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Abstract.

The task of automatically extracting transcription from images of handwrit-
ten text is still motivating a lot of people. In this report, we explain in a compre-
hensive manner, some points of a Handwritten Text Recognition framework we
implemented. As an extension of DeepDIVA, which is built upon PyTorch, it is
able to perform well on the IAM dataset and on ICFHR 2018 READ dataset.

1 Introduction

There exists a large number of handwritten documents that awaits to be
scanned and transcribed, so that they could be used for a private or public
usage. Since manual transcriptions are expansive and time consuming, more
and more efforts are made to design systems that are able to extract a correct
transcription. This is especially true with large datasets and historical datasets
in which commercial Optical Character Recognizer are not performing very
well. The term Off-line Handwritten Text Recognition (HTR) designates such
systems that are able to extract a transcription from only images of handwrit-
ten text (as shown in figure 1). While some systems have been using Hidden
Markov Models to perform that task, almost every recent system is now using
Deep Learning architectures. They are mainly composed of Recurrent Neural
Network and Convolutional Neural Networks.

" The Little Key. "
HTR

Model
input image outputted text

Fig. 1. An example of a transcription from an HTR model on a text line of IAM.
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However, only a few frameworks for HTR are currently able to train models
and extract text. Moreover, we think that they lack of customization, especially
when a user wants to try new architectures.

To that end, we propose to implement an HTR framework and a working ar-
chitecture along with it, as an extension of DeepDIVA [1]. DeepDIVA is a Deep
Learning framework working with PyTorch that aims to bring an easier instal-
lation, reproducibility of the experiments and a modular system that allows the
users to customize their tasks and architectures.

This report starts by giving an insight into related works in section 2. We
then present our framework as well as our Deep Learning architecture that we
used in section 3, before showing results obtained on several datasets in section
4. We finish the report by concluding on the work achieved.

2 Related Works

Handwritten Text Recognition Architectures Hidden Markov Models (HMM) [28]
used to be the most competitive solution for Handwritten Text Recognition
(HTR) 15 years ago. But there are major drawbacks in using HMMs. The users
must provide informative, discriminating and independent features to build
an effective solution. Features are representation of images attributes. A second
problem is the difficulty to have links between what the system is currently
seeing and what it has already seen.

Neural networks help to overcome both difficulties. As a result, they have
been increasingly used in HTR competitions and are now best performing ar-
chitectures for this task.

Convolutional Neural Networks (CNN) solve the first problem. They are
able to learn how to extract features which are relevant to the task. They replace
some of the human works, and improve the performance of HTR models in
general. Bluche et al. propose a different version of CNN called Gated CNN
[3]. They improve CNNs by adding a possibility to automatically select which
features to use based on the area the networks is currently processing. This new
method shows promising results by outperforming current state of the art.

Recurrent Neural Networks (RNN) have been used for HTR to increase the
ability of the whole system to learn longer dependency. They use a memory and
recurrent connections to propagate information through time. However, their
ability to memorize useful information is not enough for HTR. It leads to the
use of Long Short Term Memory (LSTM) introduced by Hochreiter et al. [14]
and improved with forget gates [7]. LSTM has the ability to learn when to take
into account the input, when to keep it in memory, when to forget it and when
to output the state of its memory. They are used in every recent HTR system to
learn long-range context.
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In the case of an image of a text line, the image could be seen as unidimen-
sional with RNNs scanning from left to right (for European languages). How-
ever, each point has only information from the past. Bidirectional RNN (BRNN)
[26], is composed of two RNNs, one scans left to right and the other reversely.
In that case each point potentially has information from both past and future
context. BLSTMs [11] are used for speech recognition [8] [32] and later for HTR
with a model named LSTM-RNN and show improvements in the recognition
scores [16] [6] [24]. They are also coupled with CNNs to create CRNN architec-
tures [27] [30] [23] [3].

It is also possible to take the input images as matrices of pixels instead
of vectors (or line) of columns. In that case, the images could be seen as
bi-dimensional. For that purpose, Graves proposed Multidimensional RNN
(MDRNN) [12] [13] [9] and its variant MDLSTM which are the extension of
RNN and LSTM for multiple dimensions. Following the same technique used
for regular RNN, we can extend the known context to every other direction
with Multi-directional MDRNN. They combine four RNNs, one scanning from
top left to bottom right, another from top right to bottom left, etc. The multi-
ple directions are always used for HTR, and we will use the term MDRNN to
designate Multi-directional MDRNN. MDRNNs tend to give better results for
the task of HTR than BRNNs and their equivalents BLSTMs. They are widely
used for HTR alone [2] or more often combined with convolutions [18] [20] [31].
However, they are far slower to train than their 1D version. Depending on the
available resources, both 1D and 2D RNN are relevant.

