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Abstract. OpenVPN is a widely used VPN solution, used to extend a
private network over a public network while offering an extra layer of
security. The reliability of such a security protocol is of the utmost im-
portance but can be easily compromised by a vulnerability in the imple-
mentation. A technique called protocol state fuzzing, based on black-box
fuzzing, can be used to infer a state machine from a protocol imple-
mentation. The inferred state machines provide a good insight into the
implementation and can be used to detect any spurious behavior. Al-
though OpenVPN is a widely used TLS-based VPN solution, there is no
specification of the protocol, which makes it a particularly interesting
target to analyze. In this paper, we apply protocol state fuzzing to the
standard OpenVPN and the OpenVPN-NL implementations in order to
infer state machines of the servers that focus on particular phases of the
protocol. Finally we analyze those state machines, show that they can
reveal a lot of information about the implementation which are miss-
ing from the documentation, and discuss the possibility to include those
state machine in a formal specification.
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1 Introduction

Virtual Private Network solutions are widely used to establish secure data trans-
missions over insecure channels. They use a tunneling mechanism to provide an
additional layer of confidentiality, authentication and integrity that is not sup-
ported by the underlying protocol. However, the security of a protocol can easily
be compromised by a vulnerability in the implementation.

Formal methods can be used to automatically test protocol implementations
for vulnerabilities. Among these methods, protocol state fuzzing is a technique
that permits to infer a state machine from the implementation of a protocol [3,
10]. This approach uses black-box fuzzing on the order of well-formed messages
and infers a model of the implementation from the output, as a Mealy Machine.
A proper state machine should allow all the transitions defined by the grammar
of the protocol and react appropriately to unexpected messages - for instance
by ignoring the message or dropping the connection.

The inferred state machine provides a useful insight into the choices - and
errors - made in the implementation. A manual analysis can be performed to
detect any logical flaws and to check the compliance of the implementation
with its specification. It can also reveal superfluous states and transitions which
should be removed as a precaution. Furthermore, it gives a good overview of
the sequence of messages (which is often not well specified), and can be used to
automatically define a formal specification of the protocol [23].

This paper focuses on the TLS-based OpenVPN protocol [12]. Even though
the OpenVPN protocol is a widely used Virtual Private Networks (VPN) solu-
tion, it has not been subject to a lot of research and there is no formal speci-
fication of the protocol. There is also no documentation about the sequence of
messages leading to a successful connection nor on the conduct to adopt when
receiving an unexpected message - even though this is essential for a security
protocol.

We use regular inference, provided by the LearnLib library, to infer state ma-
chines of two different OpenVPN servers: the standard OpenVPN implementa-
tion which relies on the OpenSSL library, and the OpenVPN-NL implementation
which relies on the PolarSSL library. For each of them we infer several states
machines that focus on particular phases of the protocol. We manually analyze
those state machines and show that they can give us a lot of information about
the implementation that are not specified within the documentation. Finally, we
discuss how state machines can be used to define a formal specification of the
protocol.

1.1 Related Work

This section provides a short overview of the related work performed in the field
of regular inference of security protocols. The regular inference itself is detailed
in Sec. 3.

The automatic construction of system models from observation of their exter-
nal behavior can be performed using regular inference (also known as automata
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learning or state machine learning). This technique has first been applied to se-
curity protocol by Shu and Lee [25], in combination with a validation process, in
order to build a model of a physical implementation and check it against message
confidentiality property on the fly.

Regular inference has been extended using predicate abstraction [3] to con-
sider the influence of data on the control flow. Then, [19] proposed a systematic
method to implement a test harness for LearnLib, including a mapper and a
data monitoring part. Finally [23] discusses the possibility to use regular infer-
ence to infer protocol formal specification, and to define the session language i.e
the sequence of messages, in the form of a protocol state machine.

Regular inference with LearnLib has been applied to analyze several security
protocol [5, 4, 10, 9, 13]. This approach revealed new security flaws in several
TLS implementations analyzed [10].

1.2 Overview

We first discuss the OpenVPN protocol in Sec. 2 and the regular inference in Sec.
3. Then we present our experimental setup in Sec. 4. The result of our analysis
are presented in Sec. 5. Finally, we conclude in Sec. 6

2 The OpenVPN Protocol

This section describes the OpenVPN protocol and details some of the OpenVPN
functionalities. For an in depth presentation of VPNs and OpenVPN, the reader
can refer to [12]. The doxygen-generated documentation [1] and the security
overview [2] can also be consulted for further details.

VPNs are used to extend a private network over a public network (e.g public
Internet connection). This technology can be used by companies to connect
geographically separated offices or to allow remote workers to access the company
network. Usually, VPNs also ensure integrity, secrecy and authenticity of the data
transferred, allowing remote users to securely access the private network.

2.1 OpenVPN Networking Principle

This subsection stands to introduce required knowledge about the networking
concepts used in the OpenVPN protocol. We assume that the reader is familiar
with the OSI model, otherwise they can refer to App. B.

At each layer N , the peers exchange Protocol Data Units (PDUs) which
consist of two parts: the header and the payload. The header contains meta-data
on the sender, recipient and general information for the transfer. The payload is
the effective data, which can also be an other PDU (often a layer-N + 1 PDU)
that will be wrapped into the layer-N PDU. This process called encapsulation is
used to pass information through the OSI layers and is the base of networking.

Encapsulation can also be used to provide a network service that the un-
derlying network does not support or provide directly, such as encryption or
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authentication. This technique called tunneling is used by OpenVPN to provide
extra security properties. Layer-2 frames (e.g Ethernet frames) or layer-3 packets
(e.g IP packets) are wrapped into a VPN message and sent to the remote VPN
peer. Therefore the entire effective message to transmit - including its meta-
data like sender and recipient - is encapsulated within the VPN PDU and can
benefit from its security properties. Figure 1 illustrates this tunneling process.
Note that, as most VPNs can only handle one type of message, the OpenVPN
protocol can handle both layer-2 frames and layer-3 packets.

