. The first one is focusing
on the process of co-creation and the user experience. It is presented in section
4.1. Then section 4.2 introduces the second axes speaking about sketch genera-
tion and models. Finally, section 4.3 explains our contributions to the generation
of music and more precisely, musical sketch generation.

4.1 Co-creation in DrAwME

In this section, we mainly discuss about how we integrated sketch-rnn within
DrAwME (introduced in sections 3 and 2.1 respectively) before speaking of the
different decisions to improve the process of co-creation and the user experience.

To add the implementation of sketch-rnn to the DrAwME application, we
used the implementation in JavaScript of the system that was coded by the
authors of the original article [13]. They provided a script predicting the end
of the users’ incomplete sketches which are close to the task we desire to fulfill.
For that task we used the model in an unconditional mode which means that
sketch-rnn is mostly working with only its Decoder (this model is introduced in
section 3.2).

We reused that code so that it is taking the drawings of the user in DrAwME
as the input of the model and redirected the output of sketch-rnn to the ap-
plication’s screen. In both processes, it was required to convert the data to the
good datatypes. In addition we added a ”magical-wand” button that is mostly
telling the Artificial Intelligence to complete the drawing of the user.

We think that completing an user incomplete sketch directly toward its end
is not creating a good interaction with the user. We imagined the process of
co-creation to looks like a reciprocation between letting the user drawing and
giving the pen to sketch-rnn. We then decided to modify the code so that it is
doing something that show more interactions.

Because the implementation of sketch-rnn is working in the unconditional
mode, the main component of the model is an RNN (introduced in section 2.1).
RNNs are working step by step and produce one output based on one input at
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every step. That said, we are then able to produce the points one by one until
we are satisfied of the produced drawing.

Therefore, we decided to feed the model with what is already drawn on
screen and let it produces points until the model decided to lift up the pen. We
then print the result on the screen. The user can decide at any time to push
the ”magical wand button” to tell the Artificial Intelligence to draw one stroke
based on the drawing of the user, leading toward its completion.

We therefore added a button in the user interface that allow you to choose
the number of strokes generated at each time step. We found it useful if we
want to swap to a model predicting a different class that requires to draw more
strokes.

4.2 Sketch Generation

In this part, we discuss about the contribution regarding sketch generation which
are based on sketch-rnn.

After the integration of sketch-rnn within DrAwME, which was using one of
their pre-trained mode [13], we decided to train a model by ourselves one model.
For that we used the QuickDraw [2] dataset (See section 5.1). We trained the
model with a class composed of only sketches of cats. We trained the model with
its native implementation in Tensorflow [3].

One important contribution is also the portability of the sketch-rnn model
from Tensorflow to PyTorch [23]. We decided to implement it in PyTorch mainly
because it is allowing us to have a lot more possibility than the original imple-
mentation with Tensorflow. An important reason is the lack of portability of the
Tensorflow implementation of sketch-rnn with GPU’s drivers, whereas in Py-
Torch this is not an issue. Therefore, we could gain a huge speed factor during
the training of models (half a day with a GPU while more than a week when
using CPU). We chose to implement it using DeepDIVA [4], a framework that al-
low the easy reproduction of experiments. We implemented both the conditional
and unconditional model.

Because of a lack of time, we did not manage to finish the implementation.
Therefore, we could not use it to train more models. We believe that the im-
plementation is almost finished and just require a little more time to debug
it.

4.3 Musical Sketch Generation

That section is showing the different points that have been developed including
the conversion of a music dataset to a sketch dataset and how the musical model
works inside the DrAwME web application.

As DrAwME is (at the moment) only capable to play sounds of a maximum
duration of 4 seconds, we first decided that for every example of the training,
validation and training set, the maximum duration would be 5 seconds. We also
decided to use a single instrument for each example. However, in the different
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sets, there is not a label, color or other indication saying which instrument is
drawn. In DrAwME, the color influences the shape of the signal being played,
and that is resulting in different instruments. For the conversion we decided
likes in the application that the horizontal axis is representing the time and the
vertical axis the frequency of the notes. The notes are added to the sketch in a
time-ordered fashion, meaning that we first add the first notes to be played. We
used the same scale for every note, which mean that between two consecutives
notes, there is always the same number of pixels. Lastly, there is a maximum of
range. The notes go from C−2 to C8, while DrAwME only uses 2 ranges.