Graves et al. introduce Connectionist Temporal Classification (CTC) [10], a
custom layer that is able to translate the output of the network into text labels.
It has the advantage of allowing end to end models, which are models able to
take raw images as input and outputting text. This step is called decoding. Fur-
thermore, with the abilities of CTC, pre segmented data are no more required
as CTC is able to map outputted labels with the positions in the ground truth. It
saves a lot of time by adding the possibility when creating the data to no more
give the position of every character and words.

To further improve the result of a model, Language Models (LM) are used.
LMs are able to learn constraints on the vocabulary and then correct the net-
work on these errors. There exist many different architectures of LM with their
specificities. However, they are not always so useful. Furthermore, because LMs
work independently of the Neural Networks architectures, some systems do
not include them in their pipeline.

Available Frameworks LAIA [23] is a deep learning framework especially built
for the task of HTR and tasks that require an HTR model. It provides useful
functions to train a model and get the transcription of a set of images. More-
over LAIA has entire pipelines starting from download and preparation of the
images to applying an LM for many existing datasets. Both CRNN and MDL-
STM models are implemented and in our opinion it is a good starting point
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when getting results quickly is crucial. However, it is constructed on top of
Torch, which make the toolkit no longer updated.

RETURNN [5] [33] is a Deep Learning framework mainly built to optimize
at the GPU level RNN, LSTM, and their multidimensional variants. It takes
advantage of the use of Theano, Tensorflow and CUDA fast implementations.
Models can run on both CPUs and GPUs, and RETURNN already comes with
a good number of examples.

DeepDIVA [1] is a Deep Learning framework using both Python and Py-
Torch that aims to ease the reproducibility of the experiments. It helps by sav-
ing time during the installation process (by installing automatically CUDA for
instance), having great compatibility, the reproduction of experiments or by
providing useful visualizations during the experimentation process. More de-
tails can be found in the original paper [1]. However, at the moment of writing,
the tasks already implemented inside the framework does not include HTR.

Our point of view In our mind, it could get difficult to customize the task and the
architectures with the few existing frameworks. Also because of the numerous
advantages of DeepDIVA [1], we decided to build our own implementation of
the HTR task and associated architecture as an extension of DeepDIVA.

We retain two architectures: CRNNs [27] [30] [23] and MDLSTMs [18] [20]
[31]. Both models have good results, with MDLSTMs slightly better. We choose
to implement a CRNN architecture compared to MDLSTMs because CRNN
architectures are faster to train and also easier to implement. Our model does
not include an LM, because we want to focus on other parts and because it
could always be added later.

3 Addition of the Handwritten Text Recognition task to
DeepDIVA

We choose to use DeepDIVA [1] in the objective of implementing a pipeline to
complete the task of HTR. By adding that implementation, we hope that it will
ease future research in HTR.

In section 3.1 we will first describe how images of text are loaded and stored
along with their transcription. Then section 3.2 will present our implementation
of a custom CRNN model. We will discuss about how the CTC loss is included
in the whole process in section 3.3 and how we get transcriptions. The whole
section aims to explain some points while being the most comprehensive as
possible.

Meanwhile, the other important points of the whole toolkit (such as back-
propagation, customizations, etc.) are already provided by DeepDIVA and were
left mostly unchanged.
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3.1 Data Loading

HTR datasets often comes with their specific structure and representation. To
avoid writing a specific function for each dataset, we choose to use the Pivot
File Format (PiFF) [19] to represents datasets in a common format. We then use
a single function to load images and their transcriptions from the PiFF file.

As HTR datasets contain a great number of high-resolution images and we
do not want to lose any useful information by reducing the size of the images,
we have no choice but to load dynamically images.

Images of HTR datasets usually have different sizes. However, it is always
useful to work with batches of images to have a speedup. To that end, we re-
sized all images to a fixed size. As we are using RNNs that are working on the
horizontal dimension, our architecture is able to handle horizontal variations.
Images are first rescaled to a fixed height, and then padded with black pixels,
which is not a problem for Bidirectional RNNs.

3.2 CRNN Architecture

In this section, we explain our implementation of a CRNN architecture (first
presented in section 2). Our architecture (a visualisation is available in figure 2)
is largely inspired by existing CRNN architectures [27] [23] [3]. It is first com-
posed of a series of convolutional layers that aims to extract more and more
features as the image is processed through the different convolutional layers,
followed by stacked BLSTMs that are in charge to generate characters probabil-
ities.