Ethernet IPv4 UDP VPN IPv4
Application

Data
TCP

Fig. 1. Example of OpenVPN tunneling IP packets over an UDP channel. The gray
message benefits from the security properties (encryption, integrity, authentication)
provided by the enclosing OpenVPN protocol.

2.2 Security

Like most of the VPN solutions, OpenVPN guarantees the following properties
over the data transmitted:

Confidentiality Prevents eavesdroppers from reading the private messages.
This property is achieved by end-to-end encryption: if an attacker is sniffing
the communication, all they can see is encrypted data.

Authentication Prevents unauthorized users from accessing the VPN. This
property can be achieved by using key-pairs and certificates.

Integrity Ensures that the transmitted data was not tampered with. This prop-
erty can be achieved by adding a message digest that is checked by the
recipient.

The OpenVPN implementation offers a large choice of security options. The
security of the OpenVPN protocol is based on the Transport Layer Security
(TLS) protocol, and the implementation on the OpenSSL library, used for its
TLS session negotiation, its encryption and authentication and its random num-
ber generation primitives. Confidentiality is ensured using the encryption prim-
itives from OpenSSL, which offers a large variety of ciphers and key sizes. The
default cipher is Blowfish with Cipher Block Chaining (CBC) and the default
key size is 128-bits. Authentication is achieved by the use of pre-shared keys,
TLS certificates or username/password. Message integrity is checked with an
Hash-based Message Authentication Code (HMAC) added to the messages. The
default hash function used is Secure Hash Algorithm 1 (SHA-1), albeit known
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as vulnerable to collision attacks [27, 26] and officially deprecated for digital
signature generation since 2011 [7].

The OpenVPN implementation provides two main methods of key exchange:
a pre-shared key and a TLS based mechanism. In both methods, each peer pos-
sesses four independent keys: HMAC-send, HMAC-receive, encrypt and decrypt.

Pre-shared key mode This mode uses symmetric encryption: the two peers
agree on a static pre-shared key before the tunnel is started - by default both
peers will use the same keys but the VPN can be configure to use the four keys
independently. The authentication is straightforwardly provided by the owner-
ship of the static key. The advantage lies in the simplicity of the method: there
is no key negotiation required before the data tunneling can start. The main dis-
advantage is that the method does not provide a secure way way to exchange the
keys. Furthermore, forward secrecy is not ensured: if the session-keys are com-
promised, all the past (and the future) communications are also compromised.
A custom re-keying mechanism could be added to circumvent those issues, but
it would add a layer of complexity which could lead to security flaws.

TLS mode This mode is based on TLS, which is one of the most important
cryptographic security protocols (e.g. used in HTTPS, FTP, SMTP...) and has
been subject to a lot of research [10, 22, 11, 16, 21, 14, 20, 17, 18]. A TLS
session with bidirectional authentication is negotiated between the client and
the server (i.e. both parties must present their own certificate). The OpenVPN
implementation offers two key negotiation methods1. If key-method 1 is used,
the keys are generated directly by the peers and exchanged in a secure way
over the TLS connection. If key-method 2 is used, random material is generated,
exchanged over the TLS connection, and the keys are computed from the random
material using the OpenSSL Pseudorandom Function (PRF). In both cases, the
keys are unidirectional (client and server keys are different) and the security of
the communication relies on random source material from both parties.

The rest of the paper will focus on the TLS mode which is more complex
and involves key exchange and re-keying, contrary to the pre-shared key mode
which is straightforward.

2.3 OpenVPN Sessions

As we previously discussed, OpenVPN is a TLS-based VPN which relies on the
OpenSSL library for its security primitives. The TLS session negotiation and the
data tunneling are processed over independent channels with their own packet
identifiers and keys. OpenVPN multiplexes this data channel and control channel
over a single network stream (route for IP packets or bridge for Ethernet frames).

1 https://build.openvpn.net/doxygen/html/key generation.html
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This network stream is not necessarily reliable since OpenVPN preferably uses
UDP transport (e.g. Figure 1) over TCP2.

Control channel The control channel is the channel used to set up the connec-
tion to the remote peer and to negotiate the session-keys, i.e. the keys that will
be used to secure the data channel. A fully authenticated TLS session is initiated
between the two peers and the session-key random material is exchanged in a
secure way over the TLS connection (for both key-methods). Once the two peers
have received the session-keys, the actual data tunneling can start. Appendix C
details the regular sequence of messages leading to a successful connection.

Since TLS is designed to operate over a reliable channel, the control channel is
provided with an extra reliability layer, referred to as the OpenVPN’s reliability
layer, which consists of a simple acknowledgement mechanism and is active in
both UDP or TCP tunneling.

The OpenVPN implementation also offers the –tls-auth option to authenti-
cate packets from the control channel, adding an HMAC signature to the control
messages. This mechanism allows OpenVPN to quickly throw away unauthenti-
cated packets, without wasting resources and thus protecting against Denial of
Service (DoS) attacks.

Data channel The data channel is used to forward the actual data. The actual
data (IP packet or Ethernet frame) to transmit is encrypted and MAC-ed with
the previously negotiated session-keys, and tunneled (preferably over an UDP
channel) without any extra reliability layer provided by OpenVPN. Note that a
reliability layer can still be provided by the encapsulated protocol, e.g. tunneling
of a TCP session will benefit from the TCP’s reliability layer.

3 Protocol State Fuzzing

Protocol state fuzzing is defined in [10] as a technique that uses regular infer-
ence to infer a state machine from a protocol implementation. It uses black-box
fuzzing on the order of well-formed messages, to infer a state machine which
models the protocol implementation. In this paper, those state machines are
represented as Mealy machines.

3.1 Mealy Machines

A Mealy machine is a finite state machine with output, in which a transition,
based on the current state and input, will result in a change of state and produce
an output. Mealy machines are deterministic i.e. for each input and current
state, only one transition is possible, therefore they can only be used to model

2 Because of the TCP’s reliability layer collisions when tunneling TCP over TCP:
http://sites.inka.de/sites/bigred/devel/tcp-tcp.html
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Fig. 2. A Mealy Machine with 3 states

deterministic systems. An example of a graphical representation of a simple
Mealy machine is shown in Fig. 2. The transition from the state s1 to the state
s2 labeled B/C means that if the state machine is in state s1 and receives an
input B, then it will switch to state s2 and produce the output C.

