
1

Offline Handwritten Recognition : Influence of
the Baseline information

Killian Barrere ∗ and Florent Bartoccioni∗ supervised by Bertrand Coüasnon†
∗ENS Rennes, Univ Rennes, France
†Univ Rennes, CNRS, IRISA, France

Abstract—Known as Handwritten Text Recognition (HTR), the task of transcribing handwritten inputs into a sequence of numerical
character is still an open problem. The offline variant of HTR, that is to say, making transcription from an image of a text, has been
extensively researched. But one point that has not been studied is whether or not the position of the text baseline is useful for this
problem. Therefore, we provide in this paper different experiments that aim to test the impact of the text baseline’s informations. Then
we show our results and discuss lengthily about what can be improved on these experiments.

Index Terms—Deep Learning, Handwritten Text Recognition, Offline Text Recognition, Baseline.

F

1 INTRODUCTION

Even in our digital age there is still a non-negligible number
of documents that are handwritten. Storing handwritten
documents and searching through them efficiently are both
difficult tasks. We define Handwritten Text Recognition
(HTR) as the ability of transcribing handwritten inputs (
paper documents, touch-screens or other devices) into a
sequence of numerical character. Two variants of HTR exist,
Online and Offline. For the former the input is captured
while the person is writing. For example the movements
of the pen tip is registered by a graphics tablet. Meanwhile,
for the later, the input is a picture of the entire text (the raw
values of pixels). Online HTR is known as being easier since
more information is available such as the velocity of the tip,
the pressure applied and the points drawn as a sequence
through time. We narrow down the scope of the project by
only working on the offline variant of HTR. Therefore, by
simplicity and from this point, we will refer Offline HTR as
only HTR.

Like other subjects, HTR was struck by the Deep Learn-
ing wave. Before, HTR used to work with Hidden Markov
Model (HMM) as an entire system, but the new Deep Learn-
ing pipeline outperform these methods [1] both in result and
in practicality. Nowadays, almost every HTR system uses
Neural Networks. Specific types of Neural Networks have
been created and modified for the HTR problem.

However, one thing that seems to be not so researched
is the influence of the text baseline’s position. We think that
adding the knowledge of a the text baseline could help the
Neural Network to recognize letters (and texts at the end),
especially those who cross the standard character size such
as a p, l, etc.

In this project, we will first try to build an architecture
that stick to state of the art results. Then we will evaluate
the influence of the text baseline position. Especially, we
will have to test different ways to add the text baseline’s

information to the architecture.
The section 2 of the paper consists of an historical

background of Text Recognition. It gives an overview of the
progress made in the domain from Hidden Markov Models
to Deep Learning. We then discuss about the material we
used and explain the experiments we wanted to test in
section 3. Finally, in section 4 we lengthily discuss about
the obtained results and how our experiments could be
improved.

2 RELATED WORKS

The HTR systems studied here all follows the classical
architecture composed of three main modules:

• Preprocessing module, in charge of deslant, deskew,
enhance degraded images and reduce variability of
text styles. Data augmentation is also done in this
module.

• Feature extraction module, where a feature vector
sequence is computed as the representation of the
handwritten text line image.

• Decoding module, which estimate the most likely
character sequence for the extracted feature vector
sequence.

2.1 Feature Extraction

Hidden Markov Models (HMM), combined with the
Viterbi’s algorithm [2], used to be the most competitive
solution for HTR. But HMMs applied as in old pipelines
have two major flaws. Firstly, the features extraction had
to be designed by hand which required more development
time. Secondly, HMMs worked at the level of a pixel column
(i.e columnwise). Hence, the prediction could only make use
of a limited context as a character or a word is made up of
several columns of pixels.



2

To address this issue new pipelines using Neural Net-
works (NN) have been introduced [1]. This allowed an
automatic extraction of features and led to outperforming
the prior methods [1] [3]. Nowadays, almost every pipeline
for HTR uses Deep Learning as a feature extraction module.

