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Nicolas Markey

the date of receipt and acceptance should be inserted later

Abstract We consider the problems of efficiently di-

agnosing (and predicting) what did (and will) happen

after a given sequence of observations of the execution

of a partially-observable one-clock timed automaton.

This is made difficult by the facts that timed automata

are infinite-state systems, and that they can in general

not be determinized.

We introduce timed markings as a formalism to keep

track of the evolution of the set of reachable configu-

rations over time. We show how timed markings can

be used to efficiently represent the closure under silent

transitions of such automata. We report on our imple-

mentation of this approach compared to the approach

of [Tripakis, Fault diagnosis for timed automata, 2002],

and provide some insight to a generalization of our ap-

proach to n-clock timed automata.

1 Introduction

Formal methods in verification. Because of the wide

range of applications of computer systems, and of their

increasing complexity, the use of formal methods for

checking their correct behaviours has become essen-

tial [20,12]. Numerous approaches have been introduced

and extensively studied over the last 40 years, and ma-

ture tools now exist and are used in practice. Most of

these approaches rely on building mathematical mod-

els, such as automata and extensions thereof, in order to
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represent and reason about the behaviours of those sys-

tems; various algorithmic techniques are then applied in

order to ensure correctness of those behaviours, such as

model checking [13,14], deductive verification [22,15].

Online verification. The techniques listed above mainly

focus on assessing correctness of the set of all behaviours

of the system in an offline manner. This is usually

very costly in terms of computation, and sometimes too

strong a requirement. Runtime verification instead aims

at checking properties of a running system [24]. Fault di-

agnosis is a prominent problem in runtime verifica-

tion: it consists in (deciding the existence and) building

a diagnoser, whose role is to monitor real executions

of a partially-observable system, and detect online, as

early as possible, whether some property holds (e.g.,

whether some unobservable fault has occurred) [25,27].

For finite-state models, a diagnoser can usually be built

by determinizing a model of the system, using the pow-

erset construction; it will keep track of all possible states

that can be reached after each (observable) step of the

system, thereby computing whether a fault may or must

have occurred. The related problem of prediction, a.k.a.

prognosis, (that e.g. no faults may occur in the near fu-

ture) [17], is also of particular interest in runtime ver-

ification, and can be solved using similar techniques.

Conformance testing is another online verification tech-

nique whose aim is to check whether the behaviours of

a (black-box) running system conforms to its specifica-

tion. To do that a tester runs test cases which control

inputs of the system and observe that outputs conform

to the specification. In its model-based declination [26],

the specification is formal, e.g. an automaton, and since

the system and specification are partially observable,

the generation of tests (online or offline) may also rely

on determinization.



Verifying real-time systems. Real-time constraints of-

ten play an important role for modelling and speci-

fying correctness of computer systems. Discrete mod-

els, such as finite-state automata, are not adequate to

model such real-time constraints; timed automata [1],

developed at the end of the 1980’s, provide a conve-

nient framework for both representing and efficiently

reasoning about computer systems subject to real-time

constraints. Efficient offline verification techniques for

timed automata have been developed and implemented [4,

3]. Diagnosis of timed automata however has received

less attention; this problem is made difficult by the

fact that timed automata can in general not be de-

terminized [28,16]. This has been circumvented by ei-

ther restricting to classes of determinizable timed au-

tomata [9], or by transforming the detection problem

into a state estimation problem and keeping track of all

possible configurations of the automaton after a (finite)

execution [27]. The latter approach is computationally

very expensive, as one step consists in maintaining the

set of all configurations that can be reached by following

(arbitrarily long) sequences of unobservable transitions;

this is achieved by a classical zone-based algorithm for

computing reachable configurations. Moreover, the set

of possible configurations is updated only when a new

event is observed (or after a timeout), which may signif-

icantly delay the detection of a fault. This limits the ap-

plicability of the approach. The situation is similar for

model-based conformance testing for timed automata,

where test generation is either online, relying on state

estimation techniques similar to [27], or is offline and

restricts to determinizable classes, except [23,6] which

both rely on approximate determinization.

Clearly, the state estimation problem is central to

several runtime verification techniques as soon as par-

tial observation is considered. For timed automata mod-

els, it requires to update the set of configurations, either

after an observable action, or a sequence of silent ac-

tions occurring in a given delay (also called τ -closure).

Efficiently solving this problem is the main challenge

addressed in this paper.

Our contribution. In this paper, we develop a novel

technique for efficiently computing, at runtime, the set

of all possible configurations in which a partially-ob-

servable one-clock timed automaton can be.

The main ingredient of our approach is the notion

of linear timed sets: intuitively, a timed set is a set

that evolves over time (formally, it is a mapping f : d ∈
R≥0 7→ f(d) ⊆ R≥0). Linear timed sets form a re-

stricted class of timed sets, which can be defined as

f : d ∈ R≥0 7→
⋃
i(Ei + d) ∩ [ri; +∞), with Ei ⊆ R

and ri ∈ Q≥0 for all i (see Fig. 3 on page 3 for an ex-

l0 l1 l2

x ≤ 2; τ ;x := 0

3 ≤ x ≤ 4; τ ;x := 0

x ≥ 1; b

Fig. 1 A one-clock timed automaton where only the b-
transition between l1 and l2 is observable.

0 1 2 3 4 5

values in [1; 1.3] can be reached in l2

if we observe b at date 1.3

0 1 2 3 4 5

values in [1; 1.6] ∪ [2.6; 4.6] can be reached

in l2 if we observe b at date 4.6

Fig. 2 Two sets (in location l2) representing the reachable
configurations in the automaton of Fig. 1 after observing tran-
sition b at dates 1.3 (left) and 4.6 (right).

ample of a linear timed set). Linear timed sets are well-

suited to represent sets of clock valuations for one-clock

timed automata, and compute their evolution along

time, which is needed to update state estimations, as

we illustrate on the following example.

Example 1 Consider the one-clock timed automaton of

Fig. 1: in this automaton, the transition from l1 to l2
is observable (labelled with b), while the transitions

from l0 to l1 are unobservable (labelled with the silent

action τ).

Assume that this automaton starts from the initial

configuration (l0, x = 0). As long as no b-action is ob-

served, we have no way of knowing whether the automa-

ton is in l0 or l1. Now, assume that a b-action takes place

at time 1.3: then we know that one of the transitions

from l0 to l1 has occurred; moreover, it cannot be the

transition guarded with 3 ≤ x ≤ 4, since only 1.3 time

units have elapsed in total. One easily checks that, if we

observe a b-transition at time 1.3, then the automaton

is in state l2 with x ∈ [1; 1.3]. Figure 2 (left) represents

this set of valuations.

Similarly, if, starting from the initial configuration,

we observe a b-transition at time 4.6, then both tran-

sitions from l0 to l1 may have taken place; in this sit-

uation, it can be checked that if the top transition has

been taken, then the automaton can be in l2 with x ∈
[2.6; 4.6], while if the bottom transition has been taken,

the automaton can be in l2 with x ∈ [1; 1.6]. This set is

represented on Fig. 2 (right).
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For such an example, our algorithm would first com-

pute the linear timed set

d ∈ R≥0 7→ (([−4;−3] ∪ [−2; 0]) + d) ∩ [0; +∞),

corresponding to all clock valuations that can be ob-

tained in l1 after a delay d, as long as no transition

has been observed. Since the b-transition can only take

place if x ≥ 1 (and does not reset clock x), the linear

timed set reached when observing b is the intersection

of this linear timed set with [1; +∞), namely:

d ∈ R≥0 7→ (([−4;−3] ∪ [−2; 0]) + d) ∩ [1; +∞).

This linear timed set is represented at Fig. 3. It pro-

vides a way of representing, as a single object, all pos-

sible configurations that can be reached in l2 right after

observing transition b at time d, for any d ∈ R≥0. /

−4 −3 −2 −1 0 1 2 3 4

r = 1

E f(0) = ∅

−3 −2 −1 0 1 2 3 4 5

E + 1.3

r = 1

f(1.3) = [1; 1.3]

−3 −2 −1 0 1 2 3 4 5

E + 4.6

r = 1 f(4.6) = [1; 1.6] ∪ [2.6; 4.6]

Fig. 3 The linear timed set f : d 7→ (([−4;−3] ∪ [−2; 0]) +
d)∩ [1; +∞) representing all reachable valuations that can be
reached in l2 when observing transition b at time d. The fact
that f(0) = ∅ indicates that transition b cannot be taken at
time 0.

In order to deal with all locations of a timed au-

tomaton, we use markings, which associate a set of val-

uations with each location of the automaton; similarly,

linear timed markings associate a linear timed set with

each location of the automaton: while sets and linear

timed sets represent valuations, markings and linear

timed markings represent sets of configurations.

Our algorithm consists in computing linear timed

markings representing all configurations that can be

reached from a given initial configuration after a given

sequence of timed observations (alternations of observ-

able transitions and delay transitions possibly includ-

ing an arbitrary number of unobservable transitions).

Given such a linear timed marking M , when an ob-

servation a is received at time t, we can easily com-

pute the marking m containing all possible configura-

tions in which the automaton can end up just after a

markings
map locations to sets

timed markings (Section 4.1)

linear timed markings
map locations to
linear timed sets

regular
timed

markings

observable
action

τ -closure
(Sections 4.1

and 4.2)

Fig. 4 Markings, linear timed markings, and related opera-
tions

a-transition is taken. From there, our algorithm com-

putes the set of configurations that can be reached when

time elapses (this is a linear timed marking), and the

sets of configurations that can be reached by following

any possible sequence of silent transitions. We prove

that this can be effectively computed and finitely rep-

resented as a regular timed marking, which we call the

τ -closure of m. Figure 4 is a graphical representation of

those different concepts and operations.

Section 5 presents an implementation of our ap-

proach, which we compare to our implementation of

Tripakis algorithm [27]. Thanks to our use of linear

timed markings, computing the set of possible configu-

rations after a delay transition can be performed very

efficiently, contrary to the more brute-force approach

of [27]. As our experiments show, our approach is more

efficient for computing the effect of a delay transition

by several orders of magnitude, while computing the

effect of an observable transition is comparable.

Finally, in Section 6 we start extending our tech-

nique to timed automata with an arbitrary number of

clocks: we prove in particular that linear timed mark-

ings are still sufficient to represent the configurations

that can be reached after a given sequence of timed

observations. But we have not been able to extend our

notion of regular timed markings to a notion that could

be used to properly represent and compute all reachable

configurations in the n-clock setting; this is part of our

future work.

Besides Sections 6 and 4.3, which are completely

new, this version differs from the RV’18 version [11] by

the inclusion of all the proofs, and the addition of a lot

more explanations and intuitions.

Related works. State estimation is a classical challenge

in timed automata. One of the main reason is that

timed automata cannot in general be determinized [28,

16] and that silent transitions strictly increase their ex-

pressivity [5]. Thus a lot of methods usually relying on
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determinization (e.g. testing, runtime verification, diag-

nosis and to some extent model checking), or efficiently

keeping track of the possible configurations [18], had to

come with other ways to estimate the current state of

a system.

For example, Baier, Bertrand et al. have proposed

a method to construct a deterministic timed tree from

a timed automaton, with the limitation that the tree

may be infinite [2].

Another approach is to impose some restrictions on

the constructed model. Bouyer, Chevalier and D’Souza

studied a restricted setting, only looking for diagnosers

under the form of deterministic timed automata with

limited resources [9]. Similarly, Krichen et al. have pro-

posed to build a deterministic timed automaton from a

non-deterministic one, by fixing a set of clocks and pos-

sibly making some approximations in the behaviour [23].

Stainer et al. later generalized and improved this ap-

proach using games [8]. Both works have then been used

for off-line test generation from timed automata mod-

els [23,7,19].

One way to circumvent the problem is to use on-

line algorithms and to update the set of possible states

on the fly. Tripakis proposed the construction of a di-

agnoser as an online algorithm that keeps track of the

possible states and zones the system can be in after

each event (or after a sufficiently-long delay), which re-

quires heavy online computation and is hardly usable

in practice [27]. A similar method is used in UPPAAL

TRON [21] and in IF TTG [23] to realize online testing

of timed input output systems.

Finally, automata over timed domains [10], a larger

determinizable class of models comprising timed au-

tomata has been created to offer a determinization pro-

cedure, but with a great expressivity - and hence com-

plexity. This work is most tied with [10] from which

automata over timed domains are borrowed, and [27]

for the idea of computing sets of states after some fi-

nite execution -although we use a precomputation by

opposition to Tripakis’s fully online method.

2 Preliminaries

In this part (focusing on one-clock timed automata),

we heavily use sets and intervals of reals with ratio-

nal bounds, and especially unbounded ones. We first

introduce these (and more generally notations for sets

of reals with bounds in any subset of R), and then the

model of timed automata and related notions.

2.1 Sets and intervals of real

Let E and F be two subsets of R, we define E + F =

{e + f | e ∈ E, f ∈ F} and E − F = {e − f | e ∈
E, f ∈ F}. For d ∈ R≥0, we write E + d (resp. E − d)

as a shorthand for E + {d} (resp. E − {d}), used to

shift E forward (resp. backward) by d.

For any subset K of R, we write IK for the set of in-

tervals of R with bounds in K∪{−∞,+∞}, and IK≥0

for the set of intervals with bounds in K≥0 ∪ {+∞}.
For r ∈ K, we define the following sets of IK:

7→r = [r; +∞) →r = (r; +∞)

→

r = (−∞; r)

7→

r = (−∞; r].

We write K̂≥0 = { 7→r, →r | r ∈ K≥0} for the set of

upward-closed intervals in IK; in the sequel, elements

of K̂≥0 are denoted with r̂. Similarly, K̂≥0 = {

7→

r,

→

r |
r ∈ K≥0} ∪ {R}, and we use notation r̂ for intervals

in K̂≥0.

The following results are straightforward, and will

be useful in the sequel:

Lemma 2 Let v ∈ K≥0, r̂ and ŝ in K̂≥0, and t̂ in R̂≥0.

Then

– if v /∈ r̂, then r̂ ⊆ →v;

– r̂ ∩ ŝ ∈ {r̂, ŝ};
– if t̂ intersects both r̂ and ŝ, then r̂ ∩ ŝ ∩ t̂ 6= ∅.