For the integration within DrAwME, there is only a few change in comparison
to section 4.2. We decided that by default it is more interesting for the process
of co-creation to generates more than one note at each step. We found that
generating 10 strokes (notes) is a good choice. This number can be set by using
the user interface.

5 Experimental Validation

This section presents the different experiments and the results obtained. An
important point we would like to emphasize is the difficulty to have quantita-
tive results. While a classification task produces results that can be quantified,
leading to accuracy score, loss, etc., the task of generation cannot rely on those
scores and then requires human feedback. While asking different people to give
their advices on our result mixed with a baseline is a good solution, it is not so
easy to find testers and could be expensive. We will mainly give our personal
impressions while keeping a comparison with results belonging to the state of
the art.

Firstly, section 5.1 introduces the different datasets used for the experiments.
We present both sketch datasets and music datasets in section 5.1. The section
5.2 explains the different results of how interactive our approach is. Then we
discuss about the results of sketch generation in section 5.3. To finish, we explain
the results we obtain by training a model using a custom dataset of musical
sketch (music converted to sketch) in section 5.4.

5.1 Datasets

Sketch Datasets To train models on the task of sketch generation, we used
the QuickDraw dataset [2]. It is composed of more than a hundred classes of
sketches. We used one version of the dataset which provides 70K examples for
training, 2.5K for validation and 2.5K for the testing process. This is the same
dataset as the one used by sketch-rnn [13].

Music Datasets In order to train the model to generate music, we started to
use the Lakh Pianoroll Dataset [6] [24]. This dataset contains 174154 piano-rolls
of one or more instruments.
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Each piano-roll have a quit long duration of 2 to 3 minutes in average. This is
far longer than the duration that DrAwME can play (see section 2.1). Currently,
DrAwME is able to convert drawing to song of a maximum of 4 seconds. We
then decided to split each pianoroll first by instrument and then by some short
period of 5 seconds which are a bit more than what DrAwME is able to play.
We also removed the small part of 5 seconds without a single note inside.

5.2 Interactive Creation

This section will mostly discuss about the result of the integration of sketch-rnn
within DrAwME. The first thing that need to be said is how much the system
requires resources. The model is taking from our observations two seconds to be
loaded in a web browser, which is taking a very long time compared to loading
DrAwME without the system. Because the application is working locally, the
model uses a lot of resources, and for low configuration, it may result in failure
while loading the model or even later when using it. One solution will be to
make servers (that may use GPU) running the models and by transferring the
different strokes, the resource usage of the client would be lighter. But that also
could result in an another problem if the servers are overloaded with demands.
The same thing happens if you want to change the model dynamically.

Speaking of how good the user experience is, we think that the prediction
stroke by stroke or more strokes at any step (as you can manually change that
parameter) is the best solution. However, for a real conclusion, we will have to ask
different user what they think of the different possibility to generate completion
of sketches.

5.3 Sketch Generation

In this section, we will compare the results of the different models we tested.
As a comparison basis we will use the results from sketch-rnn [13]. All those
results are on the task of predicting the ending of a sketch. To do that, we used
a script written in JavaScript that let the user start a drawing and then draw
the predicted ending of the drawing.

In our experiment, we first used a pre-trained model. As this model is one
provided by sketch-rnn, the results are the same as those presented in the article
[13]. All we can say is that globaly it is well predicting the ending of a drawing.
Sometimes the prediction could seem a bit weird, but generally, the predicted
ending are coherent with the drawings.

We trained a new model for the task of generating cat drawings. For that
model, we used an unconditional model with a Decoder being an LSTM of size
1024. We trained it using the Tensorflow implementation provided by sketch-rnn
[13]. The model has been trained for a week on a 16 cores CPU.