Specific Neural Networks architectures have been cre-
ated and improved according to the specifications of HTR.
To extract features from images, the Convolutional Neural
Networks (CNN) replaced hand crafted feature extraction
[4] [5] showed huge improvements. A CNN will learn to
recognize local features (e.g., lines, curves, etc.) across space
and then learn to combine these components to recognize
larger structures (e.g., letters, comma, etc.).

After the CNN comes a Recurrent Neural Networks
(RNN) which use recurrent connections that allow a ‘mem-
ory’ of previous inputs to persist in the network’s internal
state, which can then be used to influence the network
output. In our case we use a specific kind of RNNs called
Long Short Term Memory (LSTM). The key point of LSTMs
is that at each step in the sequence it will decide what
“remember” and what to “forget”. That is to say, which
extracted feature will affect the state of the recurrent neuron
and which won’t. This allows us to identifies long term
dependencies among the extracted features.

Intuitively, the convolutional layers extract local fea-
tures while the recurrent layers captures long-term depen-
dencies between these extracted features which allow us to
make predictions on the word or line level.

2.2 Bidirectional RNN and Multi-Dimensional RNN

However, RNNs (and hence LSTMs) don’t make a full use
of all the available context. Actually, the current state is
only computed from the previous state while we could use
the posterior content. In this regards, Bidirectional RNN
(BRNN) [6] and Bidirectional LSTM (BLSTM) [7] [8] [9]
[10] [11] have been introduced. Basically, BRNNs are two
RNNs put in parallel and in opposite directions. This allows
the network to express the current state in function of
the prior and posterior states. Alex Graves took it further
by introducing Multi-Dimensional LSTM (MDLSTM) [12]
where the network use the context in both directions across
all dimensions. This kind of architecture achieved the most
competitive results in the field [1] [3] [13] [14] [15]. Never-
theless, particularly for MDLSTMs, these kind of results are
achieved at the cost of an increase in training time.

CER (%) WER (%)
System Validation Test Validation Test Training time (h)

BLSTM Laia [16] 2.9 4.4 9.2 12.2 37
Doetsch et al. [17] 2.5 4.7 8.4 12.2 /

MDLSTM Voigtlaender et al. [14] 2.4 3.5 7.1 9.3 237
Pham et al. [13] 3.7 5.1 11.2 13.6 /

TABLE 1: Results on IAM dataset

The table 1 presents a comparison of the results and
training time between MDLSTMs and BLSTMs architec-
tures. The results are significantly better for the MDL-
STMs. However, because of the extensive use of LSTMs
in MDLSMs, the architecture in [14] has a training time
increased by a factor of 6 compared to the one in [16]. Last
but not least, the question of the usefulness of MDLSTMs in

HTR compared to BLSTMs have been lengthly discussed in
[16].

2.3 Decoding and Language Model
Finally, the output of the RNN has to be transcribed into
a sequence of character, this step is called decoding. To this
end, HMMs were used as the so-called Hybrid HMM [18]
model. However, this method could not be trained as a
whole and required presegmented training data. Nowadays,
Connectionist Temporal Classification (CTC) [19] is gener-
ally used as an output layer. It allows temporal classification
with RNNs whithout an explicit segmentation of the input.
Furthermore, the CTC provides an objective function which
gives an end-to-end model (image to text) that can be
trained with backpropagation. Deep BLSTM an MDLSTM
trained by using a CTC objective function will learn both lo-
cal character image dependency for character modeling and
long-range contextual dependency for implicit language
modeling.

To further improve the model results, we usually use a
Language Model (LM) [11]. This part is able to decrease the
error rate of the network by constraining its output using
the knowledge of the vocabulary on which the LM as been
trained on (see table 3 and 2). Some examples of methods
used as LMs are Weighted Finite-State Transducers (WFST)
[11], Neural Network LM [20] and LSTM LM [21].