In this paper, Mealy machines are used to model the behavior of the Open-
VPN server. They describe how the server reacts in response to input messages:
which output it will produce and how its state will be affected. The next part
discusses how state machines can be automatically inferred from real-time sys-
tems.

3.2 Regular Inference

The state machine of the OpenVPN server is inferred using a technique called
regular inference. It uses black-box fuzzing: well-formed packets are sent to the
server and the output is used to infer a state machine. The regular inference prim-
itives are provided by the LearnLib library [24]. The system which is analyzed,
namely the OpenVPN server, is referred to as the System Under Learning (SUL)
and its state machine is denoted M .

Learner The regular inference involves two actors: a Learner (the LearnLib
library) and the SUL (the OpenVPN server). The Learner has no initial knowl-
edge about M but is provided with an input alphabet upon which it will build
queries and ask them to the SUL. A fundamental property that must be ensured
is the independence of subsequent queries. Therefore, between each query, the
SUL must be reset to its initial state. In our case, it is effectively done by killing
the OpenVPN server process and starting a new one. There are two kind of
queries:

Membership query What is the response to a sequence of input symbols ?
Equivalence query Is an hypothesized automaton H equivalent to M ?

The Learner is composed of two parts: the learning algorithm and the equiv-
alence algorithm. The learning algorithm will keep sending membership queries
to the SUL until it comes up with a strong hypothesis. Then the hypothesized
state machine H is passed to the equivalence algorithm which will answer the
equivalence query. If H is equivalent to M , then H is returned as the model
of the SUL. Else, the equivalence algorithm returns a counterexample which
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comes to refine the hypothesis and is used to perform subsequent membership
queries. The learning algorithm is resumed until the hypothesized automaton H
is equivalent to M .

The learning algorithm used in this paper is a modified version of Angluin’s
L* algorithm [6] which produces Mealy machines. The equivalence algorithm is a
modified version of the w-method [8]. It has been refined to cut off entire search
branches based on the fact that, when the connection is closed by the server, it
will remain closed. Therefore, we stop building queries over prefixes that end up
with a closed connection.

The main problem that has not yet been mentioned is the communication
between the Learner and the SUL, which is the role of the test harness.

Building a test harness The main challenge to infer a correct state machine
is to prepare the application specific learning setup. This includes determining a
suitable abstraction of input and output messages, and finding ways to manage
concrete runtime data that influences the behavior of the target system [19]. The
test harness thus consists of a mapper part and a monitoring part.

The Learner is provided with an abstract input alphabet upon which it will
build queries and feed them to the SUL. However the SUL has his own real input
alphabet, which is different from the Learner’s input alphabet. The Learner will
also expect the responses from the SUL to be translated into symbols over an
abstract output alphabet. Thus, the test harness must contain a mapper which
job is to translate the abstract input symbols from the learner into real input
(i.e. OpenVPN packets), and real output into abstract output symbols. Note
that the level of abstraction will affect the final learned model: a compromise
must been made between the precision of the model and the learning complexity.

On the other hand, building correct system inputs is not trivial as they are
based on concrete runtime data that influence the behavior of the system:

– The actual messages must be sent through the network.
– The responses from the server must be processed in order to recover impor-

tant information (e.g. session-keys).
– The acknowledgement process must be handled.
– The security primitives must be implemented in the way expected by the

server (e.g. valid authentication, encryption and signatures).

Handling those runtime data requires to understand the behavior of the system
and to make decisions, concerning the semantic of the abstract input symbols,
which will affect the final state machine.

4 Experimental Setup

In this paper we use regular inference techniques provided by the LearnLib
library to infer state machines of two OpenVPN server. The server is running on
a VMware virtual machine hosted on the same computer than the Learner and
can be managed using Secure Shell (SSH). LearnLib provides the L* learning
algorithm and the w-method equivalence algorithm.
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4.1 Test Harness

The test harness implementation is based on the previous work of De Ruiter
and Poll [10] on TLS protocol state fuzzing. The source code is available at
https://framagit.org/leslyann/statelearner. In order to infer the state machine
of the server, we need to build a test harness which will make the link between
LearnLib and the OpenVPN server.

The test harness consists of a mapping component which provides the ab-
straction layer, and a monitoring part (basically a stateless OpenVPN client)
which manages runtime data. The mapping part of the test harness is in charge
of converting the abstract input messages from the learner into OpenVPN mes-
sages. The monitoring part is in charge of building those messages based on
runtime data, such as session identifiers or session-keys. In the same way, the
output messages from the server have to be be processed to extract the rele-
vant information, and converted into output messages understandable by the
learner. The messages must be well-formed to be accepted by the server and the
security primitives must be implemented and used as expected by the server.
Building a test harness thus requires a deep understanding of the OpenVPN
implementation.

Since there is no formal specification of the OpenVPN protocol, low level in-
formation was not straightforward to get. We mainly relied on Wireshark traces,
the doxygen-generated documentation [1], the security overview [2], and when
inner depth analysis was needed, we used the OpenVPN source code and the
server logs with maximum verbose output.

4.2 Nondeterminism Issues

The determinism of the SUL is of paramount importance since LearnLib can
only learn state machines of deterministic systems. Nondeterministic behavior
of the SUL at best produces a wrong model, at worse causes unexpected be-
havior of the learner, up to its non-termination. For instance, let us consider a
nondeterministic response given to an equivalence query which raises a coun-
terexample. Then the learning process is wrongly resumed and the response is
wrongly added to the hypothesis, which will eventually raise more issues. The
less frequent the nondeterministic behavior is, the harder it is to catch, which
is very insidious because long learning phases can turn out to be unsuccessful
because of one wrong query.