2.2 One-clock timed automata

Definition 3 Let Σ be a finite alphabet. A one-clock

timed automaton over Σ is a tuple A = (L, {l0}, C,
∆,F), where L is a finite set of locations, l0 ∈ L is

the initial location, C is a set with a unique clock usu-

ally denoted x and ∆ ⊆ L × IQ≥0
×Σ × 2C × L is the

set of transitions, F ⊆ L is a set of final states.

We usually call valuation a function v : C → R≥0
associating to the clock a non-negative value. In the

sequel, we often identify valuations v ∈ RC≥0 and the

real values v(x) ∈ R≥0 they return.

Let A = (L, {l0}, ∆, C,F) be a one-clock timed au-

tomaton. A configuration of A is a pair (l, v) ∈ L×R≥0.

The semantics of A can be defined in terms of an in-

finite transition system whose states are the configu-

rations of A, in which there is a transition from (l, v)

to (l′, v′) when

– l′ = l and v′ ≥ v: in that case, we write (l, v)
d−→

(l, v′), with d = v′ − v, for such delay transitions

(notice that we have no invariants);
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– there is a transition e = (l, G, a,X, l′) s.t. v ∈ G and

v′ = v if X = ∅, and v′ = 0 otherwise (i.e. X =

C): for those action transitions, we write (l, v) →e

(l′, v′).

We write ∆∅ for the set of non-resetting transitions,

i.e., having ∅ as their fourth component, and ∆C for the

complement set of resetting transitions.

For a transition e = (l, G, a,X, l′), the guard G

is an interval, which can be written in a unique way

as the intersection of an element ê ∈ Q̂≥0 and an el-

ement ê ∈ Q̂≥0. In the sequel, the guard of a transi-

tion e will often be written ê ∩ ê. We write src(e) = l

and tgt(e) = l′, and lab(e) = a ∈ Σ. We extend these

definitions to sequences of transitions w = (ek)0≤k<n
as src(w) = src(e0), tgt(w) = tgt(en−1), and lab(w) =

(lab(ek))0≤k<n.

We define runs of timed automata as finite sequences

of transitions, with a strict alternation between delay

transitions and action transitions; in the sequel, we write

(l, v)
d−→w (l′, v′) when such a sequence exists following

the sequence of action transitions w ∈ ∆∗ with total du-

ration d. Formally, let w be a sequence (e2k+1)0≤2k+1<n

of transitions of ∆. For any non-negative real d ∈ R≥0,

we write (l, v)
d−→w (l′, v′) if there exists a finite sequence

of configurations (lk, vk)0≤k≤n ∈ (L × R≥0)n+1 and a

finite sequence of delays (d2k)0≤2k<n ∈ Rbn+1/2c
≥0 such

that
∑

0≤2k<n d2k = d, and (l0, v0) = (l, v) and (ln, vn) =

(l′, v′), and for all 0 ≤ k′ < n, (lk′ , vk′)
dk′−→ (lk′+1, vk′+1)

if k′ is even and (lk′ , vk′)→ek′ (lk′+1, vk′+1) if k′ is odd.

We write (l, v) → (l′, v′) when (l, v)
d−→w (l′, v′) for

some w ∈ ∆∗ and some d ∈ R≥0.

For any λ ∈ Σ∗ and any d ∈ R≥0, we write (l, v)
d
→λ

(l′, v′) whenever there exists a sequence of transitions w

such that λ = lab(w) and (l, v)
d−→w (l′, v′). Notice that

(l, v)
d
→ε (l′, v′) (where ε is the empty word) corre-

sponds to delay transitions (hence it must be l = l′).

The untimed language L(A) of A is the set of words λ ∈
Σ∗ such that (l0, 0)

d
→λ (l′, v′) for some l′ ∈ F and

d ∈ R≥0.

In the sequel, we heavily use markings, which map

locations of A to sets of clock valuations, thereby rep-

resenting sets of configurations of A. In our context,

the set of markings of a one-clock timed automaton

A = (L, {l0}, C, ∆,F) is the set M = {m | m : L →
P(R≥0)} 1. A marking m ∈ M represents the set of

configurations {(l, v) | v ∈ m(l)}.

1For any set U , we write P(U) for the set of subsets of U .

For any a ∈ Σ, we define the function Oa : M→M

by letting, for any m ∈M and any l′ ∈ L,

Oa(m) : l′ ∈ L 7→ {v′ ∈ R≥0 |

∃l ∈ L. ∃v ∈ m(l). (l, v)
0
→a (l′, v′)}.

Then Oa(m) is the marking representing the set of con-

figurations that can be reached after observing an a-

transition from the configurations represented by m.

Similarly, for any d ∈ R≥0, we let

Od(m) : l′ ∈ L 7→ {v′ ∈ R≥0 |

∃l ∈ L. ∃v ∈ m(l). (l, v)
d
→ε (l′, v′)},

representing the configurations reached from m after

observing a delay of d time units. Notice that Od simply

shifts all valuations by d.

2.3 Timed automata with silent transitions

So far, we have considered that all transitions of timed

automata can be observed. In that case, for any d ∈
R≥0, the operation Od can easily be computed, since

it amounts to adding d to each item of the marking

(in other terms, for any marking m, any state l ∈ L,

and any v ∈ R≥0, we have v ∈ m(l) if, and only if,

v + d ∈ Od(m)(l)).

We extend this approach to timed automata with

unobservable actions: we assume that Σ contains a spe-

cial silent letter τ , whose occurrences are not observ-

able. This requires changing the definition of lab: for w ∈
∆∗ and e ∈ ∆, we now let

lab(ε) = ε

lab(w · e) = lab(w) if lab(e) = τ

lab(w · e) = lab(w) · lab(e) if lab(e) 6= τ

Notice that lab(w) ∈ (Σ \ {τ})∗. Notice also that time

still is observable: we know exactly how much time

elapses between observable actions, and how much time

has elapsed since the last observation.

Now (l, v)
d
→ε (l′, v′) indicates a sequence of zero or

more silent transitions in d time units; in that case we

may have l′ 6= l. The function Od cannot be computed

anymore by just shifting valuations by d. In its raw

form, the function Od can be obtained by the compu-

tation of the set of reachable configurations in a delay d

by following (arbitrarily long sequences of) silent tran-

sitions. This is analogous to the method proposed by

Tripakis [27] for keeping track of the set of all possible

configurations the automaton can be in after observa-

tion w ∈ Σ∗ and delay d. In [27], the set of possible
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configurations is updated each time a new action is

observed (or after a time out, if no new observations

occur); besides being very costly, this approach may in-

crease the delay for detecting the occurrence of faulty

actions.

Example 4 Consider again the one-clock timed automa-

ton of Fig. 1, and the (initial) markingm0 which maps l0
to the single valuation v0 such that v0(x) = 0, and lo-

cations l1 and l2 to the empty set. This marking corre-

sponds to a single valuation.

Assume that we observe transition b after 1.3 time

units. Obviously, the automaton must have taken one

of the transitions from l1 to l2, but since they are unob-

servable, we cannot know when this occurred. Actually,

the bottom transition requires 3 ≤ x ≤ 4, so it cannot

have been used during the first 1.3 time units. In the

end, it is not hard to check that

O1.3(m0) : l0 7→ {1.3}
l1 7→ [0; 1.3]

l2 7→ ∅

The b-transition can be taken from the configurations

in l1 where x ≥ 1. This amounts to applying Ob to

the marking above, which results in a marking m1.3,b

mapping l0 and l1 to the empty set, and l2 to [1; 1.3].

Now, what if, instead, we observe b at time 4.6?

Computing O4.6(m0) can be done as above, but now

taking both transitions between l0 and l1 into account.

This results in

O4.6(m0) : l0 7→ {4.6}
l1 7→ [0.6; 1.6] ∪ [2.6; 4.6]

l2 7→ ∅

Then taking transition b is similar to the previous sit-

uation: it corresponds to applying Ob, which results in

a marking m4.6,b mapping l0 and l1 to the empty set,

and l2 to [1; 1.6] ∪ [2.6, 4.6]. We recover the markings

represented on Fig. 2. /

The two following sections will be devoted to the

computation of Od (and Oa). First Section 3 intro-

duces the notion of linear timed sets, which we use to

represent sets of valuations that evolve over time, and

its subclass of regular timed sets which allows a finite

representation in the case of one-clock time automata.

In Section 4 we lift these notions to sets of configura-

tions and their evolution over time, by the notions of

linear timed markings and regular timed markings. We

define a τ -closure operator on linear timed markings,

and, show that in the case of one-clock timed automata,

it can be efficiently computed using regular timed mark-

ings, at the expense of some precomputations.

3 Regular timed sets

In this section, we define the notion of linear timed set

to represent sets of clock valuations and their evolution

over time. Most important to us is the subclass of reg-

ular timed sets, that uses regularity (as we will define

just below) to ensure a finite representation, and will

be key to efficiency in the computation of closure, as

will be seen in the next section.

3.1 Regular unions of intervals

Before defining linear and regular timed sets, we intro-

duce our notion of regularity for sets.

Definition 5 A regular union of intervals is a 4-tuple

R = (I, J, p, q) where I and J are finite unions of in-

tervals in IQ (e.g. intervals of R with bounds in Q ∪
{−∞,+∞}), p ∈ Q>0 is the period, and q ∈ N is the

offset. It is required that J ⊆ (−p; 0] and I ⊆ 7→(−q · p).
The regular union of intervals R = (I, J, p, q) rep-

resents the subset of IQ S(R) = I ∪
⋃+∞
k=q (J − k · p)

(where J − k · p is the interval obtained by shifting J

by −k · p).

Example 6 Fig. 5 shows an example of a regular union

of intervals. There, the period is 1, the offset is 3, and

the sets I and J are as displayed on the figure. /

−6 −5 −4 −3 −2 −1 0 1 2

I

J

Fig. 5 Example of a regular union of intervals.

Regular unions of intervals enjoy the following prop-

erties:

Proposition 7 Let R and R′ be regular unions of in-

tervals representing the sets of reals S(R) and S(R′).

Then one can define regular unions of intervals, denoted

R, R ∪ R′ and R + R′ which represent respectively the

sets S(R), S(R) ∪ S(R′), and S(R) + S(R′).

Proof We now prove the result for S(R): writing S(R) =

I ∪
⋃+∞
k=q J − k · p, thanks to the constraints imposed

on I and J , we have

S(R) = ( 7→(−q · p) \ I) ∪
+∞⋃
k=q

((−p; 0] \ J)− k · p.
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For the union we write R = (I, J, p, q) and R′ =

(I ′, J ′, p′, q′), so that

S(R) = I ∪
+∞⋃
k=q

J − k · p S(R′) = I ′ ∪
+∞⋃
k=q′

J ′ − k′ · p′.

We can write p = a
b and p′ = a′

b′ , where a, b, a′ and b′

are positive integers. Let

N = min{n ∈ N | n · b · a′ ≥ q and n · b′ · a ≥ q′}.

Then we can write

S(R) =

I ∪ N ·b·a′−1⋃
k=q

J − k · p

∪
+∞⋃
k=N

b·a′−1⋃
r=0

J − r · p

− k · a · a′
 .

and

S(R′) =

I ′ ∪ N ·b′·a−1⋃
k=q′

J ′ − k · p′
∪

+∞⋃
k=N

b′·a−1⋃
r=0

J ′ − r · p′
− k · a · a′

 .
Since J ⊆ (−p; 0], we have

⋃b·a′−1
r=0 J − r · p ⊆ (−b · a′ ·

p; 0] = (a · a′; 0], and similarly for J ′. Taking the union

of the equalities above, we get an expression of S(R) ∪
S(R′) under the form I ′′∪

⋃+∞
k=N (J ′′−k · (a ·a′)), which

proves that S(R)∪S(R′) can be represented as a regular

union of intervals.

The proof for S(R) + S(R′) follows similar ideas:

as for S(R) ∪ S(R′), we first rewrite S(R) and S(R′)

in such a way that they have the same period. Hence

we assume w.l.o.g.R = (I, J, p, q) andR′ = (I ′, J ′, p, q′).

Since I and J are finite unions of intervals, we can write

S(R) =
⋃
ki

Iki ∪
⋃
kj

(

+∞⋃
k=q

Jkj − kp)

where Iki and Jkj are intervals. Similarly for S(R′).

This way, we can simply consider the following cases,

and apply our previous result for union to prove that

we end up with a regular union of intervals:

– Iki + I ′ki′ ;

– Iki + (
⋃+∞
k=q′ J

′
kj′
− kp);

– (
⋃+∞
k=q Jkj − kp) + (

⋃+∞
k=q J

′
kj′
− kp).

The first case is trivial. The second and third cases are

easy to handle. �

Notice that a regular union of intervals is finitely rep-

resentable.

3.2 Linear and regular timed sets

We introduce linear timed sets as a way to represent

sets of clock valuations (and eventually markings), and

how they evolve over time. Informally, a linear timed set

represents a mapping from the non-negative reals to the

set of subsets of R≥0. We begin with the definition of

atomic timed sets, which form a special case.

Definition 8 An atomic timed set is a pair T = (E; r̂)

where E ⊆ R and r̂ ∈ Q̂≥0. With such a pair T =

(E; r̂), we associate a mapping fT : R≥0 → 2R≥0 defined

as fT (d) = (E + d) ∩ r̂. The set fT (d) represents the

actual valuations after d time units. We call the second

component r̂ a filter.

A linear timed set T is a countable set {Tk | k ∈
K} (sometimes also denoted with

⊔
k∈K Tk) of atomic

timed sets. With such a linear timed set, we again as-

sociate a mapping fT : R≥0 → 2R≥0 defined as fT (d) =⋃
k∈K fTk

(d). A linear timed set is finite when K is.

We write T (R) for the set of linear timed sets of R.

For a timed set T after a delay d, we will often call

actual valuations the elements of fT (d) = (E + d) ∩
r̂ by contrast to potential valuations i.e. elements of

(E + d) \ r̂ that are not valuations for this particular

delay, but model valuations that will appear for greater

delays.