However, due to the significant impact that LMs have
on final results (see tables 2 and 3) and because of the
diversity in existing methods we will only focus on the
results at the output of the Network (i.e CTC prediction
without LM). By doing this we will keep the results on the
influence of the text baseline more fair as the methods used
for the LMs are not always detailed in research papers.

CER (%) WER (%)
System Validation Test Validation Test

BLSTM Laia [16] 3.8 5.8 13.5 18.4
MDLSTM Pham et al. [13] 7.4 6.3 27.3 43.9

TABLE 2: Results on IAM dataset without LM

CER (%) WER (%)
System Validation Test Validation Test

BLSTM Laia [16] 2.9 4.4 9.2 12.2
MDLSTM Pham et al. [13] 3.7 5.1 11.2 13.6

TABLE 3: Results on IAM dataset with LM

3 EXPERIMENTAL SETUP

In this section we will describe our choices for the recogni-
tion system considered, more particularly the NN architec-
ture. The dataset we tried is introduced, and we will also
discuss about how we injected the information of the text
baseline in the architecture.

3.1 Chosen architecture
For the advantages cited in section 2 we chose a Deep
Neural Network (DNN) architecture with CTC as an output



3

Fig. 1: LAIA architecture [22]

layer. This allowed us to have an end-to-end model that can
trained without an explicit segmentation of the text image
input.

Our final choice was LAIA [22], which is a DNN archi-
tecture consisting of a block of convolutions followed by a
block of BLSTMs. Although it has a simpler architecture, its
results are really close to the best performing architectures
which use hierarchical MDRNNs [23] (see table 1). It is
an easy to use, fast to train network (approximately 40h
on a Nvidia GeForce GTX 1080Ti). The author provides
an implementation in Lua with several scripts to prepare
the dataset and to compute the character/word error rate.
Therefore, this allowed us to easily reproduce the paper’s
results from which we compared our experiments.

Moreover, we believed that such simple architecture
could be more influenced by the injection of the text base-
line information. Actually, since MDLSTMs use the context
on both directions in both dimensions of the image, it is
less sensitive to variation in input. Whereas BLSMs could
be more influenced by the vertical position of the words.
According to this assumption, the evaluation of our ex-
periments should be more significant with BLSTMs than
MDLSTMs.

But with the choice of simplicity also comes some
issues. It is sometimes hard to understand what really
happens during the preparations of the images and the
training of the networks. We encountered a lot of difficulty
when it comes to use complex experiments. This encour-
aged us to re-implement the architecture with TensorFlow
(a framework we knew). Firstly, we intended to do it as
an educative purpose (to have a better understanding of
how the whole pipeline work). Secondly to have a better
control over the architecture. We initially wanted to inte-
grate recent advances such as inception module [24] [25]
or skip connections [26] as well as a way to inject the text
baseline information directly in the architecture. We tested
our implementation on MNIST (28x28 images of digits) and
got an accuracy > 98%. However, we learned the hard way,
on other datasets with bigger images, that TenserFlow’s
LSTM implementation is inefficient in term of memory and
execution time. Because of the specific conditions we were
under during this project, we could not continue with our
work on tensorflow and we chose to stick with the original
architecture and implementation of Laia [22].

3.2 Database
As it was already implemented in the LAIA framework,
we worked with the IAM [27] database. It contains more
than 10000 lines of handwritten text in modern style English
and is used as a reference for HTR. The number of writers

is also high enough for the network to not overfit to this
particular dataset. We have used, what Laia’s author call,
Aachen’s partition of the dataset. That is to say, the dataset
was splitted according to the following statistics:

• Train: 6161 lines from 747 forms.

• Validation: 966 lines from 115 forms.

• Test: 2915 lines from 336 forms.

3.3 How to represent the baseline

In this section we will discuss about how we injected the
text baseline information. Each of the proposed methods
have been tested in 4 in order to evaluate their relevance.
To detect the different lines of the text we used a software
developed by IRISA’s team Intuidoc which have been tested
in cBAD competition.