Detecting nondeterminism The first way to detect nondeterminism is to
manually check the counterexamples found by the learner. Whenever nondeter-
ministic behavior is suspected, the defective query can be run several times until
a nondeterministic answer is caught. Then, the reasons of the defect can be ex-
amined further through the log file of the server and the Wireshark traces. This
method can also be used to estimate the probability of such nondeterministic
behavior.
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Causes of nondeterminism In a network application such as we are analyzing,
there are two causes of nondeterminism.

First, the UDP connection between the client and the server is not reliable,
so packet loss may be a cause of nondeterminism. This kind of error is not
expected in theory since the server is running on a virtual machine hosted on
the same computer as the client. However, the actual behavior is slightly different
as sometimes the connection drops and it fails the learning process. Appendix
D.1 contains further details on the network-related causes of nondeterminism.

Second, there are multiple timeouts and delays on the server side, so the
response to a query may vary depending on those timing-related events, which
is seen as nondeterminism by the learner. A list of those timing-related events
is available in App. D.2, along with the consequences on the learning time. The
solutions we adopted to work around this timing-related nondeterminism often
implies longer sleeping-times or timeouts on the client side. Choosing the appro-
priate timeouts and sleeping-times is a challenging issue. Under-approximating
them may cause nondeterminism in the learning process and make it fail, but on
the other hand, setting them too long would significantly slow down the learning
process.

Managing nondeterministic behavior Nondeterministic behavior can be
corrected to some extent. In the equivalence algorithm, if a nondeterministic
answer to a query raises a counterexample, the output will be wrongly added to
the model and the learning process will be wrongly resumed. In order to prevent
this to happen, we modified the equivalence algorithm to reduce the probability
of learning an nondeterministic output. Each time a counter-example is found by
the equivalence algorithm, the query is processed again to check the concordance
of the outputs. If both outputs are the same, we assume that the output is correct
and that a counterexample has been found. Otherwise, the query is processed
again to determine the correct output. If the output fails to converge at some
point, an exception is raised for nondeterminism. This simple modification could
be added to LearnLib as an option to detect nondeterminism, especially since
the computational overhead is negligible.

4.3 Input Alphabet for Learning

In order to keep the learning complexity low, we only include messages that are
intended to be sent from a client to a server and that would be accepted by the
server configuration3 and we abstract the acknowledgement mechanism. We also
only include TLS messages required to establish a successful OpenVPN session.
The full input alphabet is given in Sec. E.

An OpenVPN session is considered successful when the initialization se-
quence is complete and the data tunneling can actually start. The corresponding

3 Thus, the ServerHardReset message and the messages for key-method 2 are not
included. They were manually tried and resulted in a closed connection which is not
really interesting anyway.
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state is referred as Initialization Sequence Complete (ISC). To detect a success-
ful data exchange, we use the OpenVPN tunnel to send a ping request to the
server. If the exchange is successful the server will send back a ping response
through the tunnel.

Depending on the input alphabet and on the monitoring part, the inferred
state machine can change significantly. The learner was run with several input
alphabets to infer various state machines and highlight various behaviors of the
server (which are detailed in Sec. 5), while keeping the input alphabet rather
small to reduce the learning complexity. Note that the complexity does not only
depends on the size of the input alphabet, but also on the final number of states.

5 Results

We analyzed two different implementations of the OpenVPN protocol: Open-
VPN 2.3.10 with library version OpenSSL 1.0.2g, referred to as OpenVPN,
and OpenVPN-NL based on OpenVPN 2.3.9 with library version PolarSSL
1.2.19 4, referred to as OpenVPN-NL. OpenVPN-NL is a stripped and hard-
ened version of OpenVPN, intended for the Dutch government, which disallow
the OpenVPN insecure configurations. The server has been configured to use
key-method 1 and not the tls-auth option. Both UDP and TCP modes were
analyzed and turned out to behave differently.

In order to keep the learning complexity low, we chose to split the analysis
into several parts. Each part focuses on a particular phase of the protocol. The
first part focuses on the OpenVPN session initialization, the second part on the
TLS handshake and the last part on the re-keying process.

For each state machine, the sequence of messages leading to a successful
OpenVPN tunnel, namely the happy-flow, is indicated with bold edges. The state
’0’ refers to the initial state, the state ’ISC’ (Initialization Sequence Complete)
is the state from which the data tunneling can actually start and the state ’X’
refers to a closed connection.

5.1 The OpenVPN Session Initialization

From the documentation5 and server logs, we can see that the OpenVPN im-
plementation stores its OpenVPN sessions in three session slots. The first slot
contains the active session (i.e. session which initialization sequence is complete
and which can process DATA messages), the second slot contains the untrusted
session being negotiated, and the last slot contains the old session6. Each Open-
VPN session is initiated with a ClientHardReset message that has a unique
session-identifier. However, the expected impact of the ClientHardReset on

4 https://openvpn.fox-it.com/
5 See https://build.openvpn.net/doxygen/html/group control processor.html#details

for more details on the tls session structures.
6 Note that those session slots are an implementation choice and not a fundamental

aspect of the OpenVPN protocol
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the server is not specified in the documentation, this is why we tried to highlight
it by building a state machine over three input symbols:

– CHRv1
– Tls:FullSession - which treats the entire TLS-based key exchange as one

atomic step
– DataPingReq

0 DataPingReq/Empty

1

CHRv1/SHRv1

X

Tls:FullSession/ConnectionClosed

DataPingReq/Empty

2

CHRv1/Ack

ISC

Tls:FullSession/Succeed

Tls:FullSession/ConnectionClosed

CHRv1/Ack
DataPingReq/Empty

Tls:FullSession/ConnectionClosed

CHRv1/Ack
DataPingReq/DataPingRep

Fig. 3. State machine of an OpenVPN or OpenVPN-NL server running in TCP mode.
Note that only one path can lead to a successful connection (0 → 1 → ISC) and only
the first CHRv1 (in state 0) triggers a SHRv1 and leads to a successful connection.
The others CHRv1 eventually end up in a closed connection.

The state machines of the OpenVPN server and the OpenVPN-NL server are
the same, which makes sense since the OpenVPN-NL implementation is based
on the OpenVPN implementation. The TCP and the UDP modes differ in the
way they handle the sessions, which is not specified in the documentation and
(even if it does not seem insecure) is quite surprising.