Example 9 Figure 3 displays an example of an atomic

timed set T = (E; 7→1), with E = [−4;−3] ∪ [−2; 0].

The picture displays the sets fT (0) = ∅, fT (1.3) =

[1; 1.3], and fT (4.6) = [1; 1.6] ∪ [2.6; 4.6].

Notice that those sets correspond to the markings

reached in the situations of Example 1 (see Fig. 2).

Actually, T can be used to represent all clock valua-

tions that may be reached in state l2 in the automaton

depicted on Fig. 1 (starting from the initial configura-

tion (l0, 0)), depending on the date at which b is ob-

served. /

Given two linear timed sets T and T ′, we write

T v T ′ whenever fT (d) ⊆ fT ′(d) for all d ∈ R≥0. This

is a pre-order relation; it is not anti-symmetric as for in-

stance ({1}; 7→0) v ({1}; 7→1) and ({1}; 7→1) v ({1}; 7→0).

We write T ≡ T ′ whenever T v T ′ and T ′ v T .

Clearly, cycles in timed automata may generate lin-

ear timed sets where the set E is infinite. Think of a self-

loop silently resetting the clock whenever it reaches 1:

the resulting linear timed set would be (−N; 7→0). We will

prove that for keeping track of all the configurations of

any one-clock timed automaton, it is always sufficient

to use finite unions of atomic timed sets in which the

first component has a simple shape, namely that of a

regular union of intervals.
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Definition 10 A regular timed set is a finite timed

set T = {(Ek; r̂k) | k ∈ K} such that for all k ∈ K,

the set Ek ⊆ R is the image by S of a regular union of

intervals Rk = (Ik, Jk, pk, qk).

This defines an adequate structure for represent-

ing and manipulating sets of configurations of one-clock

timed automata and their evolution over time. In the se-

quel, we extend linear timed sets into linear timed mark-

ings, explain how to compute them, and show that reg-

ular timed markings are (necessary and) sufficient for

representing all reachable configurations of partially-

observable one-clock timed automata.

4 Closure under delay and silent transitions

In this section, we fix a one-clock timed automaton A =

(L, {l0}, C, ∆,F) over alphabet Σ, assumed to contain a

silent letter τ , and aim at computing the functions Oa

for any a ∈ Σ and Od for any d ∈ R≥0. Comput-

ing Oa(m) for a ∈ Σ is not very involved: for a given

location l′ ∈ L, for each location l ∈ L and each transi-

tion e labelled with a with source l and target l′, it suf-

fices to intersect m(l) with the guard ê ∩ ê, and add

the resulting interval (or the singleton {0} if the in-

tersection is non-empty and e is a resetting transition)

to Oa(m)(l′), i.e.:

Oa(m)(l′) =
( ⋃
(l,ê∩ê,a,r,l′)∈∆∅

m(l) ∩ (ê ∩ ê)
)
∪

( ⋃
(l,ê∩ê,a,r,l′)∈∆C

(
m(l) ∩ (ê ∩ ê)

)
[C←0]

)
.

From now on, we only focus on computing Od, for d ∈
R≥0. For this, it is sufficient to only consider silent

transitions of A: we let U = UC ]U∅ be the subset

of ∆ containing exactly the transitions labelled with τ ,

partitioned into those transitions that reset the clock

(in UC), and those that do not (in U∅). We write Aτ
for the restriction of A to silent transitions, and only

consider that automaton in the sequel. In the follow-

ing, we first describe the effect of (silent) transitions on

markings and use it to define the τ -closure in Part. 4.1

and then propose an operator θ to explicitly compute

this closure in Part. 4.2, using linear timed sets. Finally

we prove that this computation and its result can be

finitely represented and effectively computed with reg-

ular timed sets in Part. 4.4. This process is summarized

in Fig. 6.

θ(M) : U∗ → (L→ (R≥0 → 2R≥0))

T = (E, r̂)

R = (I, J, p, q)

fT

S(R)

Fig. 6 Relation between the objects and their representa-
tions.

atomic

regular
finite

linear

timed marking

Fig. 7 The different classes of timed markings.

4.1 Linear timed markings and their τ -closure

We use markings to represent sets of configurations;

in order to compute Od, we need to represent the evolu-

tion of these sets over time. For this, we introduce timed

markings. A timed marking is a mapping M : L →
(R≥0 → 2R≥0). For any delay d ∈ R, we may (abu-

sively) write M(d) for the marking represented by M

after delay d (so that for any l ∈ L and any d ∈ R≥0,

both notations M(d)(l) and M(l)(d) represent the same

subset of valuations in R≥0).

For any l ∈ L and any d ∈ R≥0, M(l)(d) is intended

to represent all clock valuations that can be obtained

in l after a delay of d time units from the marking M(0).

A special case of timed marking are those timed

markings M that can be defined using linear timed sets,

i.e., for any l, M(l) is a mapping fT for some linear

timed set T ; timed markings of this kind will be called

linear timed markings in the sequel. Atomic (resp. fi-

nite, regular) timed markings are linear timed markings

whose values can be defined using atomic (resp. finite,

regular) timed sets (we may omit to mention linearity

in these cases to alleviate notations). The structure of

these different classes of timed markings can be found

in Fig. 7. As we prove below, regular timed markings

are expressive enough to represent how markings evolve

over time in one-clock timed automata.

Definition 11 We define the union of timed markings

M1 and M2 as the timed marking such that M1 ∪
M2(l)(d) = M1(l)(d) ∪ M2(l)(d). The intersection of

two timed markings is defined similarly.
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Two timed markings are said equivalent when for all

locations l and delays d, M1(l)(d) = M2(l)(d). We write

M1 ≡M2 when this is the case.

Proposition 12 The union of two linear (resp. finite,

regular) timed markings is a linear (resp. finite, regular)

timed marking.

Proof This can be seen directly by the stability of timed

sets and regular unions of intervals by union, which

comes respectively by definition and Prop. 7. �

As we prove below, regular timed markings are expres-

sive enough to represent how markings evolve over time

in one-clock timed automata.

We use (linear) timed markings to dispose of a repre-

sentation in the form of linear timed sets, that can store

both actual valuations, and potential valuations that do

not exist yet but will exist after some time elapses, as

displayed for example in Fig. 3. This representation has

the advantage over markings to be time-independent as

a single timed marking represents the set of valuations

for all possible delays.

With any marking m, we associate a linear timed

marking, which we write −→m, defined as −→m(l)(d) = {v+

d | v ∈ m(l)}. This timed marking is linear since it can

be defined e.g. as −→m(l) = f(m(l); 7→0). It can be used to

represent all clock valuations that can be reached from

marking m after any delay d ∈ R≥0, without taking

any transition.

To go further, we define the effect of a sequence

w ∈ U∗ of silent transitions on a marking m as the

following timed marking mw associating to each delay

the marking of reachable configurations:

mw : l′ 7→ d 7→ {v′ ∈ R≥0 | ∃l ∈ L.

∃v ∈ m(l). (l, v)
d−→w (l′, v′)}.

The set mw(l′)(d) corresponds to all configurations

reachable in l′ after reading w from a configuration

in m with a delay of exactly d time units. By defi-

nition of the transition relation →w, for mw(d) to be

non-empty, w must be a sequence of consecutive tran-

sitions. Notice that mε = −→m as one would expect 2

(and hence is linear). Going further, we can define the

τ -closure of m as the timed marking mτ such that

mτ (l)(d) =
⋃
w∈U∗ m

w(l)(d). By definition of Od, for

any delay d ∈ R≥0, we have Od(m) = mτ (d) for any

marking m.

This formalism is easily extended to timed markings

by taking for a timed marking M and a sequence of

2Remember that in mε, ε correspond to the empty se-
quence of transitions.

silent transitions w ∈ U∗:

Mw : l′ 7→ d 7→ {v′ ∈ R≥0 | ∃l ∈ L.

∃d0 ≤ d. ∃v ∈M(l)(d0). (l, v)
d−d0−−−→w (l′, v′)}

and defining Mτ (d)(l) =
⋃
w∈U∗M

w(d)(l).

Remark 13 Notice that the definition ofMw differs from

the one of mw only by the addition of an initial delay d0;

this takes into account the fact that some potential con-

figurations may become actual in M . By seeing M(d)

as a marking, we have

Mw : l′ 7→ d 7→
⋃
d0≤d

M(d0)w(l′)(d− d0).

The following lemmas prove that this extension is

self consistent and coherent with what was defined on

markings. First, the effect of the empty sequence on a

linear timed marking leaves it unchanged:

Lemma 14 For any linear timed marking M , it holds

Mε ≡M .

Proof Since M is linear, for any l′, M(l′) is a linear

timed set, so that M(l′)(d) =
⋃
k∈N(Ek+d)∩r̂k. On the

other hand,

Mε(l′)(d) = {v′ ∈ R≥0 | ∃l ∈ L. ∃d0 ≤ d.
∃v ∈M(l)(d0). (l, v)

d−d0−−−→ε (l′, v′)}
= {v′ ∈ R≥0 | ∃d0 ≤ d.

∃v ∈M(l′)(d0). (l′, v)
d−d0−−−→ε (l′, v′)}

= {v′ ∈ R≥0 | ∃d0 ≤ d.
∃v ∈M(l′)(d0). v′ = v + (d− d0)}

= {v′ ∈ R≥0 | ∃d0 ≤ d. ∃k ∈ N.
∃v ∈ (Ek + d0) ∩ r̂k. v′ = v + (d− d0)}

= {v′ ∈ R≥0 | ∃d0 ≤ d. ∃k ∈ N.
v′ ∈ (Ek + d) ∩ r̂k}

=
⋃
k∈N

(Ek + d) ∩ r̂k. �

Second, applying a sequence of silent transitions to

a marking or to its corresponding linear timed marking

yields the same result:

Lemma 15 For any marking m and any sequence w ∈
U∗, it holds (−→m)w ≡ mw.

Proof For any d and l′, we have

(−→m)w(d)(l′) = {v′ ∈ R≥0 | ∃l ∈ L. ∃d0 ≤ d.
∃v′′ ∈ −→m(d0)(l).(l, v′′)

d−d0−−−→w (l′, v′)}
= {v′ ∈ R≥0 | ∃l ∈ L. ∃d0 ≤ d. ∃v ∈ m(l).

(l, v)
d0−→ε (l, v′′)

d−d0−−−→w (l′, v′)}
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l0 l1

x < 1; τ

x ≥ 2; τ ;x := 0

l1
−3 −2 −1 0 1 2

r = 0

l0
−3 −2 −1 0 1 2

r = 0

Fig. 8 A silent timed automaton and its reachable configu-
rations.

On the other hand,

mw(d)(l′) = {v′ ∈ R≥0 | ∃l ∈ L. ∃v ∈ m(l).

(l, v)
d−→w (l′, v′)}.

It follows that any v′ ∈ (−→m)w(d)(l′) is in mw(d)(l′),

since (l, v)
d0−→ε (l, v′′)

d−d0−−−→w (l′, v′) implies (l, v)
d−→w

(l′, v′). Conversely, any v′ ∈ mw(d)(l′) is in (−→m)w(d)(l′),

since if (l, v)
d−→w (l′, v′), then taking d0 = 0, we have

(l, v)
d0−→ε (l, v)

d−d0−−−→w (l′, v′). �

This result can be generalized in the following way, link-

ing even more the operations mw (defined on markings)

and Mw (defined on linear timed markings):

Corollary 16 For any marking m and any two se-

quences of silent transitions w1 and w2 in U∗, it holds

(mw1)w2 ≡ mw1.w2 .

Proof For any m, w1 and w2:

(mw1)w2 = ((−→m)w1)w2 (by lemma 15)

= (−→m)w1.w2 (by definition)

= mw1.w2 (by lemma 15.)

�

Finally, we formally define what we will consider as

τ -closures in the sequel:

Definition 17 Let M be a timed marking. A timed

marking N is a τ -closure of M if N ≡ Mτ . The timed

marking M is said τ -closed if it is a τ -closure of itself.

Our aim in this section is to compute (a finite repre-

sentation of) a τ -closure of any given initial marking

(defined using regular unions of intervals).

Example 18 Consider the (silent) timed automaton of

Fig. 8. The initial configuration can be represented by

the marking m defined as m(l0) = {0} and m(l1) = ∅,

markings:
m : L→ 2R≥0

linear timed sets:
T = tk∈K(Ek; r̂k)

linear timed markings:
M(l) = fT

timed markings:
M : L→ (R≥0 → 2R≥0)

fT

−→m,mw

Mw,Mτ

θ

θ

≡

Sec. 2.2

Sec. 4.1

Sec. 4.2

Sec. 3.2

Fig. 9 Link between the different objects and plan of the
paper.

corresponding to the single configuration {(l0, x = 0)}.
It gives rise to a timed marking −→m defined as −→m(l0) =

f({0}; 7→0) and −→m(l1) = f(∅; 7→0). Write M for this timed

marking; M is not closed under silent-transitions, as for

instance configuration (l1, 0) is reachable; however, this

configuration cannot be reached after any delay: it is

only reachable after delay 0, or after a delay larger than

or equal to 2 time units. In the end, it can be checked

that a τ -closed timed marking for this automaton is

Mτ (l0) = M(l0), and Mτ (l1) = ((−∞;−2] ∪ [0; 0]; 7→0).

/

4.2 Computing τ -closures

In this subsection, we show how to compute τ -closures.

For this, we rely on linear timed set as a mean to rep-

resent M(l) for the timed markings M and locations l

encountered during the operation.

We will define an operator θ computing the effect of

a silent transition on a linear timed set, and then extend

it to sequences and languages of silent transitions on

one hand and to linear timed markings on the other

hand.

We will also prove that this operator corresponds to

the semantic operations on linear timed markings Mw

and Mτ used to compute the τ -closure.

The approach we have followed so far is summarized

in Fig. 9, with links to the different sections.
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Core to the definition of the θ operator is the gauge,

that computes the effect of a resetting transition on a

set of (potential) valuations.

Definition 19 Let E andG be two subsets ofR. We de-

fine their gauge as the set E nG = (E −G) ∩R≤0
This operation can be characterised in the following

ways:

Proposition 20 Let E and G be two subsets of R.