3.3.1 Add the baseline on the images
Our first idea was to modify the images of the database
so that they will include the baseline position in the value
of the image’s pixels. With that also comes many ways to
change the pixels values of the image.

Our text images are initially encoded in grayscale, that
is to say in a single channel image. A first possibility is to
work directly on this channel to include the line on it as
pixel’s values. We can test different parameters on how to
introduce the line on a single channel but with a training of
two days and a limited amount of time, it is difficult to test
all of these parameters. As the text is written black (pixel
value close to 0) on white (pixels value close to 255), we can
therefore try several values for the baseline. A value closes
to text, a medium value, or another one. Also, we can think
of whether or not the baseline should overwrite the text. By
doing that, some informations are hidden by one layer.

A second idea that could solve the problem of the
merged text and text baseline would be to use additional
channels. We could use separate channels for the text (un-
changed) and other ones to add the baseline information.
The second channel could only contain the baseline while a
third one could also work as the first experiment, with text
and baseline on this same channel. By doing that, because
the convolutions use different weight for each channel, we
hope that the network could retrieve the informations of the
text, the baseline, or other informations without worrying
about the loss of informations caused by the overlapping of
text and baseline.

One extra parameter for these experiments is the thick-
ness of the baseline. A too thin baseline could be ignored
whereas if it is too thick, it can overlap with the text.

3.3.2 Normalize the text
In this method, the idea is to reduce the variability in the
data inputs. Rather than modifying the images by adding
the values where the baseline should be placed, we can try
to modify the scale and positions of different parts of the
text. We use the detected text baseline and the text midline
to straighten the text, fix its position and scale it uniformly.
By doing so, we reduce the vertical variability of the text.



4

This should improve the accuracy of the BLSTM as it can’t
modelize along the vertical axis like an MDLSTM would.

The two detected lines split the text in three part:
the bottom (crossed by the letters q,p,j, etc.), the body
and the top (crossed by t,l,k,etc.). We could apply many
different transformations to these parts, with different risks.
For example, we could apply a stronger scaling factor to
the text body in order to emphasize this part. But if the
transformation is not the same in the different parts of text, it
may be distorted which could lead to a loss of informations
on the connections of the text.

3.3.3 Align the text

On the same principle, we can use the text baseline to align
the text. We could only use the text baseline and not the
midline anymore. This time rather than scaling the text, we
only shift each column so that the detected text baseline is
aligned with a fixed vertical position.

This much simpler solution applied less transformation
to the image of the text. Therefore, the results could be
totally different from the last experiment in which we could
have a lot of noise introduced in the images.

3.3.4 Include the baseline in the Network

One last idea, instead of modifying the images, would be
to add the baseline position information directly in the
architecture. Not in the image but rather represented as
numbers concatenated with some of the network layers.
This numerical input should represent the baseline position
and may somehow affect the results of the pipeline. We
could add this information directly as an input of the
network or latter on the architecture. But in order to do that
we have to be able to modify the architecture.

4 EXPERIMENTS AND RESULTS

In this section we provide a detailed analysis of the experi-
ments and a critical point of view of the different results.

4.1 The experimentation Protocol

In order to measure the impact of the added text baseline,
we first wanted to have a reference without the information
of the baseline position to which we can compare our
experiments. We chose to run all experiments with LAIA,
which is presented in section 3.1. We also decided to run
our tests on the IAM database (introduced in section 3.2).
This offers us a light architecture with a fast training of
40 hours on this database. Also, some preprocessing of the
images of the dataset is already available in LAIA to better
start our experiment. This preprocessing is trying to deskew
the images, rescale them while also reducing the amount of
noise in the images.

To test an experiment, we started with an unmodified
dataset IAM. We then use the provided scripts to improve
the quality of the dataset. On this preprocessed dataset
we then applied our desired modification according to
the specifications of our experiments. Finally, we trained a
new model, tested it and compared its results against the
reference.