Starting with a TLS message in TCP mode result in a closed connection
(see 0 → X in Fig. 3), while in UDP mode, the messages are just ignored by the
server (see 0 → 0 in Fig. 4). This is because the UDP messages with an unknown
session-id are ignored by the server.

In UDP mode, the session-keys can be renegotiated by sending a new Clien-
tHardReset, which can be seen for instance in the dashed loop in Fig. 4. This
is not possible in TCP mode since only the first ClientHardReset can result
in a successful connection as shown in Fig. 3, the others eventually resulting in a
closed connection. We found an explanation for this difference: in UDP mode the
server has no way to know if the client is reset, contrary to TCP mode. There-
fore, when the client reconnects and tries to initiate a new session by sending a
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0 Other/Empty

1

CHRv1/SHRv1

DataPingReq/Empty

2

CHRv1/SHRv1

ISC

Tls:FullSession/SucceedCHRv1/Ack
DataPingReq/Empty

Tls:FullSession/Succeed

DataPingReq/DataPingRep

3

CHRv1/SHRv1

X

Tls:FullSession/ConnectionClosedTls:FullSession/Succeed

CHRv1/Ack
DataPingReq/DataPingRep

Fig. 4. State machine of an OpenVPN or OpenVPN-NL server running in UDP mode.
Note that several paths can lead to a successful connection (0 → 1 → ISC and 0 →
1 → 2 → ISC). We can see from state 2 that several CHRv1 can lead to a successful
connection. The dashed loop results in a session-keys renegotiation, initiated by a
CHRv1.

new ClientHardReset, the server can process the ClientHardReset and
the new session can be seamlessly renegotiated.

We also found that in UDP mode, two sessions can be under negotiation at
the same time, but only if there is no active session. This can be seen in Fig. 4
from the path 0 → 1 → 2 as the first two ClientHardResets trigger a response
from the server, but after reaching the state ISC, only one ClientHardReset
triggers a ServerHardReset (i.e. path ISC → 3). This is because when the
active session slot is empty, it is used to store the first untrusted session (the
others are stored in the second slot).

Figure 4 also shows that in UDP mode, a session initiated with a Clien-
tHardReset message can succeed without triggering a ServerHardReset
message. For instance following the path 0 → 1 → 2 → 2 → ISC with the se-
quence of messages CHRv1/SHRv1 → CHRv1/SHRv1 → CHRv1/Empty →
Tls:FullSession/Succeed, the active session-id will be the one introduced
by the third CHRv1 message which triggers no response from the server. This
behavior, which is quite confusing but not insecure, is based on the fact that
the server only respond with a ServerHardReset when filling a new session
slot. The first and second CHRv1 fill the first and second slots but the third
ClientHardReset just overrides the second session in the second slot.
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These differences also explain why in UDP mode two paths can lead to a
successful session (i.e. 0 → 1 → 2 → ISC and 0 → 1 → ISC in Fig. 4), while in
TCP mode there is only one path (0 → 1 → ISC in Fig. 3).

Finally from the server logs it seems like in TCP mode, the structure con-
taining the second session is allocated when receiving the ClientHardReset
but the corresponding ServerHardReset is never sent. Therefore this ses-
sion is stuck in S PRE START state7. However, the subsequent TLS messages
are processed by the server but the responses to the Tls:ClientHelloAll
are not forwarded to the client. Finally if the TLS handshake is pursued, the
Tls:CertificateVerify triggers an error for bad signature and the connection
is dropped by the server.

5.2 The TLS Handshake

This part focuses on analyzing the details of the TLS sessions used to set up an
OpenVPN connection. The TLS session negotiation was previously abstracted
by the Tls:FullSession input symbol. In order to investigate the TLS sessions,
this Tls:FullSession symbol is split into several symbols corresponding to the
different TLS messages. The input alphabet consists of the following messages:

– wCHRv1
– Tls:ClientHelloAll
– Tls:ClientKeyExchange
– Tls:ClientCertificate
– Tls:ClientCertificateVerify
– Tls:ChangeCipherSpec
– Tls:Finished
– KeyNeg1
– DataPingReq

In order to make the state machine simpler, CHRv1 is replaced by an altered
version: wCHRv1. First, we want to focus on one session only so the wCHRv1
keeps the previous session-id and TLS session parameters. Second, resetting the
packet-id would raises some issues in regard to the acknowledgement mecha-
nism. Indeed, the Control messages with a known packet-id are considered
as replayed packets by the server, therefore the responses of the server after a
wCHRv1 would depend on the number of control messages previously sent and
the server could no longer be modeled as a finite Mealy machine. This is why
the wCHRv1 does not reset the packet-id.

The differences between OpenVPN and OpenVPN-NL state machines are
only related to the different TLS implementations and TLS cipher suites they
use. As expected, the OpenSSL state machine included in the OpenVPN state
machine and the PolarSSL state machine included in the OpenVPN-NL state
machine are similar to those inferred in [10]. For example in the OpenVPN state

7 See https://build.openvpn.net/doxygen/html/group control processor.html for
more details on session states
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Fig. 5. State machine of an OpenVPN server running in TCP mode. The dotted edge is
a characteristic of OpenSSL which does not return an error when receiving a Change-
CipherSpec before a ClientHello. The dashed edge shows that a second key nego-
tiation message can be sent without triggering an error from the server.

machine, Fig. 5 shows that a ChangeCipherSpec sent before a ClientHel-
loAll does not directly result in a closed connection but goes into the dead-end
state 9 where the TLS session can no longer succeed. This behavior is inherited
from the OpenSSL implementation which does not return an error in this partic-
ular case. From Fig. 6 we can see that the PolarSSL library behaves differently
since this particular sequence of messages results in a closed connection.

However, the OpenVPN-NL implementation is also more permissive in some
other situations. When the TLS handshake is complete (in states 7, ISC and 8)
and an extra TLS handshake message is sent, OpenVPN-NL will forward the
Alert message (see the italic labels) instead of closing the connection.