Then

E nG = {−d | d ∈ R≥0 ∧ (G− d) ∩ E 6= ∅}
= {−d | d ∈ R≥0 ∧ (E + d) ∩G 6= ∅}

Proof We observe that

E nG = {e− g | e ∈ E, g ∈ G s.t. e ≤ g}
= {−d | d ∈ R≥0 ∧ ∃e ∈ E. ∃g ∈ G. d = g − e}
= {−d | d ∈ R≥0 ∧ ∃g ∈ G. g − d ∈ E}
= {−d | d ∈ R≥0 ∧ (G− d) ∩ E 6= ∅}.

The other equality is proven similarly. �

These characterisations can be read as “E n G is the

inverse of the set of delays after which valuations in E

satisfy the guard G”. It corresponds to the intuition

that after waiting such a delay, the transition can be

taken and as it is a resetting one, the clock value be-

comes 0.

Example 21 Consider the simple transition in Fig. 10,

with guard G = [1, 2]. When entering in l0 with a

set of potential configurations corresponding to E =

{0} ∪ [−3,−2] displayed on the right side of the fig-

ure, the result of E n G is the set of configurations

[−5,−3] ∪ [−2,−1]. To see this, imagine a right shift

of E, and consider the delays d during which the two

intervals composing E meet G, i.e. [1, 2] and [3, 5]. Each

such d is a date at which a configuration (l1, x = 0) can

be spawned (because the transition resets the clock);

therefore, −d is a potential valuation in l1. In the end,

(E n G; 7→0) = ([−5,−3] ∪ [−2,−1]; 7→0) is the linear

timed set of all potential valuations in l1 in this situa-

tion. /

In the following, we use the gauge to define the op-

erator θ on linear timed sets and extend it to linear

timed markings, while proving that it corresponds to

the semantic operations Mw and Mτ defined on gen-

eral timed markings. The following simple statements

will be useful in the sequel:

Proposition 22 – If E ≤ G (that is, if for any e ∈ E
and any g ∈ G, it holds e ≤ g; this is the case

in particular if E ⊆ R≤0 and G ⊆ R≥0), then E n
G = E −G;

l0 l1
G = 1 ≤ x ≤ 2, τ

x := 0

−5 −4 −3 −2 −1 0 1 2

E G

−5 −4 −3 −2 −1 0 1 2

E nG

Fig. 10 Effect of the gauge operator.

– if E > G ( i.e., if for any e ∈ E and any g ∈ G,

it holds e > g), then E nG = ∅;

– If E and G are two intervals, then E n G is an

interval;

– If R is a regular union of intervals and G is an in-

terval, then S(R)nG can be represented as a regular

union of intervals noted RnG;

– If G′ ⊆ R≥0, then (E nG) nG′ = (E nG)−G′.

Proof The first two claims are trivial from the definition

of EnG. The third claim follows from the fact that E−
G is an interval if E and G are. The fourth claim follows

from Prop. 7. Finally, the last claim is a consequence of

the first one (because E nG ⊆ R≤0). �

We now define a mapping θ : T (R)×U∗ → T (R), in-

tended to represent the linear timed set that is reached

by performing sequences of silent transitions from some

given linear timed set. We first consider atomic timed

sets, and the application of a single silent transition.

Definition 23 For an atomic timed set (E; r̂) of T (R)

and a transition e = (l, ê ∩ ê, τ,X, l′) of U :

θ((E; r̂), e) =



(∅; 7→0) if r̂ ∩ ê = ∅
(E ∩ ê; r̂ ∩ ê)

if r̂ ∩ ê 6= ∅ and X = ∅
(E n (r̂ ∩ ê ∩ ê); 7→0)

if r̂ ∩ ê 6= ∅ and X = C

The intuition behind these three cases is as follows

(see also Fig. 11 for a graphical illustration, and the

proof of Lemma 26 for the formal arguments):

– if r̂ ∩ ê = ∅, then the transition cannot be taken:

it means that the upper bound ê of the guard is

smaller than the smallest clock value in r̂ that can

be reached;

– if r̂ ∩ ê 6= ∅, then there is some range of delays d

such that f(E;r̂)(d)∩ ê∩ ê is not empty and the tran-

sition can be taken. Furthermore, the transition can

be taken from any potential valuation in E ∩ ê: for

valuations in this set the transition will be possible

after some delay, while valuations out of ê will never

go back in this set. Then after the transition:
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l l′
x ∈ [a, b]

X

• if r̂ ∩

7→

b = ∅:

(E, r̂) in l

a b

• if r̂ ∩

7→

b 6= ∅:

(E, r̂) in l

a b

(∅, 7→0) in l′

• if X = ∅:

(E∩

7→

b, 7→a∩r̂) in l′

• if X = C:

((E−r̂∩[a, b])∩R≤0; 7→0) in l′

Fig. 11 Representation of the effect of silent transition (l, [a, b], τ,X, l′) in three cases.

– if the transition does not reset the clock, then

the value of the clock is not changed. Then E∩ ê
can represent the set of potential valuations. In

order for a valuation to be actually reachable, it

needs to be actual in E; r̂ (i.e. in r̂) and to have

reached ê ∩ ê (i.e. in ê). Hence the timed set of

reachable configurations can be represented by

(E ∩ ê; r̂ ∩ ê);
– if the transition resets the clock, then the set of

reachable values for the clock in l′ after delay d1
corresponds to the set of delays that can be spent

in l′ (after the clock reset), i.e., the difference

between d1 and the delays d that can be spent

in l before taking the transition. Those delays

that can be spent in l before taking the transition

can be seen to precisely correspond to En(r̂∩ê∩
ê). Notice r̂∩ê∩ê corresponds to the set of actual

valuations of f(E;r̂)(d) satisfying the guard.

Example 24 Consider a linear timed set T = (E =

[−3,−2] ∪ {0}, 7→n) with n ∈ N representing the con-

figurations reachable in the state l0 of the automaton

in Fig. 10. If n = 3, then for all delays d, fT (d) ≥ 3 and

it is clear that the transition cannot be taken. Hence,

as expected, θ(T, l0, 7→1∩

7→

2, τ, {x}, l1) = ∅ (this corre-

sponds to the first case of the definition).

In contrast, if n = 1 then all configurations sat-

isfying the guard can be reached after a fitting de-

lay, and θ(T, l0, 7→1 ∩

7→

2, τ, {x}, l1) = (E n G, 7→0) with

E n G = [−5,−3] ∪ [−2,−1] as displayed on the fig-

ure. Notice that the new filter 7→0 corresponds to the

intuition: all positive clock values can be reached (after

a certain delay), as the transition can be taken and it

resets the clock. /

Definition 23 (cont.) We extend θ to sequences of

transitions inductively as follows:

θ((E; r̂), ε) = (E; r̂)

and, for w ∈ U∗ and e ∈ U ,

θ((E; r̂), w·e) =

{
θ(θ((E; r̂), w), e) if tgt(w) = src(e)

(∅; 7→0) otherwise.

Example 25 Consider a linear timed set ([−3,−1]; 7→2),

intended to represent the configurations that are reach-

able in a state l: then after 3 time units, only configu-

ration (l, 2) can be observed, and after 4.5 time units,

the set of reachable configurations in l is {(l, x) | 2 ≤
x ≤ 3.5}.

Now, assume that there is a resetting transition

from l to l′, guarded with x ∈ [1; 4]. The set of con-

figurations reachable in l′ (originating from the above

linear timed set and transition) then is

([−3;−1] n 7→2 ∩ 7→1 ∩

7→

4; 7→0) = ([−3;−1] n [2; 4]; 7→0)

= ([−7;−3]; 7→0).

In particular, assuming we depart from linear timed

set ([−3;−1]; 7→2) in l, the transition can only take place

between 3 and 7 time units. /

Definition 23 (cont.) We extend this definition to

linear timed sets as follows:

θ({Tk | k ∈ K}, w) = {θ(Tk, w) | k ∈ K}

The θ operator is now extended to all linear timed

sets and sequences of transitions. We now prove that

it indeed corresponds to the effect of taking transitions

from a given timed set. For this we do not reason di-

rectly on the linear timed set but on their associated
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functions fT . The following lemma states that (infor-

mally) θ(T,w) corresponds to the effect of following w

from T .

Lemma 26 Let T be a linear timed set and w ∈ U∗.
Then for any d ∈ R≥0 and any v ∈ R≥0,

v ∈ fθ(T,w)(d) ⇔ ∃d0 ∈ [0; d]. ∃v′ ∈ fT (d0).

(src(w), v′)
d−d0−−−→w (tgt(w), v).

Proof We carry the proof for the case where T is an

atomic timed set. The extension to unions of atomic

timed sets is straightforward.

The proof is in two parts: we begin with proving the

result for w = ε, then for a single transition, and finally

proceed by induction to prove the full result.

If w = ε, then v ∈ fθ(T,w)(d) is equivalent to

v ∈ fT (d), which entails the right-hand-side of the

equivalence for d0 = d. Conversely, if v = v′ + (d− d0)

for some v′ ∈ fT (d0), then, writing T = (E; r̂), we have

v′ ∈ (E+d0)∩ r̂, so that v ∈ (E+d)∩ r̂, i.e. v ∈ fT (d).

Now, assume that w is a single transition e = (l, ê∩
ê, τ,X, l′), for which we assume (w.l.o.g.) that ê∩ê 6= ∅.

In case T is empty (i.e. E = ∅), then also θ(T, e) is

empty, and the result holds. We now assume that T =

(E; r̂) is not empty (i.e. E 6= ∅), and consider three

cases, corresponding to the three cases of the definition

of θ(T, e):

– if r̂ ∩ ê = ∅, then θ(T, e) = (∅; 7→0). On the other

hand, for any d0 and any v′ ∈ fT (d0), it holds v′ ∈ r̂,
so that v′ /∈ ê, and the transition cannot be taken

from that valuation (even after some delay). Hence

both sides of the equivalence evaluate to false, and

the equivalence holds.

– now assume that r̂ ∩ ê 6= ∅, and consider the case

where e does not reset the clock. Write p̂ = r̂ ∩ ê,
and pick v ∈ fθ(T,w)(d) = f(E∩ê;p̂)(d) (assuming one

exists). Then v ∈ (E + d) ∩ (ê+ d) ∩ p̂; this implies

p̂ ∩ ê ∩ [v − d; v] 6= ∅: indeed,

– if v ∈ ê or v − d ∈ p̂, then the result is trivial;

– otherwise, v /∈ ê implies ê ⊆

→

v, and v − d /∈ p̂
implies p̂ ⊆ →v − d, so that p̂ ∩ ê ⊆ (v − d; v).

Moreover, the fact that both r̂ ∩ ê and ê ∩ ê are

non-empty implies that also p̂ ∩ ê = r̂ ∩ ê ∩ ê is

non-empty.

Then for any v′ in that set p̂ ∩ ê ∩ [v − d; v], let-

ting d0 = v′−(v−d), we have v′ ∈ E+d0. In the end,

v′ ∈ fT (d0), and v′ ∈ ê∩ ê, so that (src(e), v′)
d−d0−−−→e

(tgt(e), v).

Conversely, if d0 ∈ [0; d] and v′ ∈ fT (d0) exist such

that (src(w), v′)
d−d0−−−→w (tgt(w), v), then v′ ∈ E +

d0∩ r̂, and for some d1 ≤ d−d0, v′+d1 ∈ ê∩ ê. Then

v = v′+d−d0 since e does not reset the clock; also,

since v′ ∈ E+d0∩ r̂, we have v ∈ (E+d)∩ r̂; finally,

from v′+d1 ∈ ê∩ ê, we get v ∈ ê+ (d−d0−d1) ⊆ ê
and v ∈ ê + (d − d0 − d1) ⊆ ê + d. In the end,

v ∈ ((E + ê) + d) ∩ (r̂ ∩ ê) = fθ(T,e)(d).

– we finally consider the case where r̂ ∩ ê 6= ∅ and

e resets the clock. In this case, v ∈ fθ(T,w)(d) means

that v ∈ 7→0 and v − d ∈ E n (p̂ ∩ ê), which rewrites

as 0 ≤ v ≤ d and (E + d − v) ∩ (p̂ ∩ ê) 6= ∅
(by Prop. 22). Let d0 = d − v. The property above

entails that 0 ≤ d0 ≤ d, and that there exists some

v′ ∈ (E+d0)∩(p̂∩ê), so that 0 ≤ d0 ≤ d, v′ ∈ fT (d0)

and (src(e), v′)
d−d0−−−→e (tgt(e), v). Conversely, if those

conditions hold, then for some 0 ≤ d1 ≤ d − d0,

we have v′ + d1 ∈ ê ∩ ê, and v = d − (d0 + d1) ≥ 0

(remember that e resets the clock). Then v′ + d1 ∈
E+(d0+d1)∩r̂∩ê∩ê, so that −(d0+d1) ∈ En(p̂∩ê),
and finally v ∈ fθ(T,w)(d).

We now consider the case of w ·e, assuming that the

result holds for w ∈ U+. In case tgt(w) 6= src(e), the re-

sult is trivial. Otherwise, first assume that v′ ∈ (θ(T,w ·
e))(d), and let T ′ = θ(T,w). Then v′ ∈ fθ(T ′,e)(d),

thus there exist 0 ≤ d0 ≤ d and v ∈ fT ′(d0) s.t.

(src(e), v)
d−d0−−−→e (tgt(e), v′). Since v ∈ fT ′(d0), there

must exist 0 ≤ d1 ≤ d0 and v′′ ∈ fT (d1) such that

(src(w), v′′)
d0−d1−−−→w (tgt(w), v). We thus have found 0 ≤

d1 ≤ d such that (src(w), v′′)
d−d1−−−→w·e (tgt(e), v′).

Conversely, if (src(w), v′′)
d−d1−−−→w·e (tgt(e), v′) for

some 0 ≤ d1 ≤ d and v′′ ∈ fT (d1), then we have

(src(w), v′′)
d0−d1−−−→w (tgt(w), v)

d−d0−−−→e (tgt(e), v′) for

some d0 ∈ [d1; d] and some v. In that case, we prove

that v ∈ fθ(T,w)(d0): indeed, we have d1 ∈ [0; d0], and

v′′ ∈ fT (d1) such that (src(w), v′′)
d0−d1−−−→w (tgt(w), v),

which by induction hypothesis entails v ∈ fθ(T,w)(d0).