4.2 Add the line on the same channel as the text
This experiment tries to introduce the text’s baseline as it is
presented in section 3.3.1. We wanted to add the baseline
by keeping the text unchanged and modify the pixels of the
same channel where the line should be added.

As described in our protocol 4.1, we first applied a
preprocessing of the text image, which aims to improve the
quality of the dataset. Then, we detected the text baseline
and added it on the text images. The images are encoded
in grayscale with the text in dark gray (with a value of the
pixels close to 0). The text baseline was added by changing
the corresponding pixel to a fixed value of 128 (in gray).
Only the pixels without text on it are changed to this specific
value, as if the line was behind the text. The figure 2 shows
an image of the IAM dataset with an added line.

Fig. 2: Example from the IAM [27] database on which the
baseline was added by changing the value of the pixels to a
fixed gray value (here 128).

We then trained the Neural Network architecture, and
compared the results to the reference. The figure 3 compares
the Confidence Intervals of both of them.

5.
8

6.
0

6.
2

6.
4

C
ha

ra
ct

er
 E

rr
or

 R
at

e 
(%

)

Reference With the line added

Fig. 3: Comparison between the reference’s results and the
first experiment 3.3.1. We compared the Confidence Inter-
vals of the Character Error Rate for both of them. A lower
value is better.

At first sight, adding the baseline this way seems to
increase the error rate, but the difference is only of 0.2%
may not be significant.

We compared our results with a Student t test.
To do that we first introduced the null hypothesis:
Null Hypothesis 1. There is no particular difference between
the repartitions of the two results.

We tested it and got a p-value of 0.14 which is superior
to the desired error risk of 5%. Therefore, we could not reject
the null hypothesis. It cannot be accepted, but we admitted
that the observed differences were due to some random
factors. The random initialization of the NN’s weights seems
to be the main random factor. We also thought that adding



5

Fig. 4: From top to bottom, the first channel contains an
unmodified text image from the IAM [27] database, the
second only the baseline in black (pixel value of 0) and the
third is both the text and the line still in black.

5.
6

5.
7

5.
8

5.
9

6.
0

6.
1

6.
2

C
ha

ra
ct

er
 E

rr
or

 R
at

e 
(%

)

Reference With the line added
and 3 channels

Fig. 5: Comparison of the Character Error Rate Confidence
Intervals for both the reference and the experiment in which
we added the baseline by using multiple channels. A lower
value is better.

the line may confuse the recognition process because the
line is on the same channel as the text.

4.3 Add the line on other channels

We then tried another experiment where this time the line
is represented in other channels. Figure 4 shows how we
separated the line information from the text. We started
with the first channel containing only the text. The second
channel contains only the text’s baseline. Lastly, we decided
to use a third channel that contains both the text and its
baseline. By doing that, we hoped to have a significant gain
compared to the last experiment, where a single channel
could be a problem. The pixel’s value of the text baseline has
been set to value of 0 (black). We could also try a different
value of the text baseline like 128 in the last experiment, but
we lacked time for further experimentations.

Training the architecture with the same parameters
gave us the results presented in the figure 5. This time, we
observed that the error rate is a bit lower, which mean the
architecture may be better this time. But still, the difference
is very small. We, again, made a comparison with a Student
t test, with the same Null hypothesis. With these parameters,
we got a p-value of 0.66. According to this value, we cannot
reject the Null hypothesis. But we can still admit that the
difference is due to the weight initialization.

4.4 Normalize the text based on the text baseline and
midline

As adding the line by modifying the pixels’ value seemed
to led to close to reference results, but non significants, we
decided to try something different.