OpenVPN uses TLS RSA WITH AES 128 CBC SHA cipher suite for the
TLS session and OpenVPN-NL uses TLS DHE RSA WITH AES 256 CBC SHA.
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Fig. 6. State machine of an OpenVPN-NL server running in TCP mode. The italic
alert labels show that the OpenVPN-NL implementation raises an alert when receiving
extra TLS handshake messages after the handshake is complete, instead of closing the
connection like OpenVPN. The italic ServerKeyExchange is related to the DH key
exchange used in the TLS session.

This difference explains the extra ServerKeyExchange in the OpenVPN-NL
state machine which is only sent in DH key exchange.

Both implementations allow the client to send several KeyNeg1 messages
over the TLS session, but only the first one is processed while the others are
ignored. In our test harness, we made the choice to generate and send fresh
session-keys (used to encrypt and MAC Data messages) whenever we send
a new KeyNeg1 message. This results in the extra state 8 which highlights
the fact that when the server receives a Data message encrypted and MAC-ed
with the wrong keys, it will drop the connection resulting in the DataPin-
gRep/ConnectionClosed transition from state 8 to state X).

Finally the TCP and UDP models are similar except for some extra states
that can be observed in Fig. 7, related to the acknowledgement process in UDP
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mode. Starting the communication with a Control message different from
wCHR1 results in the dead-end states 2 and 3, because of the acknowledge-
ment process. In state 3, the server has received a wCHR1 with a packet-id
n > 0 and is now waiting for the messages with a packet-id lower than n. There-
fore, the subsequent TLS messages are not processed. This is an other difference
from TCP mode that is not specified in the documentation.

0 DataPingReq/Empty

1

wCHRv1/SHRv1

2

Other/Empty

...

...

3 DataPingReq/Empty
Other/Ack

wCHRv1/SHRv1

Other/Empty

Fig. 7. Subset of the state machine of an OpenVPN or OpenVPN-NL server, focusing
on the particularity of the UDP mode. The state 1 and its subsequent states are
identical to the TCP versions in Figs. 5 and 6.

5.3 The Key Renegotiation Mechanism

The –reneg-bytes, –reneg-pkts and –reneg-sec options can be used to trigger au-
tomatic session-keys renegotiation after a certain number of bytes, packets or
seconds. This key renegotiation mechanism is triggered by the client or the server
with a SoftReset message. To focus on the effect of this SoftReset message,
we inferred a state machine over the following input symbols:

– wCHRv1
– Tls:ClientHelloAll
– Tls:FullHandshake
– KeyNeg1
– DataPingReq
– SoftReset

The OpenVPN and OpenVPN-NL inferred state machine are similar, except
for the forwarding of the TLS alerts and the extra ServerKeyExchange,
mentionned in Sec. 5.2. As expected, Fig. 8 shows that the key renegotiation
mechanism can only be triggered after the OpenVPN session is initiated, i.e. in
states ISC and 4. The SoftReset messages sent before the ISC state end up
in a closed connection which is a safe behavior to adopt in a security protocol.
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Fig. 8. State machine of an OpenVPN-NL server running in TCP mode, highlighting
the key renegotiation mechanism. The dashed labels show the successful soft reset
messages.

After a successful SoftReset message, the state machine goes to state 1 and
the Data messages are no longer processed by the server (in states 1, 2 and 3 the
Data messages are ignored). This is the result of a choice we made in the test
harness. The key id that identifies the session-keys of a particular Data message
has been incremented by the SoftReset but the second pair of keys has not
been negotiated yet. The server will ignore the subsequent Data messages with
the wrong key-id and, as a result, the state machine is simpler since a successful
SoftReset results in a transition to state 1 instead of creating some new state
where a Data message using the old session-keys would trigger a response from
the server.

The UDP mode is different from the TCP mode and is a good example of
the limitations of LearnLib. When the active session-keys are renegotiated via
a SoftReset and the OpenVPN initialization sequence fails, the active session
state is set as Error, the session is set as the Lame Duck8 and a new session
is initialized by the server. Then, the server waits for 56 seconds and sends a
ServerHardReset. The test harness cannot differentiate this behavior from
the regular no reply case, unless it waits 1 minute for a ServerHardReset
each time there is no reply from the server. On the other hand, if the test
harness does not wait, the ServerHardReset will eventually be caught as a
reply to an other message and this will trigger nondeterminism in the learning

8 See https://build.openvpn.net/doxygen/html/group control processor.html for
more details on the sessions states
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process. We are then stuck in a situation where a long timing-related event can
not be suppressed, then trying to infer a state machine would definitely be time
consuming.

5.4 Documentation Issues

During the construction of the test-harness, we encountered several complica-
tions that might be worth noting for future work on the OpenVPN protocol and
that are listed here in decreasing order of importance.

– First, the sequence of messages leading to a successful tunneled data trans-
mission is not explicitly documented, which makes it challenging for a de-
veloper to come up with a new OpenVPN implementation. Especially the
behavior in case of erroneous messages is not specified, even though it is
essential for a security protocol implementation to handle those error cases
properly. The sequence of message could be added to the documentation as a
protocol state machine similar to those presented in this paper. For instance,
the one defined in Fig. 8 gives a good overview of the sequence of messages
establishing an OpenVPN session.

– In the documentation, the expected behavior when receiving a HardReset
or a SoftReset message is not explicit. It is not specified how the different
fields of the messages must be handled and how the messages should affect
the server and the client. Moreover, in the implementation it is not clear
when a ClientHardReset is taken into account by the server since it does
not always trigger a ServerHardReset. Finally the differences between
the UDP and TCP modes are not mentioned in the documentation but are
clearly visible in the inferred state machines.

– The padding algorithms used for encryption9 are not specified in the docu-
mentation and it would be really helpful to have them documented in the
Data Channel Crypto Module10. Moreover, in the Data channel key gener-
ation section11, the process used by OpenVPN to generate key expansion
in key-method 2 is only documented by a reference to the source code. It
might be helpful to add some extra documentation about the key expansion
function and the PRF.