Thus we have d0 ∈ [0; d] and v ∈ fT ′(d0), where T ′ =

θ(T,w), such that (tgt(w), v)
d−d0−−−→e (tgt(e), v′), which

means v′ ∈ fθ(T ′,e)(d), and concludes the proof. �

This results is the first link between θ and the se-

mantics of timed automata, and the main technical re-

sult of the section, the following ones stemming from

it. Thanks to this characterization of θ(T,w), we get:

Corollary 27 For any sequence w of silent transitions,

and any two equivalent linear timed sets T and T ′, the

linear timed sets θ(T,w) and θ(T ′, w) are equivalent.

This corollary ensures that we do not depend on the

representation of the structure for our results since the

mapping θ defined on linear timed sets preserves the

equivalence of markings that they represent.

Finally, we extend θ to linear timed markings in the

expected way:
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Definition 23 (cont.) Given a linear timed markingM ,

and a sequence w of transitions, we let:

θ(M,w) : l 7→ fθ(TM(src(w)),w) if l = tgt(w),

l 7→ f(∅; 7→0) otherwise.

with TM(src(w)) a timed set such that fT = M(src(w)).

Since θ(T1 t T2, w) = θ(T1, w) t θ(T2, w), we also

have θ(M1tM2, w) ≡ θ(M1, w)tθ(M2, w) when applied

to linear timed markings. Then, we can extend the link

between θ and the semantics to linear timed markings.

This is the main result of the section, as it formally

establishes the correspondence between the semantic

computation of the effect of silent transitions and the

operator θ that we build to compute it.

Theorem 28 θ(M,w) ≡ Mw for all w ∈ U∗ and all

linear timed marking M .

Proof For d ∈ R≥0 and l ∈ L, we have

Mw(d)(l) = {v ∈ R≥0 | ∃l′ ∈ L. ∃do ≤ d.

∃v′ ∈ M(d0)(l′). (l′, v′)
d−d0−−−→w (l, v)}.

Hence clearly Mw(l) ≡ f(∅; 7→0) if l 6= tgt(w). When

l = tgt(w), we have

Mw(d)(l) = {v ∈ R≥0 | ∃d0 ≤ d.

∃v′ ∈M(d0)(src(w)). (src(w), v′)
d−d0−−−→w (l, v)}.

By Lemma 26, this corresponds to θ(M,w)(l)(d). �

Finally, we extend θ from sequences of transitions

to languages.

Definition 29 For a timed marking M and a language

L ⊆ U∗, we let

θ(M,L) =
⊔
w∈L

θ(M,w)

and we note θ(M) = θ(M,U∗).

From this definition and the previous statements, we

immediately get:

Corollary 30 For any linear timed marking M , it holds

θ(M) ≡Mτ .

It follows that the τ -closure of any marking (in partic-

ular the initial marking) can be represented as a linear

timed marking. However, this linear timed marking is

currently defined as an infinite union over all sequences

of consecutive silent transitions. We make the compu-

tation more effective (and representable) in the Sec-

tion 4.4.

4.3 Necessity of regular timed sets

The next section will prove that regular timed sets are

enough to express (and effectively compute) the set of

configurations reached by a one-clock timed automa-

ton. To complete this result, we prove that any regular

timed marking can appear in the τ -closure of a one-

clock timed automaton.

Proposition 31 Given a regular timed set T , there ex-

ists a one-clock timed automaton A such that T repre-

sents the τ -closure of A.

Proof The proof is first made for an atomic regular

timed set T = (E; r̂) defined using a regular union of

intervals R = (I, J, p, q). The generalization to finite

unions of atomic regular timed sets is then proposed at

the end. We prove this result by constructing a timed

automaton. For this, we first explain how to encode

intervals with bounds in Q≤0 ∪ {−∞}, regular repeti-

tions, finite unions, and how to add a filter r̂. Then we

construct an automaton for T .

– Consider an interval I with bounds in Q≤0∪{−∞}.
In the automaton represented in Fig. 12, we start

from the initial (atomic regular) timed markingMinit

associating f({0}; 7→0) with the initial location l0 and

f(∅; 7→0) with any other location. The τ -closureMτ
init =

θ(Minit) of Minit associates f({0}; 7→0) with l0, and

f(I; 7→0) with l1. Indeed, by definition of θ, the clo-

sure is computed as: ({0} n −I ∩ 7→0; 7→0) = ({0} n
−I; 7→0) = (I; 7→0).

l0 l1
−I, τ, {x}

Fig. 12 An automaton whose closure in l1 is (I, 7→0).

– Consider a rational p ∈ Q≤0, an integer q, an in-

terval J ∈ (−p; 0] with rational bounds, and the

automaton depicted in Fig. 13. As argued in the

previous case, starting from Minit, the effect of the

transition l0 → l1 through θ is represented by (J −
p · q; 7→0). Then it is easy to see that the τ -closure

is represented by (
⋃∞
k=q J − k · p; 7→0) in l1. Indeed,

the effect of one application of the self-loop has the

form ·n{p}, effectively repeating the pattern shifted

by −p. The fixpoint then is (
⋃∞
k=q J−k ·p; 7→0) in l1.

– The general method to combine a finite number of

atomic timed sets representing different behaviours

ending in the same configuration is to regroup them

in a finite timed set (i.e., a finite collection of atomic

timed sets). When all the atomic timed sets share

the same constraint r̂, an equivalent method is to
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l0 l1
τ,−(J − q.p), {x}

τ, p, {x}

Fig. 13 An automaton whose closure in l1 is (
⋃∞
k=q J −

k.p; 7→0).

take the explicit union of their first part. As argued

in Prop. 7, when the atomic timed sets are regular,

this yields an atomic regular timed set. A simple

example of such unions is shown in Fig. 14.

l0 l1

τ,−I1, {x}

τ,−I2, {x}

Fig. 14 An automaton having (I1 ∪ I2; 7→0) as closure in l1.

– Adding a stricter filter r̂ to a linear timed set through

a transition is straightforward: it is the exact effect

of a non-resetting transition of guard r̂.

Using these components, we can build an automa-

ton using T = (S(R); r̂) to encode the τ -closure of the

initial timed marking. A possible example is depicted

in Fig. 15 for R = (
⋃nI

k=1 Ik,
⋃nJ

k=1 Jk, p, q), where the

dotted line is meant to represent the nI and nJ edges.

In this automaton, the closure can be represented by

(S(R); 7→0) in lR and T is lf .

l0

l1

lnJ

lR lf

τ,−I1, {x}

τ,−InI , {x}

τ,−(J1 − q.p), {x}

τ, p, {x}

τ,Q≥0,∅

τ,−(JnJ − q.p), {x}

τ, p, {x}

τ,Q≥0,∅

τ, r̂,∅

Fig. 15 An automaton using T to encode the closure in lf .

It is clear to see that for a regular timed set T =

{(Ek; r̂k) | k ∈ K}, as K is by definition finite, build-

ing all components necessary to accept the Ek; r̂k with

the same initial and final location yields a finite timed

automaton with 1 clock requiring T to represent its τ -

closure. �

Remark 32 Notice that we rely on the intervals defining

a regular union of intervals having bounds in Q≤0, in

order to define automaton guards with their additive

inverse.

4.4 Finite representation of the closure

In Section 4.2, we demonstrated how the τ -closure of

any linear timed marking (and hence of any marking)

can be computed as a linear timed marking using the θ

operator. To complete this result, we prove in this sub-

section that when starting from regular timed mark-

ings, the τ -closure can be computed with regular timed

markings. This presents two main interests:

– First, it corresponds to the semantics of timed au-

tomata, as the initial timed marking is clearly reg-

ular and we have proved that any regular timed set

can appear in a τ -closure (Prop. 31),

– second, linear timed markings rely on linear timed

sets, which in general use infinite unions of sets of

R. In order to get an effective algorithm, we need a

finite representation of sets, which regular unions of

intervals provide.

The following theorem is the general result we prove in

the following discussion. We call language of transitions

of a timed automaton A, noted L∆(A), the language

obtained by reading the name of the transitions instead

of the labels.

Theorem 33 Consider a timed automaton A and a

regular language L ⊆ L∆(A) included in its language

of transitions. Given a regular timed marking M , the

timed marking θ(M,L) is regular.

Thanks to this theorem and the fact that the timed

marking corresponding to the initial valuation is regu-

lar, we can deduce the following facts:

Corollary 34 Given a timed automaton A with τ tran-

sitions and its silent fragment Aτ :

– the initial (timed) marking of Aτ is regular and

– the τ -closure of any regular (timed) marking is reg-

ular.

This result entails that regular timed markings are in-

deed enough to represent and compute the τ -closures.

The remaining of this subsection is a proof of The-

orem 33. We first prove in the Paragraph 4.4.1 that the

linear timed marking θ(M,L) is a finite timed marking,

by discussing the set of possible filters. Then we prove

that it is a regular timed marking in Paragraph 4.4.2.
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4.4.1 Finiteness

Finiteness is achieved by separating the initial timed

marking per location, and then proving that there is

only a finite amount of possible filters.

Let M be a regular timed marking: then M can

be written as the finite union of atomic regular timed

markings M(l,E,r̂), defined as M(l,E,r̂)(l) = f(E;r̂) and

M(l,E,r̂)(l
′) = f(∅; 7→0) for all l′ 6= l. Thus θ(M,L) is

the function associating to an input the union of the

corresponding outputs of θ(M(l,E,r̂),L) and it suffices

to compute the result for atomic regular timed mark-

ings M(l,E,r̂).

We write θ1((E; r̂), w) ⊆ R and θ2((E; r̂), w) ∈ R̂≥0
for the first and second components of θ((E; r̂), w). No-

tice that θ2((E; r̂), w) does not depend on E (so that

we may denote it with θ2(r̂, w) in the sequel). In par-

ticular,

– θ2((E; r̂), w) = 7→0 if w ∈ U∗ × UC is a sequence

of consecutive transitions ending with a resetting

transition;

– θ2((E; r̂), w) = r̂∩
⋂
k<n êk if w = e1 . . . en ∈ U∅

∗ is

a sequence of consecutive non-resetting transitions.

Letting Jr̂ = { 7→0, r̂} ∪ {ê | e ∈ U∅}, it follows that

θ2((E; r̂), w) ∈ Jr̂ for any (E; r̂) and any w (because

by Lemma 2, r̂ ∩ ê is either r̂ or ê, for any r̂ and ê

in R̂≥0). Hence θ(M(l,E,r̂)), and thus also θ(M,L), can

be written as a finite union of atomic timed markings

as Jr̂ is a finite set. By definition, θ(M,L) is thus a

finite timed marking.

4.4.2 Regularity

In the following, we reason on each M(l,E,r̂) separately.

To prove regularity, we first introduce some more no-

tations and state Lemma 35, that allows to rewrite θ

using the properties of the gauge. Then we separate

θ(M(l,E,r̂),L) as we did for M by separating first the

ending locations and then the ending filters. For this we

separate L =
⋃
l,l′∈L, r̂,r̂′∈Jr̂ [L(l, l′)]r̂

′

r̂ . The proof that

θ(M(l,E,r̂), [L(l, l′)]r̂
′

r̂ ) is indeed regular is encapsulated

in Lemma 36.

First, some more formalism:

– we let Ĝid = {ê | e ∈ U∅} and Ĝid = {ê | e ∈ U∅}.
We thus have Jr̂ = { 7→0, r̂} ∪ Ĝid;

– for r̂ ∈ R̂≥0 and e ∈ U , we write Φ(r̂, e) for the

interval r̂ ∩ ê ∩ ê;
– we define a mapping Jr̂ : U∗ → NJr̂×UC that counts

the number of occurrences of certain timing con-

straints at resetting transitions along a path: pre-

cisely, it is defined inductively as follows (where ]

represents addition of an element to a multiset):

Jr̂(ε) = {0}Jr̂×UC

Jr̂(w · e) = Jr̂(w) ] {(θ2(r̂, w), e)} if e ∈ UC
Jr̂(w · e) = Jr̂(w) if e ∈ U∅.

The idea behind Jr̂ is the following: consider a timed

set (E; r̂), and a resetting silent transition guarded with

x ∈ ê ∩ ê. Resetting clock x when it is in r̂ ∩ ê ∩ ê
amounts to substracting to x some value in that inter-

val. The function Jr̂ precisely counts the number of oc-

currences of each of those intervals along a sequence w

of silent transitions. Since there is only one clock, the

order of the transitions is not important. Lemma 35

formalizes this intuition:

Lemma 35 Let (E; r̂) be an atomic timed set with E ⊆
R≤0, and w ∈ U∗. Then either θ1((E; r̂), w) = ∅, or

θ1((E; r̂), w) = E −
∑

J=(ĝ,e)∈Jr̂×UC

Jr̂(w)(J)× Φ(ĝ, e)

=
{
x−

∑
J∈Jr̂×UC

Jr̂(w)(J) · yJ
∣∣∣ x ∈ E and

yJ ∈ Φ(J) for all J ∈ Jr̂ × UC
}
.

Proof The result is straightforward for w = ε. Now,

assume the result holds for some w ∈ U∗, and con-

sider w′ = w · e.
Assuming that θ1((E; r̂), w) 6= ∅, we first consider

the case where e ∈ U∅: then

θ1((E; r̂), w · e) = θ1((E; r̂), w) ∩ ê

(by Definition 23 of θ). Since θ1((E; r̂), w) ⊆ R≤0 ⊆ ê,

we have θ1((E; r̂), w·e) = θ1((E; r̂), w). Since Jr̂(w·e) =

Jr̂(w) when e ∈ U∅, our result follows.

Now assume e ∈ UC : we have

θ1((E; r̂), w · e) = θ1((E; r̂), w) n (θ2(r̂, w) ∩ ê ∩ ê).