In this experiment, we will not add the line by modify-
ing the value of the pixels, but rather apply some modifica-
tions of the images based on the known position of the line.
We still started with images that have been preprocessed us-
ing LAIA’ scripts. We then detected both the text’s baseline
and midline. After that, we used the position of both lines
in each column of pixels to compute the size of the text’s
body, the size of ascendant and descendant letters. Finally,
we rescaled each part of the text to a fixed height and placed
those parts at a specific height so that they are at the same
position between all the images. We decided to give a bigger
size to the text’s body as we thought that this part contains
more informations and is useful to distinct letters like a, e or
o. An example of the modified images is presented in figure
6.

Fig. 6: The upper image shows the detection of both the
midline and the baseline on a text image from the IAM
[27] database. The second image is obtained after applying
a normalization to this image. The part of the text above the
midline has been rescaled to a fixed height. The same modi-
fication is applied to the text body (between the midline and
the baseline) and to the part below the text baseline.

We then trained the architecture on the modified IAM
dataset. Figure 7 shows the results of the trained model and
compares it with the results we got on the reference. The
results show an increase in the error rate compared to the
reference. With an higher error rate, the architecture struggle
more to recognize characters and words.

The confidence intervals this time were far enough from
each other to say that there was a difference between the
results of the two experiments. Using an another Student
t test led to a p-value of 0.0015, which is inferior to 0.05,
our error risk of 5%. Hence, we can conclude that the Null
Hypothesis could be rejected. That means that the results of
the two experiments are significantly different, and that the
difference is essentially due to others factors than randoms
factors such as the weight initialization.

Viewing some of the images of the modified dataset
makes us think that the modifications made by this experi-
ment are too harsh. The images contain a lot of noises. One
possible origin of such a noise could probably be introduced
by the lines themselves. As the baseline is the same in the
first experiments, the midline would be the problem. In fact
the midline is less stable than the baseline. It is probably due
to the fact that there is more black pixels in the bottom of
the text’s body than in the upper part, which makes it easier
to detect the baseline than the midline.



6

5.
8

6.
0

6.
2

6.
4

6.
6

6.
8

C
ha

ra
ct

er
 E

rr
or

 R
at

e 
(%

)

Reference Text normalized

Fig. 7: Comparison of the results for both the reference and
the experiment in which we normalize the different parts of
the text. We compared the Character Error Rate Confidence
Intervals for both the reference and the experiment. A lower
value is better.

Fig. 8: The first image is an example of a line of text before
any of our modification from the IAM [27] database. The
second image represent the same example but after shifting
the columns of pixels to align the baseline to a fixed value.

4.5 Align the text based on the text baseline position

In response to these problems, we tried another solution
that no longer makes use of the midline. We started with the
preparation of the dataset. Then we used the text’s baseline
in order to align the text. With the position of the line known
in each column of the image, we then shifted the columns,
without any scaling. The idea was still to straighten the text
put it to a fixed height. Figure 8 shows an example of an
image just after the application of this process.

Then we trained the network with this dataset. Figure 9
shows a comparison of the confidence intervals for both the
reference and the experiment where we shifted the columns.

We observed that the results of our experiment seemed
to match closely with the results of the reference. Again, we
performed a Student t test and it returned a p-value of 0.86.
This value is far from the critical value of 5%. Therefore,
we cannot conclude that there is a significant difference
between the two observations. But we can still admit that
the tiny difference is due to the weight initialization and
that adding the line this way may have no impact.

However, by taking a look at most images of the
dataset, it seems that the images remain practically un-
changed. Figure 8 shows that well. That fact could be
explained by the nature of the IAM dataset which is a very
stable one. There is not so much noise in it, the images
are already almost aligned (i.e the text baseline is almost
straight and horizontal). In order to see a significant impact

5.
7

5.
8

5.
9

6.
0

6.
1

6.
2

C
ha

ra
ct

er
 E

rr
or

 R
at

e 
(%

)

Reference Text aligned

Fig. 9: Comparison of the results for both the reference and
the experiment in which we shifted the pixels columns so
that the text is aligned. We compared the Character Error
Rate Confidence Intervals for both the reference and the
experiment. A lower value is better.