– Finally, we reported a mistake in the security overview [2] and the docu-
mentation12, concerning the order of the fields of the Key Negotiation
message using key-method 1.

6 Conclusion

We presented an automatic analysis of two OpenVPN implementations using a
technique called protocol state fuzzing: we used regular inference, which relies on

9 We used the Java PKCS5Padding for Blowfish/CBC and AES/CBC.
10 https://build.openvpn.net/doxygen/html/group data crypto.html
11 https://build.openvpn.net/doxygen/html/key generation.html
12 https://build.openvpn.net/doxygen/html/network protocol.html
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black-box fuzzing, to infer state machines of the OpenVPN server and performed
a manual analysis upon them. This approach is able to find logical flaws in the
state machine of the implementation, but could not detect for instance, flaws
triggered by malformed messages or the recent flaws found using fuzzing [15].

This approach gives a coarse analysis of the implementation and abstracts
the fine details. First, the state machine is dependent on the the test harness
which defines the input alphabet and semantic of the messages. For instance
the abstraction we adopted intentionally conceals the acknowledgement mecha-
nism, but also the smooth transition of the key renegotiation mechanism. Those
concessions on the precision of the model are necessary to keep the learning com-
plexity low and reduce the learning time. Second, the timing-related events which
plays a great role in the protocol can not be modeled in a simple Mealy Machine
and therefore must be abstracted. Modeling timing-related events would require
a more complex model of timed-automaton with output, which can currently
not be inferred from real systems. In addition, those timing-related events cause
nondeterminism in the learning process which can only be handled by introduc-
ing timeouts and delays in the test-harness. They are the main bottleneck of
the learning process and can explain the learning time ranging from about 40
minutes to 49 hours.

Building a test harness involves re-implementing an OpenVPN client, able
to send correct messages to the server, and thus requires a deep understanding
of the protocol. It is a difficult and time-consuming application-specific task,
definitely more worthwhile if it can be reused to analyze many implementations
or throughout the software evolution, such as it has been done for TLS [10, 9]
or SSH [13].

The inferred state machines provide a useful insight into the decisions - and
errors - made in the implementation. They can be used to easily spot superflu-
ous states and transitions, which should lead to further analysis by experts. As
part of a security evaluation, they can help to harden the implementation by
simplifying the state machine, thus reducing the chance to subsequently find a
vulnerability. They can also be used to automatically infer a specification from an
implementation, that could be automatically updated throughout the software
evolution.

The inferred state machines from the different implementations of the Open-
VPN servers did not reveal any vulnerability, and comply to what would be
expected from a security protocol. Whenever a TLS message ends up in a failure
of the TLS handshake, the OpenVPN session initialization is aborted and the
connection is closed, which is the safest conduct to adopt. The same conduct
is adopted when the integrity check or decryption of a Data message raises an
error. Otherwise, the incorrect OpenVPN messages are ignored by the Open-
VPN server such as messages with unknown session-id (Sec. 5.1), the KeyNeg
messages send after the session initialization (Sec. 5.2), or Data message with
wrong key-id (Sec. 5.3). Finally, these results can sensibly increase the confidence
in the tested OpenVPN implementations.
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To conclude, we believe that this is a shame that the sequence of messages
leading to a successful OpenVPN connection and the conduct to adopt when
receiving an unexpected message are not specified. This information could easily
be modeled by one (or several) protocol state machine such as we inferred.
The documentation would really benefit from the addition of the expected state
machine, like for instance the one defined in Fig. 8 which gives a good overview of
the sequence of messages establishing an OpenVPN session. Alongside a prose
specification could be added to describes the main timing-related events and
more details on how to handle error cases such as unexpected or incorrect input
messages.
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A Acronyms

VPN Virtual Private Networks
OSI Open Systems Interconnection
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SUL System Under Learning
PDU Protocol Data Unit
PRF Pseudorandom Function
HMAC Hash-based Message Authentication Code
SHA-1 Secure Hash Algorithm 1
CBC Cipher Block Chaining
TLS Transport Layer Security
DoS Denial of Service
VM Virtual Machine
SSH Secure Shell
ISC Initialization Sequence Complete
DH Diffie-Hellman

B The OSI Model

A protocol is a well-defined set of rules that describes the interaction between
communication entities in networks. They can be classified into layers according
to their role in the communication using the Open Systems Interconnection (OSI)
model. OSI defines seven independent abstraction layers which take care of a
specific job and send the data to the adjacent layer. The OSI model scheme is
described in Tab. 1.

Layer PDU Examples

Host
Layers

7.Application
Data

HTTP, FTP, POP, SMTP,
IMAP, IRC, SSH,
TELNET, BitTorrent...

6.Presentation
5.Session

Media
Layers

4.Transport
Segment (TCP)

TCP, UDP, SSL, ICPM...
Datagram (UDP)

3.Network Packet IPv4, IPv6, IPSEC...
2.Data Link Frame Ethernet, Wifi, Token ring, PPP...
1. Physical Link Bit 10BASE-T, RS-232, USB physical layer

Table 1. The seven OSI layers with examples of widespread protocols for each layer.

C OpenVPN Sequence of Messages

This section describes the regular sequence of messages exchanged between a
client and a server initiating a OpenVPN connection in TLS-mode. This sequence
of messages, called the happy-flow, is illustrated in Fig. 9. All the messages are
acknowledged via the OpenVPN reliability layer, except the Data messages.

First, the client initiates the connection by sending a ClientHardReset
message which contains an identifier referring to its new session, namely its
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serverclient

Client Hard Reset (or CHRv1)

Server Hard Reset (or SHRv1)

Tls:ClientHello

Tls:ServerHello
Tls:Certificate

Tls:CertificateRequest
Tls:ServerHelloDone

Tls:Certificate
Tls:ClientKeyExchange

Tls:CertificateVerify
Tls:ChangeCipherSpec

+{Tls:Finished}+

Tls:ChangeCipherSpec
+{Tls:Finished}+

+{Tls:ApplicationData(Key Negociation)}+

+{Tls:ApplicationData(Key Negociation)}+

*{Data}*

*{Data}*

Fig. 9. A regular OpenVPN session using TLS mode, without DH cipher suite. A
message secured with the TLS keys is denoted as +{msg}+, and a message secured
with the VPN session-keys is denoted as *{msg}*. The ACK messages are omitted.

session-id. The server answers with a ServerHardReset message which con-
tains its own session-id.