The model takes as input images of three channels (RGB), but the architec-
ture could easily be changed so that it takes a different number of channels
(such as one channel for grayscale images). Each of the first three convolutions
(Conv1, Conv2 and Conv3 in figure 2) are followed by a 2x2 max pooling to re-
duce the size of images and features, by covering a larger size on the input im-
age. The last 3 convolutions (Conv3, Conv4 and Conv5 in figure 2) use dropout.
Dropout allows the network to avoid overfitting by randomly selecting neurons
that will not be taken into account during the forward and backward pass of the
training phase. Every convolution is directly followed by a LeakyReLU activa-
tion function and by a Batch Normalization as in LAIA [23]. Normalizing the
batch features after each convolution has a similar positive effect as when nor-
malizing the input images at the beginning of the architecture. The CNNs are
in charge of producing 2D feature maps that are later converted to a sequence
of features in the Collapse layer by taking the maximum value for each column
and feature.

Then a fixed number of stacked BLSTMs are in charge of producing values
that will predict a character. In the HTR experiments, we tried from two to five
stacked BLSTMs. We expect better results with a deeper network, but at a cost
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Fig. 2. Our CRNN architecture. More details can be found in section 3.2

of an increase in the time required to converge. The LSTMs have a hidden size
of 128 and a dropout value of 0.5.

A dense layer then takes the outputs of the BLSTMs column by column to
produce a value per character of the alphabet and the blank label.

3.3 Connectionist Temporal Classification

Finally, a Softmax is applied to obtain character probabilities for each block of
the processed image. These probabilities are then given to the CTC to compute
the loss. As it is mostly the case in all Python implementation, we choose to use
warp-ctc [25] and its binding with PyTorch [21] because of its speed to compute
the loss. It computes the loss in a parallel and quick fashion using a negative
likelihood.

In parallel, we use character probabilities to generate the predicted se-
quences. This step is called decoding. As warp-ctc is only in charge of com-
puting the loss, we implemented and tested two algorithms.

The first one is called Best Path Decoding and introduced by Graves et al.
[10]. In this algorithm, we simply construct the predicted sequence frame by
frame, by taking the most probable label at each step. We then apply a post-
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processing to this sequence, by removing the repetition on consecutive frames.
The blank labels are removed from this sequence to obtain the final result. This
method has the advantage of being very quick to compute and therefore pro-
duces satisfying results without spending a lot of time. For these reasons it is
widely used in HTR nowadays. But this is a greedy algorithm and only pro-
duces an approximation of the best decoding.

We also implemented Beam Search Decoding (which is a more precise
heuristic, that consists to explore the best parts of the tree of possible texts at
each step). However, some tests show that in comparison to Best Path Decod-
ing, it is taking a very long time and does not bring any differences on the text
produced.

To measure the performance of one model, the most two common metrics
are Character Error Rate (CER) and Word Error Rate (WER). For CER (resp.
WER), that score corresponds to the edit distance, which is the minimal number
of additions, deletions, or substitutions of characters (resp. words) between the
prediction and the ground truth, normalized by the number of characters (resp.
words) in the ground truth. We implemented and tested both CER and WER
computation. These scores can be understanded as the percentage of wrong
characters or words.

4 Experiments

In this section, we will describe the different experiments we tried and their
results. We train on text line images as showed in figure 1. In every experiment,
we use a batch size of 32, a learning rate of 0.001,Stochastic Gradient Descent
as the optimizer and an Nvidia Tesla P100 with 16 GB of memory. However,
like many Deep Learning experiments we manage to do only one run per ex-
periment. The main reasons for that choice are that training takes a long time
(For instance each experience on the IAM dataset in section 4.1 takes 2 days.) ,
a lack of available time to complete everything and the high cost of GPUs alto-
gether. Therefore, results could be due to some random factors and are not rep-
resentative. DeepDIVA allows the user to choose a fixed seed, however when
using GPUs and CUDA kernels, at the moment of writing and to the best of
our knowledge, the results are random and cannot be seeded. As training of an
HTR architecture requires a lot of computing powers, GPUs are almost the only
possibility. Therefore, we cannot have a perfect reproduction of an experiment
that is one of the main objectives of DeepDIVA.

4.1 Experiment on the IAM Dataset

IAM [17] is an HTR dataset. The text is written in English by several writers
that have been asked to handwrite a specific text. The text is available in entire
forms, lines or single words images.
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We choose that dataset to build, optimize the hyper-parameters and test our
architecture. It is composed of a large number of images of text lines (6181, 966
and 3030 images for the training, validation and test set on the Aachen parti-
tion) and because it is also widely used to test models, it allows us to compare
our results with others.