CER (%) WER (%)
Reference 5.93 [5.68 – 6.20] 18.89 [18.29 – 19.54]

Line on 1 channel 6.21 [5.94 – 6.47] 19.26 [18.65 – 6.47]
Line on 3 channels 5.85 [5.59 – 6.12] 18.71 [18.09 – 19.33]
Normalized images 6.54 [6.26 – 6.82] 20.23 [19.57 – 20.88]

Aligned images 5.96 [5.71 – 6.22] 18.68 [18.07 – 19.33]

TABLE 4: This table shows the results of the reference and
all our experiments. CER stands for Character Error Rate
and WER for Word Error Rate.

of the baseline we think that we need to try the experiment
on another dataset where text images are more noisy and
less aligned.

5 CONCLUSION

In this paper, we presented our work on testing if adding
the baseline information to the architecture could change its
recognition performance. We introduced different methods
to add the baseline to the images or directly on the pipeline
(in section 3.3). We then presented our different experiments
in section 4. We also discussed of the results of all experi-
ments. Table 4 shows the results of the reference and our
experiments.

While most of the time we cannot conclude that there
is a significant difference between those results, except for
the experience where we tried to normalize the images,
the results are close to reference results. According to our
experiments results, adding the baseline is not necessary as
it costs time to get the baseline’s position and add it to the
images, while not improving the recognition performances.
Moreover, between all the experiments, we did not observe
any particular difference in the training time.

However, due to the specific conditions we were under
during this project, we could only experiment on the IAM
dataset. It is a rather stable one, with well aligned text and a
modern writing style. We believe that it could be interesting



7

Fig. 10: This figure shows an example where we tested to
align the detected baseline with a horizontal pixels line. The
upper image is an image with a curvy line, while the bottom
one is obtained after aligning the baseline.

to test our methods, especially the text alignment on another
dataset with images that are more variable. Figure 10 shows
a line from an ancient document where we tested our last
experience which consists to align the detected baseline. As
the image was really curvy, the resulting image has been far
more impacted than the majority of the IAM dataset in our
experience (Figure 8).

REFERENCES

[1] Alex Graves and Juergen Schmidhuber. Offline handwriting
recognition with multidimensional recurrent neural networks. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems 21, pages 545–
552. Curran Associates, Inc., 2009.

[2] A. Viterbi. Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Transactions on Infor-
mation Theory, 13(2):260–269, April 1967.

[3] B. Moysset, T. Bluche, M. Knibbe, M. F. Benzeghiba, R. Messina,
J. Louradour, and C. Kermorvant. The a2ia multi-lingual text
recognition system at the second maurdor evaluation. In 2014
14th International Conference on Frontiers in Handwriting Recognition,
pages 297–302, Sept 2014.

[4] D. Suryani, P. Doetsch, and H. Ney. On the benefits of con-
volutional neural network combinations in offline handwriting
recognition. In 2016 15th International Conference on Frontiers in
Handwriting Recognition (ICFHR), pages 193–198, Oct 2016.

[5] Yi-Chao Wu, Fei Yin, and Cheng-Lin Liu. Improving handwritten
chinese text recognition using neural network language models
and convolutional neural network shape models. Pattern Recogni-
tion, 65:251–264, 2017.

[6] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural
networks. IEEE Transactions on Signal Processing, 45(11):2673–2681,
Nov 1997.

[7] A. Ray, S. Rajeswar, and S. Chaudhury. Text recognition using
deep blstm networks. In 2015 Eighth International Conference on
Advances in Pattern Recognition (ICAPR), pages 1–6, Jan 2015.

[8] Marcus Liwicki, Alex Graves, Horst Bunke, and Jürgen Schmid-
huber. A novel approach to on-line handwriting recognition
based on bidirectional long short-term memory networks. In In
Proceedings of the 9th International Conference on Document Analysis
and Recognition, ICDAR 2007, 2007.