Since θ1((E; r̂), w) ⊆ R≤0 and θ2(r̂, w) ⊆ R≥0, Prop. 22

entails

θ1((E; r̂), w · e) = θ1((E; r̂), w)− (θ2(r̂, w) ∩ ê ∩ ê).

Then, since Φ(θ2(r̂, w), e) = θ2(r̂, w)∩ê∩ê, substracting

θ2(r̂, w) ∩ ê ∩ ê precisely corresponds to the effect of

adding {(θ2(r̂, w), e)} to the multiset Jr̂(w). �

Let M(l,E,r̂) be an atomic regular timed marking. As

regular timed markings are defined using linear timed

sets, we extend the notations θ1 and θ2 to regular timed

markings as the functions returning resp. mappings from

locations to sets (that we want to define using regular

unions of intervals), and elements of R̂≥0, such that for

any regular timed marking M , we have θ(M,w) : l 7→
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f(θ1(M,w)(l);θ2(M,w)(l)). For any state l′ of Aτ , we let

L(l, l′) be the set of all sequences of consecutive transi-

tions from l to l′ in Aτ . Then

(M(l,E,r̂))
τ =

⊔
l′∈L

θ(M(l,E,r̂),L(l, l′)).

Hence it suffices to prove that θ(M(l,E,r̂),L(l, l′)) is reg-

ular.

For any set L of sequences of consecutive transitions,

and for any r̂ and r̂′ in R̂≥0, we let Lr̂′r̂ = {w ∈ L | r̂′ =

θ2(r̂, w)}. One easily observes that for any r̂ ∈ R̂≥0 and

any L, it holds L =
⋃
r̂′∈Jr̂ L

r̂′

r̂ , so that θ(M(l,E,r̂),L(l, l′))

can be written as⊔
r̂′∈Jr̂

l′′ 7→ f(
θ1(M(l,E,r̂),[L(l,l′)]r̂

′
r̂
)(l′′);r̂′

).
We can thus focus on θ1(M(l,E,r̂), [L(l, l′)]r̂

′

r̂ ). The fol-

lowing key lemma entails that this set is a regular union

of intervals:

Lemma 36 Let M(l,E,r̂) be an atomic regular timed

marking. Let r̂ and r̂′ be two elements of R̂≥0, and L ⊆
L(Aτ ) be a regular language. Then θ1(M(l,E,r̂),Lr̂

′

r̂ ) can

be defined using a regular union of intervals.

Proof The proof of this result is in two parts: we first

express Lr̂′r̂ as the language of a finite automaton, and

then—by a tedious proof—express θ1(M(l,E,r̂),Lr̂
′

r̂ ) us-

ing regular unions of intervals.

Finite automaton for Lr̂′r̂ . We assume that L is ac-

cepted by some automaton B = (L, {l0}, C, U,F) (in par-

ticular, L(l, l′) would be obtained from Aτ by imposing

an initial state l and a single accepting state l′). In or-
der to derive a finite automaton accepting Lr̂′r̂ , we have

to keep track of the value of θ2 along runs. For this,

we take the product of B with Jr̂: we define the au-

tomaton Br̂′r̂ = (L × Jr̂, {(l0, r̂)}, C, U ′,F × {r̂′}) over

the extended alphabet R̂≥0 × U × R̂≥0 (this will be

useful for technical reasons), where

U ′ = {([l, ĝ], ê ∩ ê, (ĝ, e, 7→0),∅, [l′, 7→0]) |
e = (l, ê ∩ ê,∅, τ, l′) ∈ U and ĝ ∩ ê 6= ∅} ∪

{([l, ĝ], ê ∩ ê, (ĝ, e, ĝ′), C, [l′, ĝ′]) |
e = (l, ê ∩ ê, C, τ, l′) ∈ U and ĝ ∩ ê 6= ∅

and ĝ′ = ĝ ∩ ê}.

This automaton accepts words in (R̂≥0×U×R̂≥0)∗.

For any r̂ ∈ R̂≥0, we define κr̂ : U → (R̂≥0 ×U × R̂≥0)

as

κr̂(e) =

{
(r̂, e, r̂ ∩ ê) if e ∈ U∅

(r̂, e, 7→0) if e ∈ UC

and extend this to U∗ as κr̂(e ·w) = κr̂(e) ·κr̂′(w) where

r̂′ is such that κr̂(e) = (r̂, e, r̂′). Then:

Lemma 37 For any r̂ and r̂′, we have κr̂(L(B)r̂
′

r̂ ) =

L(Br̂′r̂ ).

Proof Pick a finite word w̄ = (r̂k, ek, r̂
′
k)0≤k≤n in (R̂≥0×

U × R̂≥0)∗ accepted by Br̂′r̂ . By construction of Br̂′r̂ ,

it holds r̂0 = r̂, and r̂′k = κr̂k(ek) for all k. Hence

w̄ ∈ κr̂(L(B)r̂
′

r̂ ).

Conversely, pick a word w = (ek)0≤k≤n in L(B)r̂
′

r̂ ,

and consider the word w̄ = κr̂(w) = (r̂k, ek, r̂
′
k)0≤k≤n.

Again by construction of Br̂′r̂ , any accepting run of B
on w can be transformed into an accepting run of Br̂′r̂
on w̄, which entails our result. �

Writing πU : R̂≥0×U × R̂≥0 → U for the projection

on the second element of this alphabet (and extending it

to sequences in the natural way), we get πU (L(Br̂′r̂ )) =

L(B)r̂
′

r̂ .

Defining θ1(M(l,E,r̂), [L(l, l′)]r̂
′

r̂ ) as a regular union

of intervals. We now focus on θ1(M(l,E,r̂), [L(l, l′)]r̂
′

r̂ ):

this function maps l′ to θ1((E, r̂), [L(l, l′)]r̂
′

r̂ ) (which we

write η in the sequel for the sake of readability), and

any other state to the empty timed set. To define η as

a regular timed set, we progress in three steps: first,

we decompose [L(l, l′)]r̂
′

r̂ according to the presence of

a reset in each sequence of transitions, then we quickly

conclude for non-resetting sequences. Finally we discuss

the resetting ones.

– Separating resetting and non-resetting tran-

sitions. For any ĝ ∈ Jr̂ = { 7→0, r̂} ∪ Ĝid and any

ĝ′ ∈ Ĝid, we define

W id
ĝ,ĝ′ = {w̄ = (ĝ1, e1, ĝ

′
1) · · · (ĝn, en, ĝ′n) |

ĝ′n = ĝ and min
1≤k≤n

êk = ĝ′

and ek ∈ U∅ for all 1 ≤ k ≤ n}.

We decompose [L(l, l′)]r̂
′

r̂ as the disjoint union of⋃
ĝ′∈Ĝid

[L(l, l′)]r̂
′

r̂ ∩ πU (W id
r̂′,ĝ′)

(all runs in [L(l, l′)]r̂
′

r̂ that do not contain any reset-

ting transition) and⋃
ĝ′∈Ĝid

⋃
(ĝ,e)∈Jr̂×UC

[L(l, l′)]r̂
′

r̂ ∩

πU

(
W id
ĝ,ĝ′ × {(ĝ, e, 7→0)} × (Jr̂ × U × Jr̂)∗

)
where the right-hand side of the intersection con-

tains (the projection of) all paths containing at least
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one resetting transition labelled (ĝ, e, 7→0). We write

Z for the set W id
ĝ,ĝ′ × {(ĝ, e, 7→0)} × (Jr̂ × U × Jr̂)∗.

Using the decomposition above, we get

η =
( ⋃
ĝ′∈Ĝid

⋃
w∈[L(l,l′)]r̂′

r̂
∩πU (W id

r̂′,ĝ′ )

θ1((E, r̂), w)
)
∪

( ⋃
ĝ′∈Ĝid

⋃
(ĝ,e)∈Jr̂×UC

⋃
w∈[L(l,l′)]r̂′

r̂
∩πU (Z)

θ1((E, r̂), w)
)
.

– Conclusion for non-resetting transitions. In the

first part, any path w ∈ [L(l, l′)]r̂
′

r̂ ∩πU (W id
r̂′,ĝ′) con-

tains only non-resetting transitions, so that we have

θ1((E, r̂), w) = E ∩ ĝ′. Hence the first part is a fi-

nite union of regular intervals (because M(l,E,r̂) is a

regular timed marking). This can be represented by

a regular union of intervals of the form (I,∅, 0, 0).

– Discussion on the non-resetting transitions.

The non-resetting transitions are handled in the fol-

lowing way. Lemma 35 and the regularity of L(l, l′)r̂
′

r̂ ,

that we obtained by constructing a finite timed au-

tomaton recognising it, are used to reformulate the

expression enough to use Parikh’s theorem. Then,

using the new form arising from the theorem, a final

discussion is conducted to separate the case where

the closure uses a finite union of sets, and the case

where there is an infinite (but regular) union.

For the second part of η, i.e.( ⋃
ĝ′∈Ĝid

⋃
(ĝ,e)∈Jr̂×UC

⋃
w∈[L(l,l′)]r̂′

r̂
∩πU (Z)

θ1((E, r̂), w)
)

decomposing w ∈ πU (Z) as u · e · v, we have

θ1((E, r̂), w) = θ1(θ(θ((E, r̂), u), e), v).

Since u only contains non-resetting transitions, we

have θ1((E, r̂), u) = E ∩ ĝ′, and since u ∈ W id
ĝ,ĝ′

we have θ2((E, r̂), u) = ĝ. Then, since e is a resetting

transition, we get

θ1((E, r̂), w) = θ1(((E ∩ ĝ′) n Φ(ĝ, e), 7→0), v).

We then have⋃
w∈[L(l,l′)]r̂′

r̂
∩πU (Z)

θ1((E, r̂), w) =

θ1

(
((E ∩ ĝ′) n Φ(ĝ, e), 7→0),Q

)
whereQ = πU (W id

ĝ,ĝ′ × {(ĝ, e, 7→0)})\[L(l, l′)]r̂
′

r̂ is the

left-quotient of [L(l, l′)]r̂
′

r̂ by πU (W id
ĝ,ĝ′×{(ĝ, e, 7→0)}),

i.e. the set of all finite words β ∈ U∗ for which there

exists a finite word α in πU (W id
ĝ,ĝ′×{(ĝ, e, 7→0)}) such

that α · β is in [L(l, l′)]r̂
′

r̂ . Hence it remains to prove

that for all ĝ′ ∈ Ĝid and all (ĝ, e) ∈ Jr̂ ×UC , the set

η′ = θ1

(
((E ∩ ĝ′) n Φ(ĝ, e), 7→0),Q

)
,

is a regular union of intervals.

Write Ee,ĝ,ĝ′ = (E ∩ ĝ′) n Φ(ĝ, e) ⊆ R≤0. From

Lemma 35, we derive, for any v ∈ Q:

θ1((Ee,ĝ,ĝ′ , 7→0), v) = Ee,ĝ,ĝ′−∑
J∈J

7→0
×UC

J 7→0(v)(J)× Φ(J).

Hence

η′ =
⋃
v∈Q

Ee,ĝ,ĝ′ −
∑

J∈J

7→0
×UC

J 7→0(v)(J)× Φ(J)

= Ee,ĝ,ĝ′ −
⋃
v∈Q

∑
J∈J

7→0
×UC

J 7→0(v)(J)× Φ(J)

For any v ∈ Q, we write p(v) for the Parikh vec-

tor of κ 7→0(v), i.e. the function mapping each let-

ter x of J 7→0 ×U × J 7→0 to the number of occurrences

of x along κ 7→0(v). We write p(Q) for the set of all

such vectors. Then for all (n̂, e) ∈ J 7→0×UC , we have

J 7→0(v)(n̂, e) =
∑
n̂′∈J

7→0
p(v)(n̂, e, n̂′). It follows:

η′ = Ee,ĝ,ĝ′−⋃
P∈p(Q)

∑
(n̂,e)∈J

7→0
×UC

n̂′∈J

7→0

P (n̂, e, n̂′)× Φ(n̂, e).

Now, the setQ = πU (W id
ĝ,ĝ′ × {(ĝ, e, 7→0)})\[L(l, l′)]r̂

′

r̂

is regular, so that by Parikh’s theorem, p(Q) is a

semi-linear set; it can be written p(Q) =
⋃c
k=1(pk0 +∑dk

k′=1 pkk′×N), where pkk′ ∈ N
J

7→0
×UC×J 7→0 for all 1 ≤

k ≤ c and 0 ≤ k′ ≤ dk. Then:

η′ = Ee,ĝ,ĝ′−
c⋃

k=1

( ∑
(n̂,e)∈J

7→0
×UC

n̂′∈J

7→0

pk0(n̂, e, n̂′)×Φ(n̂, e)+

⋃
(γk′ )k′∈Ndk

dk∑
k′=1

∑
(n̂,e)∈J

7→0
×UC

n̂′∈J

7→0

γk′ ·pkk′(n̂, e, n̂′)×Φ(n̂, e)
)
.

We write Γe,ĝ,ĝ′ for the second term, so that η′ =

Ee,ĝ,ĝ′−Γe,ĝ,ĝ′ . For each 1 ≤ k ≤ c and 0 ≤ k′ ≤ dk,

we define the interval

Ikk′ =
∑

(n̂,e)∈J

7→0
×UC

∑
n̂′∈J

7→0

pkk′(n̂, e, n̂
′)× Φ(n̂, e),
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so that

Γe,ĝ,ĝ′ =

c⋃
k=1

(
Ik0 +

⋃
(γk′ )k′∈Ndk

dk∑
k′=1

γk′ · Ikk′
)
.

Notice that Ikk′ ⊆ R≥0 for all k′ and k. We then

consider two cases:

– first assume that for some k0 and k′0 ≥ 1 and

some (n̂0, e0) ∈ J 7→0×UC , it holds pk0k′0
(n̂0, e0, 7→0) >

0 and Φ(n̂0, e0) has positive length. Consider the

interval Lγ = Ik00 + γ · Ik0k′0 for any γ ∈ N. Then

clearly Lγ ⊆ Γe,ĝ,ĝ′ for all γ. Moreover, by def-

inition of k0 and k′0, the length of Ik0k′0
is posi-

tive, so that the length of γ · Ik0k′0 tends to infin-

ity with γ. It follows that for some α ∈ Q≥0,

7→α ⊆
⋃
γ∈N Lγ ⊆ Γe,ĝ,ĝ′ . Then Γe,ĝ,ĝ′ ∩

7→

α has

finite granularity, so that it is a finite union of in-

tervals of the form Ikk′∩

7→

α. It follows that Γe,ĝ,ĝ′

is a finite union of intervals, and can hence be

represented by a regular union of intervals.