A first step concerns the preparations of the images of the dataset. As it is
already well covered by others, we decided to reuse an existing pre-processing
of the images. The authors of LAIA [23] used a de-skewing to remove mis-
alignment, replacing white borders with a border of a fixed pixel size and also
resizing the image to a fixed size. Meanwhile, Kozielski et al. proposed to do a
different preparation of the images [15]. They start by normalizing the contrast
of the images, then apply a correction in the slant of the images. They use a
system applying modifications on the repartition of the black pixels, in order
to get a fixed mean and standard deviation, frame by frame on the input im-
ages. We choose to reuse the pipeline from LAIA as it is simpler, easy to install
and also tested for a similar Deep Learning architecture. Moreover, the differ-
ent scripts from the pipeline of LAIA [23] also come with a preparation of the
ground truth. It removes some inconsistency contained in the text, so that they
match what is really written on the images. We decided to also use it as it better
match the text images and the text predicted by a model, however, to have fair
comparisons, we would need to evaluate each model with that same transcrip-
tion. Lastly, we used the Aachen custom partition of the dataset to train and
evaluate models as it is widely used.

First experiments aim to build a good CRNN Architecture. We start by op-
timizing the Convolutions. In our opinion, the number of max pooling is what
makes big differences. Those layers divide the size of the image by 2 on each
axis. In a direct conclusion, it reduces the time taken to compute forward and
backward pass. It also allows features of the next layers to have a summary
of information of a greater area of the input image, and potentially leading to
better results. However, using too many max pooling could resume too many
values in too few and could make the entire network unable to learn anything.

Number of Validation Test Training time
Max Pooling CER WER CER WER (in hours)

2 7.54 26.33 10.59 33.33 23
3 7.05 24.89 10.34 32.35 36
4 12.12 36.65 16.00 44.29 24

Table 1. Influence of the number of Max Pooling layers in our architecture on the Error
Rates and on the training Time. A number of N means that the first N convolutional
layers are followed by a 2x2 max pooling. For the rest of the network, we used 2 stacked
BLSTMs. We ran the experiment on the IAM dataset.
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Table 1 shows the results we obtained with a different number of CNN lay-
ers using 2x2 max pooling. With two max pooling, the training seems to be a
bit unstable and converges after 23h. By using three max pooling, we observe
a convergence after 36h that leads to better results. Adding a fourth max pool-
ing is not increasing the performance, however. We choose to use three max
pooling as it gives the best error rates.

We optimize the number of stacked BLSTMs to get the best possible per-
formance. We have been training CRNN models from two to five consecutive
BLSTMs and compare the training time and their error rates in table 2.

Number of Validation Test Training Time
Stacked BLSTMs CER WER CER WER (in hours)

2 7.05 24.89 10.34 32.35 36
3 5.75 20.07 8.54 27.00 41
4 5.41 19.07 8.17 25.59 26
5 6.09 21.78 9.09 28.65 55

Table 2. Influence of the number of stacked BLSTMs in our architecture, on the Error
Rates and on the training Time. For the rest of the network, we used max pooling on the
first three layers of convolutions. We ran the experiment on the IAM dataset.

Results show that the more BLSTMs we are using, the more time it takes to
complete one epoch. But error rates are lowering as we increase that number.
However, by adding a fifth BLSTM layer we observe a short increase in the error
rates. It could be explained by the fact that the network needs more and more
time and epochs to get good results, or by the fact that the rest of the network
is no longer well suited for as many BLSTMs layers. In any case, we decided
to use a model with three max pooling and four stacked BLSTMs as our best
model and to compare with others.

Table 3 shows the results obtained with our model as compared with other
works. The error rates obtained by our model are higher than the best perform-
ing models. However, the scores are not that far and mainly demonstrate that
the implementation of an HTR system is working as expected. We believe that
to get lower error rates we would need to spend more time on optimizing the
remaining hyper parameters of the network. We did simple experiments to pick
a good learning rate, we did not test the influence of the number of features in
each Convolutional layer and did not test how the number of hidden units in
BLSTM can affect the results. We could also try a better pre-processing of the
image as it impact a lot the results of one model [15]. In addition, working
on an LM would bring better results as table 3 shows that well. That could be
achieved with additional time, but we also wanted to test different architectures
and other datasets.
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Model Model Validation Test
Name Description CER WER CER WER
Our Model CRNN 5.4 19.1 8.2 25.6
LAIA [23] CRNN 3.8 13.5 5.8 18.4
LAIA [23] CRNN + LM 2.9 9.2 4.4 12.2
Kozielski et al. [15] LSTM-RNN 5.5 16.6
Kozielski et al. [15] LSTM-RNN + LM 2.7 9.5 5.1 13.3
Doetsch et al. [4] LSTM-RNN + LM 2.5 8.4 4.7 12.2
Pham et al. [22] MDLSTM 7.4 27.3 6.3 43.9
Pham et al. [22] MDLSTM + LM 3.7 11.2 5.1 13.6
Voigtlaender et al. [31] MDLSTM + LM 2.4 7.1 3.5 9.3