The model we trained showed good and coherent results when it comes to
the task of predicting the end of a drawing (figure 2 is showing some results).
However the different predictions are more often not matching the original draw-
ings. Sometimes for instance, the model we trained predicts that the beginning
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Fig. 2. Different predictions for the same beginning of a sketch using the cat class in
DrAwME. In green, the contour of the face and its two ears have been drawn. The model
predicted the blue strokes. Test it yourself: https://unifri.imuscica.eu/drawme/test/

of a cat’s face is an eye of the cat and then draw the stroke of the cat’s face
all around the first strokes. The model looks less performant than the one from
sketch-rnn. It is possible that the model we trained still has to learn some useful
thing to generate sketches. The difference could be explained by the different
training, and also in the different hyperparameters used. While we only tested
with the default parameters for an unconditional model, the model trained by
sketch-rnn is probably one with very good hyperparameters.

For future works, it would be interesting to train new architectures (using
for instance Convolutional Neural Network), and see how good the new models
are able to generate sketches. We could later also try the new architectures on
music generation.

5.4 Musical Sketch Generation

We trained the musical model with the same parameters for sketch generation.
We used only the decoder with an RNN’s size of 1024 and trained it on a 16
cores CPU in 9 days.

Fig. 3. Different predictions for the same beginninng of a sketch using the music class
in DrAwME. In green, the four left most notes have been drawn. The model predicted
the blue strokes. Test it yourself: https://unifri.imuscica.eu/drawme/test/

The sketches produced by the model we trained is able to produce sketches
that looks like a regular pianoroll (see figure 3). Despite the fact that the model
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has been trained on different range of notes, we think that the generated notes
are still coherent with the drawing of the user. The model is not producing notes
with exact frequencies, mainly because of the different numbers of range between
the training dataset and the DrAwME interface.

Fig. 4. Different predictions for the same beginning of a sketch using the music class
in DrAwME. Here, we show what the network is producing with drawing that do not
looks like usual notes. In green, the strokes that are not horizontal have been drawn
before the generation by the model. The model predicted the blue horizontal strokes.
Test it yourself: https://unifri.imuscica.eu/drawme/test/

One interesting point is how the model reacts to different styles of inputs.
While it is generally generating strokes that looks like notes, in figure 4, we show
how the model generates the next strokes with unusual drawing according to the
class. As the model has learned the structure of music, it is always producing
horizontal strokes. However, because it is not expecting such drawings, we think
that the quality of the music generated could be affected by this change.

One important point that need to be tested is how good the music produced
is and also how interactive the whole process is. For that, we would need to ask
different people what they think.

We also have to try with further experiments on how we convert the music
dataset to a dataset of sketch representing musics. First we will have to try with
fewer musical styles. As sketch-rnn is not doing well when it comes to generate
sketches of multiple classes, we think that the musical model could face the same
problem. We will then have to try with a single musical style, and also with only
one instrument. Also, because the notes have been added to the drawing in
the order of their apparition on the music (from left right), one problem of the
generation is that the network is only generating notes at the right of the last
drawn stroke. For future works, it would be important to solve this problem so
that the model could complete music before the first notes and also in the middle
of what have been drawn.

6 Conclusion

Using the sketch-rnn [13] system, we successfully built an Artificial Intelligence
that is able to generate drawing and music. It is capable to work in a process
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of co-creation with the user, completing a drawing or a music step by step. To
do that, we have been training new models using either a sketch dataset or a
musical sketch dataset that we created.

They are still tasks to be completed especially for the validation of our results.
We will need to make an user-study to see how good our Artificial Intelligence
is at generating music. It is opening a lot of opportunities to work on. For a
model that uses conversion between drawings and music, we could try how well
Convolutional Neural Networks, or others architecture perform for this task.
Also, there is still a lot to do to have a relevant conversion from music to drawing.
We still have to better define how the examples are restricted.
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