Now, by hypothesis, E can be represented as a

regular union of intervals. By Prop. 22, so can

Ee,ĝ,ĝ′ . Then by Prop. 7, η′ = Ee,ĝ,ĝ′−Γe,ĝ,ĝ′ can

be represented as a regular union of intervals.

– We now assume that for all k and k′ ≥ 1 and

all (n̂, e) ∈ Jr̂ × UC , either pkk′(n̂, e, 7→0) = 0, or

Φ(n̂, e) has length 0. Then for all 1 ≤ k ≤ n

and 1 ≤ k′ ≤ dk, Ikk′ contains a single element,

which is a rational. Then −Γe,ĝ,ĝ′ = {−γ | γ ∈
Γe,ĝ,ĝ′} can be represented as a regular union of

intervals. By Prop. 7, we get that η′ can also

be represented by a regular union of intervals in

that case.

In the end, η is the union of two sets that can

be represented as regular unions of intervals, thus

by Prop. 7, it can also be represented as a regular

union of intervals. �

5 Experimentations

In order to evaluate the possible improvement of our

approach compared to the technique proposed in [27],

we implemented and compared the performances of both

approaches. Sources can be downloaded at http://people.

irisa.fr/Nicolas.Markey/download/DOTA.zip.

5.1 Comparison of the approaches

In the approach of [27], the set of actual configurations

is stored as a marking. If an observable action a oc-

curs after some delay d, the algorithm computes the

set of all possible configurations reached after delay d

(possibly following silent transitions), and applies from

the resulting markings the set of all available transi-

tions labelled a. This amounts to computing the func-

tions Od and Oa at each observation. There is also a

timeout, which makes the algorithm update the mark-

ing (with Od) regularly if no action is observed. The com-

putation of Od is heavily used, and has to be performed

very efficiently for this technique to be usable at run-

time.

In our approach, we use regular timed markings to

store sets of possible configurations. Given a timed mark-

ing, when an action a is observed after some delay d,

we can easily compute the set of configurations reach-

able after delay d, and have to apply Oa and recompute

the τ -closure. Following [10], Oa can be performed as a

series of set operations on intervals. The τ -closure can

be performed as a series of subtractions between an in-

terval and regular unions of intervals (see Lemma 35).

Those regular unions can be precomputed; while this

may require exponential time and space to compute and

store, this makes the simulation of delay transitions at

runtime very efficient.

5.2 Implementation

In our experimentations, in order to only evaluate the

benefits of the precomputation and of the use of τ -

closures in our approach compared to that of [27], we use

the same data structure for both algorithms. The only

difference lies in the functions computing the observable

and the delay transitions. As a consequence, both im-

plementations benefit from the data structure we chose

for representing timed intervals, which allows us to com-

pute basic operations in linear time. Also, both struc-

tures use the same reachability graphs for either com-

puting the sets of reachable configurations or the Parikh

images.

Our implementation is written in Python3. One-

clock timed automata and both state-evaluation algo-

rithms are instances of an abstract class of automata

over timed markings [10]; timed markings are imple-

mented in a library TILib. Simulations of those au-

tomata are performed using an object called ATDRunner,

which takes an automaton over timed markings and

simulates its transitions according to the actions it ob-

serves on a given input channel. It may also write what

it does on an output channel. A channel is basically a

way of communicating with ATDRunners.

In order to evaluate, at runtime, the set of config-

urations of a given one-clock timed automaton with

silent transitions, stored in an object OTAutomata, we

first generate a diagnoser object, either a DiagOTA or
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Example1 3 6 14 124.7s. 0.011s. 0.011s. 1.02 0.018ms. 0.024s. 7.50×10−4

Example2 3 6 12 2.8s. 0.007s. 0.005s. 1.40 0.017ms. 0.017s. 9.97×10−4

Example3 4 6 14 0.3s. 0.026s. 0.036s. 0.71 0.019ms. 0.024s. 7.97×10−4

Example4 4 7 21 599.1s. 0.019s. 0.023s. 0.83 0.017ms. 0.023s. 5.97×10−4

Example5 7 5 46 4.9s. 0.056s. 0.024s. 2.31 0.012ms. 0.021s. 5.73×10−4

Example6 7 5 43 4.1s. 0.070s. 0.020s. 3.37 0.011ms. 0.017s. 6.28×10−4

Example7 7 10 49 6.6s. 0.073s. 0.043s. 1.69 0.014ms. 0.070s. 1.99×10−4

Example8 7 10 51 7.6s. 0.057s. 0.125s. 0.46 0.019ms. 0.165s. 1.13×10−4

Example9 7 10 54 7.0s. 0.076s. 0.077s. 0.99 0.010ms. 0.112s. 0.92×10−4

Table 1 Benchmarks for 9 random examples over 20 runs with 20 actions each. This table shows the average computation
time for updating the timed marking of reachable configurations when an action or a delay is observed. It can be seen that
for observable transitions, the computation times are comparable; on the other hand, for delay transitions, our approach
outperforms the approach of Tripakis by several orders of magnitude.

a TripakisDOTA, depending of which version we want

to use. Then we launch two threads: one is an ATDRunner

simulating the timed automaton, listening to some chan-

nel object Input, and writing every observable action it

performs on some other channel object Comm. The other

one is another ATDRunner simulating the diagnoser and

listening to the Comm channel.

In a DiagOTA object, which corresponds to our ap-

proach, we have already precomputed the relevant timed

intervals; observable transitions are then made by op-

erations over timed markings. In such a simulation,

we can thus keep track of which configurations may

have been reached, but also predict which configura-

tions may be reached in the future and the exact time

before we can reach them.

In a TripakisDOTA object, which corresponds to

the approach of [27], observable and delay transitions

are simulated by computing all configurations reachable

through that observable action or delay, also allowing

arbitrarily many silent transitions. This does not allow

for prediction.

5.3 Results

Table 1 reports on the performances of both implemen-

tations on a small set of (randomly generated) exam-

ples. Those examples are distributed with our proto-

type. In Table 1, we give the important characteristics

of each automaton (number of locations and of silent

transitions), the amount of precomputation time used

by our approach, and the average time (over 20 random

runs) used in the two approaches to simulate observable

and delay transitions.

As could be expected, our approach outperforms the

approach of [27] on delay transitions by several orders

of magnitude in all cases. The performances of both

approaches are comparable when simulating observable

transitions.

The precomputation phase of our approach is in-

trinsically very expensive. In our examples, it takes

from less than a second to 10 minutes, and it remains

to be understood which factors make this precomputa-

tion phase more or less difficult. We may also refine our

implementation of the computation of Parikh images,

which is heavily used in the precomputation phase.

6 Towards efficient diagnosis for n-clocks timed

automata

In this section, we extend (part) of our formalism to

n-clock timed automata. Precisely, we define a general-

ized gauge operator, and prove that it can be used to

compute a θ function. As for one-clock automata, we

show that it is enough to consider linear timed mark-

ings, that θ handles.
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However we do not propose an extension of regular

unions of intervals and thus do not prove that we can

furthermore restrict the study to regular timed mark-

ings.

We first extend the basic definitions in Section 6.1,

and then use them to define a generalized n-operator

and prove that it can be used to compute τ -closures for

any number of clocks (Section 6.2).

6.1 Timed automata

In the n-clock setting, a timed automaton is equipped

with its set of clocks, and transitions can reset any num-

ber of those. To generalize the guards on the automaton

transitions, we use functions associating an interval of

IQ≥0
with each clock.

Definition 38 A timed automaton over Σ is a tuple

A = (L, {l0}, C, ∆,F), where L is a finite set of loca-

tions, l0 ∈ L is the initial location, C is a set of variables

called clocks, ∆ ⊆ L×ICQ≥0
× (Σ ]{τ})× 2C ×L is the

set of transitions, and F ⊆ L is a set of final locations.

A clock valuation is usually defined as a function v ∈
RC≥0. As we use negative values to store future clock val-

ues, we will sometimes consider functions to R instead.

To simplify furthermore the technical discussions, we fix

an (arbitrary) order on the clocks, and will hence allow

ourselves to consider valuations as vectors in Rn. Using

this, we will generalize the notions introduced in 2.1

for intervals to intersections of constraints on different

dimensions. For a subset K of R, we consider r̂ ∈ K̂n≥0
and r̂ ∈ K̂n≥0 3. We define the sum of a subset E of Rn

with an integer d ∈ R as the translation of the set on all

dimensions: E + d = {(e1 + d, .., en + d) | (e1, .., en) ∈
E}. This corresponds to d time units elapsing. Using

these definitions, we can extend atomic, finite and lin-

ear timed sets to n-clocks simply by considering sets

and constraints in n dimensions. We note T (Rn) the

set of linear timed sets of Rn. A clock reset over a sub-

set of clocks X ⊆ C, denoted v[X←0], is an operation

that projects all clocks in X to 0, while leaving the

other ones unchanged. This definition can be trivially

extended to sets.

To discuss timed predecessors and successors of a

set of clock valuations we note respectively Pre(E) =⋃
d∈R≥0

E − d and Post(E) =
⋃

d∈R≥0

E + d.

A configuration of a timed automaton is a pair (l, v) ∈
L×Rn≥0. The semantics can still be defined as an infinite

transition system with delay transitions (l, v)
δ−→ (l, v′)

3Both open and closed intervals may appear in the same
element on different dimensions

where δ ∈ R≥0 and v′ = v + δ, and action transitions

(l, v) →e (l′, v′) for any e = (l, G, a,X, l′) in ∆ and

v ∈ G with v′ = v[X←0].

With this semantics, the notion of sequences and its

associated notations can be directly reused. We extend

markings to elements of M = (P(Rn≥0))L and use simi-

lar definitions for Oa for an observable action a ∈ Σ:

Oa(m) : l′ 7→ {v′ ∈ Rn≥0 | ∃l ∈ L. ∃v ∈ m(l).

(l, v)
0
→a (l′, v′)}

and Od:

Od(m) : l′ 7→ {v′ ∈ Rn≥0 | ∃l ∈ L. ∃v ∈ m(l).

(l, v)
d
→ε (l′, v′)}.

6.2 τ -closures

Using the previous definitions, we can extend timed

markings to n dimensions and get back every defini-

tion and result of Section 4.1 by just considering valu-

ations in Rn≥0 instead of R≥0. In this context, 7→0 has

to be read as the intersection of the corresponding one

dimensional constraints on all dimensions. We hence fo-

cus here on how to compute the τ -closures using linear

timed markings, as done in Section 4.2. For this, we first

define and formalize the operator transforming a set of

(potential) configurations by the effect of a guard and

a set of clock resets.

Definition 39 For two sets E and G (a guard) and

X ′ ⊆ C, we let

EnX′G = {v ∈ Rn | ∃d ≥ 0, v ∈ ((E+d)∩G)[X′←0]−d}
(1)

Example 40 Consider a transition with guard G = 1 ≤
x ≤ 2 in a timed automaton over the two clocks C =

{x, y}. We take the set of potential valuations E =

−1 ≤ x ≤ 0 ∧ y ≥ 0 ∧ y − x ≤ 1. Both E and G are

depicted in Fig 16, together with En{x}G and En{y}G.

Notice how by adding delays d ∈ R to these sets

we can see that the gauge corresponds to the resets of

clocks for valuations in E + d ∩G. /

This operator generalizes the operator we defined

for the one-clock case: indeed, for C = {x}:

E nC G = {v ∈ R | ∃d ≥ 0, v ∈ ((E + d) ∩G)[x←0] − d}
= {−d | d ∈ R≥0 | ((E + d) ∩G) 6= ∅}

which is equal to E n G (the one-clock operator) by

Prop. 20.

Thanks to this operator, we can define the effect of

a transition on an atomic timed set:
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Fig. 16 Effect of the gauge on individual clocks for E = −1 ≤
x ≤ 0 ∧ y ≥ 0 ∧ y − x ≤ 1 and G = 1 ≤ x ≤ 2.

Definition 41 For an atomic timed set T = (E, r̂) of

T (Rn) and a transition e = (l, G = ê∩ ê, τ,X ′, l′) of U :

θ((E, r̂); e) =



(∅; 7→0) if Post(E) ∩ r̂ ∩G = ∅
(E ∩ Pre(r̂ ∩G); r̂ ∩ ê)

if Post(E) ∩ r̂ ∩G 6= ∅ and X ′ = ∅
(E nX′ (r̂ ∩G); (r̂ ∩ ê)[X′← 7→0])

if Post(E) ∩ r̂ ∩G 6= ∅ and X ′ 6= ∅.

Notice that E ∩ Pre(r̂ ∩G) = E n∅ (r̂ ∩G), so that

the n-clock operator can indeed represent the effect of

any transition in a timed automaton. Although these

cases can be grouped together, we keep them separate

as the actual computation needed when there is no reset

is much less involved. The definition of θ is illustrated

in Fig. 17 for a two-clocks automaton.

Definition 41 (cont.) As in the one-clock case, we ex-

tend θ to sequences of transitions inductively by letting

θ((E; r̂), ε) = (E; r̂) and, for w ∈ U+,

θ((E; r̂), w·e) =

{
θ(θ((E; r̂), w), e) if tgt(w) = src(e)

(∅; 7→0) otherwise.

Finally we extend this definition to linear timed sets by

letting

θ({Tk | k ∈ K}, w) = {θ(Tk, w) | k ∈ K}.

Using these definitions, we can prove that θ corre-

sponds to the effect of a sequence of transitions from

a timed set. The following lemma extends Lemma 26.

Notice that the proof has to be adapted, not only to

the new gauge definition but also to the diagonal con-

straints arising in timed automata with multiple clocks.