Table 3. Comparison between the results of our model and the state of the art on the
IAM dataset. Here different models are compared, and some are a lot more complex.
While CRNN and LSTM-RNN requires a similar time to train a model, MDLSTM are far
longer to train.

4.2 ICFHR2018 Competition on Automated Text Recognition on a READ
Dataset

Fig. 3. An example from the READ retraining dataset.

The objective of the Competition on Automated Text Recognition on a
READ Dataset [29], introduced at the ICFHR 2018, is to evaluate how much la-
belled data are needed to obtain low error rates when applying transfer learn-
ing. The provided dataset contains multiple documents. Each document con-
tains several pages and is written by a different writer in a specific language.
Pages are composed of several text lines that are used as models inputs.

The basic idea is to start by training a model on a wide group of datasets.
The training data are composed of pages from 16 different documents. Train-
ing data is large enough (11925 text line images), with a fair diversity Using
additional data is forbidden, however, augmentation techniques can be used to
artificially increase the size of the dataset and the generalization ability of the
model.

Then, after training a model on these data, the objective is to test how much
labelled data is required to obtain good performance. For that task, the organiz-
ers provided five additional documents which are not present in the training
data. Each document is divided in a retraining set and a testing set, with a null
intersection. While the retraining set provide all transcription, the testing set
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does not include any. Retraining set also comes with a list of subsets, composed
of a different number of pages. Subsets is either composed of 0 (in that case, it is
only needed to test the model trained on the large and general training data), 1,
4 or 16 pages of the document. The objective is then to retrain a model for each
subset and then to evaluate the retrained model on the test data of that same
document. When retraining a model (with e.g. 4 pages), we simulate the case
where the other labels (e.g. those from the 16 pages that are not in the 4 pages),
are not known and restrict the data to only those from the current subset.

The competition is already completed, but it is still possible to submit the
results of the different retrained model to be evaluated like other participants
in the competition. While the best solution would have been to optimize the
different hyper parameters of the architecture, process cross-validation on the
smaller dataset when retraining, we choose to use our best performing model
on IAM (see section 4.1) because of time constraints. Additionally, in the objec-
tive of avoiding unfortunate bad validation dataset, we divided the retraining
subset in a training set and a validation set, but with the validation set bigger
than usual. 70% of the image of lines were used for the training set and the re-
maining 30% for the validation set, while only 10% of the general training data
where put in the validation set.

Model CER
Assiut University 13.02
Ohio State University 17.86
LITIS 18.81
UOB and ParisTech 19.24
Universitat Politècnica de València 21.54
Our model 21.65
University of Pernambuco 27.33

Table 4. Results of the ICFHR2018 Competition on Automated Text Recognition on
a READ Dataset taken from https://scriptnet.iit.demokritos.gr/competitions/
10/viewresults/ The CER corresponds to the global CER on every test image.

Results showed in table 4 demonstrate that the model we trained with our
implementation and our architecture performs as well as the other models.
With more time, we believe that our model could have been optimized and ob-
tain a better ranking. This experiment mostly shows that our implementation
works as expected and are relevant to the task.

5 Conclusion

In this report, we presented our implementation of a Handwritten Text Recog-
nition Framework and one custom Deep Learning architecture following the

https://scriptnet.iit.demokritos.gr/competitions/10/viewresults/
https://scriptnet.iit.demokritos.gr/competitions/10/viewresults/
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principles of a CRNN architecture. We tested it on the IAM and the ICFHR 2018
READ dataset, and compared our results with others. Despite the fact that we
do not manage to match the best results, we still obtain fair results proving that
our implementation does what it is intended to do. As an extension of Deep-
DIVA, the framework has the good properties of achieving good performance,
visualisations of the results while training, and a good modularity. However,
because of the use of CUDA kernels, the exact reproduction of experiments is
limited.

Nevertheless, there are still works to be done mostly regarding the imple-
mentation of other architectures such as MDLSTM. Language Models could
also be added as part of the framework, and further experiments could be run
to further improve the results of the CRNN architecture.
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