[9] V. Frinken and S. Uchida. Deep blstm neural networks for
unconstrained continuous handwritten text recognition. In 2015
13th International Conference on Document Analysis and Recognition
(ICDAR), pages 911–915, Aug 2015.

[10] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber. A novel connectionist system for unconstrained
handwriting recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(5):855–868, May 2009.

[11] Q. Liu, L. Wang, and Q. Huo. A study on effects of implicit
and explicit language model information for dblstm-ctc based
handwriting recognition. In 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), pages 461–465, Aug
2015.

[12] Alex Graves, Santiago Fernández, and Jürgen Schmidhu-
ber. Multi-dimensional recurrent neural networks. CoRR,
abs/0705.2011, 2007.

[13] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. Dropout
improves recurrent neural networks for handwriting recognition.
In 2014 14th International Conference on Frontiers in Handwriting
Recognition, pages 285–290, Sept 2014.

[14] P. Voigtlaender, P. Doetsch, and H. Ney. Handwriting recognition
with large multidimensional long short-term memory recurrent
neural networks. In 2016 15th International Conference on Frontiers
in Handwriting Recognition (ICFHR), pages 228–233, Oct 2016.

[15] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, M. F. Benzeghiba,
and C. Kermorvant. The a2ia arabic handwritten text recognition
system at the open hart2013 evaluation. In 2014 11th IAPR
International Workshop on Document Analysis Systems, pages 161–
165, April 2014.

[16] Joan Puigcerver. Are multidimensional recurrent layers really
necessary for handwritten text recognition? 2017.

[17] P. Doetsch, M. Kozielski, and H. Ney. Fast and robust training
of recurrent neural networks for offline handwriting recognition.
In 2014 14th International Conference on Frontiers in Handwriting
Recognition, pages 279–284, Sept 2014.

[18] Morgan Nelson and Boulard Hervé. An introduction to hybrid
hmm/connectionist continuous speech recognition.

[19] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber. Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks. In
Proceedings of the 23rd international conference on Machine learning,
pages 369–376. ACM, 2006.

[20] F. Zamora-Martı́nez, V. Frinken, S. España-Boquera, M.J. Castro-
Bleda, A. Fischer, and H. Bunke. Neural network language models
for off-line handwriting recognition. Pattern Recognition, 47(4):1642
– 1652, 2014.

[21] V. Frinken, F. Zamora-Martı́nez, S. España-Boquera, M. J. Castro-
Bleda, A. Fischer, and H. Bunke. Long-short term memory neural
networks language modeling for handwriting recognition. In
Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012), pages 701–704, Nov 2012.

[22] Joan Puigcerver, Daniel Martin-Albo, and Mauricio Villegas. Laia:
A deep learning toolkit for htr. https://github.com/jpuigcerver/
Laia, 2016. GitHub repository.

[23] Alex Graves et al. Supervised sequence labelling with recurrent neural
networks, volume 385. Springer, 2012.

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[25] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for
computer vision. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, June 2016.

[27] U-V Marti and Horst Bunke. The iam-database: an english sen-
tence database for offline handwriting recognition. International
Journal on Document Analysis and Recognition, 5(1):39–46, 2002.

https://github.com/jpuigcerver/Laia
https://github.com/jpuigcerver/Laia

	Introduction
	Related works
	Feature Extraction
	Bidirectional RNN and Multi-Dimensional RNN
	Decoding and Language Model

	Experimental Setup
	Chosen architecture
	Database
	How to represent the baseline
	Add the baseline on the images
	Normalize the text
	Align the text
	Include the baseline in the Network


	Experiments and Results
	The experimentation Protocol
	Add the line on the same channel as the text
	Add the line on other channels
	Normalize the text based on the text baseline and midline
	Align the text based on the text baseline position

	Conclusion
	References