Lemma 42 Let T be a linear timed set and w ∈ U∗.
Then for any d ∈ R≥0 and any v ∈ Rn≥0,

v ∈ fθ(T,w)(d) ⇔ ∃d0 ∈ [0; d]. ∃v′ ∈ fT (d0).

(src(w), v′)
d−d0−−−→w (tgt(w), v).

Proof We carry the proof for the case where T = (E; r̂)

is an atomic timed set. The extension to unions of

atomic timed sets is straightforward. We begin with

the case where w is a single transition e = (l, G =

ê∩ ê, τ,X ′, l′). In case E is empty, then also fθ(T,e)(d) is

empty, and ∀d0, fT (d0) = ∅, so the result holds. We now

assume that E is not empty, and consider three cases:

– if Post(E)∩r̂∩G = ∅, then θ(T, e) = (∅; 7→0). On the

other hand, for any d0 and any v′ ∈ fT (d0), it holds

v′ ∈ Post(E) ∩ r̂, so that v′ /∈ G, and the transition

cannot be taken from that valuation. Hence both

sides of the equivalence evaluate to false, and the

equivalence holds.

– now assume that Post(E)∩ r̂∩G 6= ∅, and consider

the case where X ′ is empty. We proceed by double

inclusion. We first take a valuation v ∈ fθ(T,w)(d)

and exhibit a predecessor of this configuration in

fT (d0) ∩G for a d0 to be constructed.

v ∈ fθ(T,w)(d) means that v ∈ (E ∩ Pre(r̂ ∩ G)) +

d ∩ r̂ ∩ ê. Equivalently, v ∈ (E + d) ∩ Pre(r̂ + d ∩
G + d) ∩ r̂ ∩ ê. As ê encodes the lower bounds on

individual clocks of G and Pre(r̂+ d ∩G+ d) keeps

all diagonal constraints of r̂ ∩ G, we have that v ∈
(E + d) ∩ Pre(r̂ + d ∩ G + d) ∩ Post(r̂ ∩ G). Hence

∃d′ ∈ [0, d], v − d′ ∈ E + d − d′ ∩ r̂ ∩G. By taking

d0 = d−d′ and v′ = v−d+d0 = v−d′ we can write

∃d0 ∈ [0, d],∃v′ ∈ fT (d0)∩ r̂∩G. The first inclusion

then holds by definition of w.

Conversely, if d0 ∈ [0; d] and v′ ∈ fT (d0) exist such

that (src(w), v′)
d−d0−−−→w (tgt(w), v), then v′ ∈ E +

d0 ∩ r̂ and as there is no reset on w, v = v′+ d− d0,

v ∈ E+d∩r̂+d−d0 ⊆ E+d∩r̂. Furthermore, ∃d1 ≤
d−d0 such that v′+d1 ∈ G. More precisely, v′+d1 ∈
r̂ ∩ G as v′ ∈ r̂ and this set has no upper bound.

As v = v′ + d− d0, we have v ∈ Pre(r̂ ∩G) + d and

v ∈ ê as d1 ≤ d−d0. By aggregating the constraints,

we obtain v ∈ (E + d) ∩ Pre((r̂ ∩ G∩) + d) ∩ r̂ ∩ ê
i.e. the left-hand side of the equivalence.

– Consider Post(E) ∩ r̂ ∩ G 6= ∅ and X ′ 6= ∅. In

this case v ∈ fθ(T,w)(d) means that ∃δ ≥ 0, v ∈
(r̂∩G∩(E+δ))[X′←0]−δ+d. Notice that as v ∈ Rn≥0,

it comes that d − δ ≥ 0. Let v′[X′←0] = v + δ − d ∈
(fT (δ) ∩ G)[X′←0] It comes that we can construct

v′ ∈ fT (δ) ∩G from v′[X′←0]
4. By taking d0 = δ we

have that d0 ∈ [0, d], v′ ∈ fT (d0) such that v′
d−d0−−−→w

v′ + d− d0 = v.

Conversely if for a given d0 ∈ [0, d] and a given v′ ∈
fT (d0), we have that (src(w), v′)

d−d0−−−→w (tgt(w), v),

then there exists d1 ∈ [0, d−d0] such that v′+d1 ∈ G
and the transition is taken from v′. By definition

of fT , v′ + d1 ∈ fT (d0 + d1) ∩ G. We have that

4Possibly several such v′ exists, we consider one of them.
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(E, r̂) in l

x

y

E

G

• if Post(E)∩ r̂∩G 6= ∅:

(E, r̂) in l

x

y

E

G

(∅, 7→0) in l′

x

y

• if X = ∅:

x

y

• if X = {x}:

x

y

Fig. 17 Representation of the effect of silent transition (l, G, τ,X, l′) in three cases.

v = (v′ + d1)[X′←0] + d − d0 − d1 ∈ (fT (d0 + d1) ∩
G)[X′←0] + d− d0− d1. Hence by taking δ = d0 + d1
we ensure that v ∈ (E nX′ G) + d. Furthermore,

d−d0−d1 ≥ 0 as d1 ≤ d−d0 thus ∀x ∈ X ′, v(x) ≥ 0,

and v|X′ ∈ (r̂∩ ê)|X′ as v|X′ ∈ PostX′(v
′+d1) (d1 ≤

d−d0) and v′+d1 ∈ fT (d0+d1)∩G ⊆ r̂∩G ⊆ r̂∩ ê.
This proves the left part of the equivalence.

We now extend this result to sequences of transi-

tions. The case where w = ε is straightforward. Now

assume that the result holds for some word w, and con-

sider a word w · e. In case tgt(w) 6= src(e), the result is

trivial.

The case of single transitions has been handled just

above. We thus consider the case of w · e with w ∈
U+. First assume that v′ ∈ fθ(T,w·e)(d), and let T ′ =

θ(T,w). Then v′ ∈ fθ(T ′,e)(d), thus there exist 0 ≤
d0 ≤ d and v ∈ fT ′(d0) s.t. (src(e), v)

d−d0−−−→e (tgt(e), v′).
Since v ∈ fT ′(d0), there must exist 0 ≤ d1 ≤ d0 and

v′′ ∈ fT (d1) such that (src(w), v′′)
d0−d1−−−→w (tgt(w), v).

This way, we have found a value d1 with 0 ≤ d1 ≤ d

such that (src(w), v′′)
d−d1−−−→w·e (tgt(e), v′).

Conversely, if (src(w), v′′)
d−d1−−−→w·e (tgt(e), v′) for

some 0 ≤ d1 ≤ d and v′′ ∈ fT (d1), then we have

(src(w), v′′)
d0−d1−−−→w (tgt(w), v)

d−d0−−−→e (tgt(e), v′) for

some d0 ∈ [d1; d] and some v. We prove v ∈ fθ(T,w)(d0):

indeed, we have d1 ∈ [0; d0], and v′′ ∈ fT (d1) such

that (src(w), v′′)
d0−d1−−−→w (tgt(w), v), which by induc-

tion hypothesis entails v ∈ fθ(T,w)(d0). Thus we have

d0 ∈ [0; d] and v ∈ fT ′(d0), where T ′ = θ(T,w), such

that (tgt(w), v)
d−d0−−−→e (tgt(e), v′), which means v′ ∈

fθ(T ′,e)(d), and concludes the proof. �

As in the one-clock case, this semantic characteriza-

tion of θ(F,w) entails the following, ensuring that the

result of a computation by θ does not depend on the

representation.

Corollary 43 For any sequence w of transitions, and

any two equivalent linear timed sets T and T ′, the linear

timed sets θ(T,w) and θ(T ′, w) are equivalent.

We can once more extend θ to linear timed markings in

the same way and generalize Theorem 28 to n clocks.

The proof is the same for v ∈ Rn≥0, using Lemma 42.

By considering the extensions of θ to languages, we

immediately get:

Corollary 44 For any linear timed marking M , it holds

θ(M) ≡Mτ .

This proves that our θ operator (and the underlying

gauge) is a correct representation of the semantic of a
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(silent) timed automaton, and that linear timed mark-

ings are sufficient to represent the semantics of timed

automata.

Example 45 Consider the timed automaton with two

clocks depicted in Fig. 18 (the τ labels are omitted).

The construction with l0, l1 and l2 allows to obtain the

atomic timed set (x ∈ [−1, 0] ∧ y ∈ [−1, 0];x, y ≥ 0)

as input for l3
5. The closure of l3 is depicted on the

side with the two guards generating it. It is composed

of several infinite behaviours. Notice that there is some

regularity in the structure, but that it can be complex:

several nested infinite repetitions appear. /

l0

l1 l2

l3

x ≤ 1
x := 0

y ≤ 1
y := 0

y ≤ 1
y := 0

x ≤ 1
x := 0

x = 2
x := 0

y = 2
x, y := 0

x

y

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3

−7

−6

−5

−4

−3

−2

−1

1

2

3
{x}

{x, y}

Fig. 18 A simple timed automaton and its associated timed
set.

6.3 Stability of a representable class

We do not define regular timed sets and markings for

multiple clocks, but in the following, we prove that fi-

nite timed markings are enough to represent the clo-

sure.

5We slightly abuse the construction to take the union of
sets for two timed sets sharing the same filter.

Proposition 46 Consider a timed automaton A and

a regular language L ⊆ L∆(A) included in the language

of transitions. Given a finite timed marking M , θ(M,L)

is a finite timed marking.

Proof Let M be a finite timed marking: then M can

be written as the finite union of atomic timed mark-

ingsM(l,E,r̂), defined asM(l,E,r̂)(l) = f(E;r̂) andM(l,E,r̂)(l
′) =

f(∅; 7→0) for all l′ 6= l.

In the end, any regular timed marking M can be

written as the finite union
⊔
k∈KMk of atomic timed

markings. Thus we have θ(M) ≡
⊔
k∈K θ(Mk) and it is

enough to prove the property for atomic timed mark-

ings.

We write θ1((E; r̂), w) and θ2((E; r̂), w) for the first

and second components of θ((E; r̂), w), and use the

same generalization to timed markings than in the one-

clock case.

Note that:

– θ2((E; r̂), w) = r̂∩
⋂
k<n êk if w = e1 . . . en ∈ U∅

∗ is

a sequence of consecutive non-resetting transitions.

– θ2((E; r̂), w · e) = (θ2((E; r̂), w) ∩ ê)[X′← 7→0] if e is a

resetting transition for X ′.

We define the set of upper bounds of guards appearing

in U as

G = {ê | ∃ e = (l, G = ê ∧ ê, X ′, θ, l′) ∈ U}

and using this set Jr̂ = {ĝ ∈ Rn≥0 | ∀i ∈ [1, n], ∃ ê ∈
G ∪ {r̂, 7→0}, êi = ĝi}. It is easy to see that Jr̂ is a finite

set and θ2((E; r̂), w) ∈ Jr̂. Hence a finite number of

atomic timed sets is sufficient to describe the closure of

a finite timed marking, i.e. the closure is a finite timed

set. Indeed, there is a finite number of filters r̂ in the

representation of M (one per Mk), no more than |Jr̂|
different atomic timed sets are needed per location of

the automaton for each r̂, and there is a finite number

of locations. �

7 Conclusion and future works

In this paper, we presented a novel approach to solve

the state estimation problem, and in particular to effi-

ciently compute the τ -closure in the case of partially ob-

servable one-clock timed automata; it builds on a kind

of powerset construction for automata over timed do-

mains, using our new formalism of linear timed sets to

represent the evolution of the set of reachable configu-

rations of the automaton. We prove that the semantics

- and in particular the τ -closure - of a timed automa-

ton can be computed using regular timed sets, a finitely
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representable subclass of linear timed sets. We further-

more show that the full class of regular timed sets is

needed to represent general one-clock timed automata.

We extend the basis of our approach to timed au-

tomata with multiple clocks, and prove that finite timed

sets are again enough to compute the τ -closure.

Our prototype implementation shows the feasibil-

ity of our approach on small examples of one-clock au-

tomata.

There remains space for improvements in many di-

rections: first, our implementation can probably be made

more efficient on the precomputation phase, and at least

we need to better understand why some very small ex-

amples are so hard to handle.

A natural extension of these results is to introduce a

(representable) notion of regularity for multiple clocks

automata and to prove that it is large enough to repre-

sent the semantics and τ -closure.

This is by no means immediate, as first the presence

of multiple clocks allows involved behaviours, and sec-

ond (and most importantly), the proofs proposed in the

one-clock case rely on the structure of the n operator,

and the ability to simply ”count” resetting transitions

(i.e. the order of transitions only slightly matters). This

is not true for multiple clocks, where the orders of the

resets is central to the dynamics.

Another possible direction of research could target

priced timed automata, with the aim of monitoring the

cost of the execution in the worst case.
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Moez Krichen. A game approach to determinize timed
automata. Formal Methods in System Design, 46(1):42–80,
February 2015.

9. Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza.
Fault diagnosis using timed automata. In Vladimiro Sas-
sone, editor, Proceedings of the 8th International Confer-
ence on Foundations of Software Science and Computation

Structure (FoSSaCS’05), volume 3441 of Lecture Notes in
Computer Science, pages 219–233. Springer-Verlag, April
2005.

10. Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On
the determinization of timed systems. In Alessan-
dro Abate and Gilles Geeraerts, editors, Proceedings of

the 15th International Conferences on Formal Modelling

and Analysis of Timed Systems (FORMATS’17), volume
10419 of Lecture Notes in Computer Science, pages 25–41.
Springer-Verlag, September 2017.

11. Patricia Bouyer, Samy Jaziri, and Nicolas Markey. Ef-
ficient timed diagnosis using automata with timed do-
mains. In Christian Colombo and Martin Leucker, edi-
tors, Runtime Verification - 18th International Conference,

RV 2018, Limassol, Cyprus, November 10-13, 2018, Pro-
ceedings, volume 11237 of Lecture Notes in Computer Sci-

ence, pages 205–221. Springer, 2018.
12. Edmund M. Clarke, E. Allen Emerson, and Joseph

Sifakis. Model checking: algorithmic verification and
debugging. Communications of the ACM, 52(11):74–84,
November 2009.

13. Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model checking. MIT Press, 2000.

14. Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith,
and Roderick Bloem. Handbook of Model Checking.
Springer-Verlag, April 2018.
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