Then, a fully authenticated TLS handshake is initiated between the two
peers, which means that both must present their own certificate. Note that the
TLS sequence of message can change depending on the selected cipher suite: the
ServerKeyExchange message is only sent for DH cipher suites. This difference
can be seen in Fig. 5 and Fig. 6 since the default cipher suites used for the TLS
sessions differ: contrary to OpenVPN, OpenVPN-NL uses a DH cipher suite and
thus sends a ServerKeyExchange.

When the TLS handshake is complete, the client generates its random ma-
terial and sends it to the server in a TLS ApplicationData message, secured
with the TLS keys, as illustrated in Fig. 10. The server uses the random ma-
terial to recover the session-keys (depending on the key-method) and sends its
own random material to the client.
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The Key Negotiation messages also contains an option string which is
used by the remote peer to check the consistency of the configuration options.
The OpenVPN implementations are pretty liberal in the way they handle this
option string: if the remote string does not match the local options, a warning
is sent but the connection is not aborted - even with an empty string.

Opcode: P_CONTROL_V1
Key-ID
Session-ID
[Packet-ID Array Length]
[Packet-ID Array]
[Remote session-ID]
Message packet-ID

Content type: Application Data
Version: TLS 1.2
Length

Encrypted Application Data

OpenVPN

TLS

UPD
IPv4
Ethernet

Cipher key length
HMAC key length
Cipher Key
HMAC Key
Option string

Fig. 10. An OpenVPN (TLS mode and key-method 1, without –tls-auth) frame ex-
changing the session-key material over a TLS session. Fields denoted as [field] are part
of the acknowledgement mechanism and are optional.

Once both peers have received the session-keys, they can start exchanging the
actual Data messages. The Data messages are IP packets or Ethernet frames,
encrypted and MAC-ed used the session-keys.

D Causes of Nondeterminism in the Learning Process

This section details the causes of nondeterministic replies from the server and the
techniques adopted to circumvent them. Subsection D.1 focuses on the network
related causes such as packet loss and Subsec. D.2 focuses on the timing-related
events.
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The OpenVPN server is running on a VMware Virtual Machine (VM) hosted
on the same computer as the test harness. The server can be started and killed by
the test harness using SSH. This configuration has been adopted for its simplicity.

D.1 Network Related Causes of Nondeterminism

While using VMware with the NAT connection, sometimes for about five sec-
onds, all the packets sent by the virtual machine (OpnVPN but also SSH packets)
get lost inside the VM (before reaching the interface between the VM and the
host). The solution is to switch to the Host-Only connection, which also prevent
the VM from accessing the Internet.

Even after switching to the Host-Only connection, the long phases of learn-
ing raised some nondeterministic behavior because of packet loss. For example,
during the automatic time synchronization of the VM (which eventually fails
because it cannot access the Interent), the OpenVPN packets are significantly
delayed. We took the following precautions to avoid packet loss:

– Use Host-Only connection on the VM,
– Turn off the Internet connection on the host,
– Disable automatic time synchronization on the VM,
– Disable automatic system updates on the VM.

D.2 Timing-related Causes of Nondeterminism

This section details the timing-related events that cause nondeterminism in the
learning process, and the solutions adopted to circumvent those issues. The server
is configured via a configuration file, which path is specified in the command
line. The configuration file of the server includes a –hand-window option to set
the TLS-based key exchange timer, and a –verbosity options to set the output
verbosity of the server from 0 to 9.

TLS handshake window By default, the TLS-based key exchange must final-
ize within 60 seconds. Otherwise, the handshake will fail and the connection
will be reset. The solution we adopted is to increase the –hand-window timer
from 60 to 60000.

Restart of the connection The TLS handshake can fail to succeed because of
an unexpected TLS message. In such a case, the connection is shut down and
the server waits a 2 seconds delay before restarting the connection. In TCP
mode, the client can detect the closed socket but in UDP mode, detecting the
shutdown is not directly possible because ICMP packets cannot be caught.
Two workarounds can be considered. First, whenever the server does not
respond to the client, the client waits for 2.5 seconds. The inconvenience is
that a closed connection can not be distinguished from no reply from the
server, so in this case the client will wait for no reason. The second solution
is to run a nc command13 and scan the ports of the server in case of empty

13 nc(1) - Linux man page: https://linux.die.net/man/1/nc
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reply. In addition of being less time-consuming, this solution allows the client
to detect a closed connection and to close its own.

Reset time of the server Because subsequent queries must be independent,
each time the learner starts a new query, the server must be reset. It is
effectively done by establishing a new SSH session, killing the old OpenVPN
process and start a new one. This command might take some time to fully
execute and, if the client starts sending messages to the server before it is
ready, those messages will be lost. To prevent this, a one second delay has
been added on the client side.

Server verbosity If the –verbosity level is too high, extra SSH messages con-
taining server logs would be exchanged between the host and the VM, which
would also slow down the VPN connection (or there would be an extra delay
to redirect the server output stream to a file on the VM). Moreover, each
reset of the server would prompt its configuration which would also be sent
through the SSH tunnel. This operation can increase the reset time of the
server which is already long enough. Thus, it is better to set the verbosity
to zero in the server configuration file during the learning process, otherwise
the timeouts have to be increased.

TCP and UDP timeouts The TCP and UDP timeouts must be carefully
chosen to avoid nondeterminism. They must be long enough so the client
is sure to receive the message, but short enough to speed up the learning
process and not trigger the resend mechanism of OpenVPN because the
server did not receive the acknowledgement.

These timeouts delays added in the test harness are the bottleneck of the
learning process:

– The nc command with a 2 sec. timeout, whenever the server does not reply
to the client in UDP mode.

– The 1 sec. delay each time the server is reset (between each queries).
– The TCP and UDP timeouts (respectively 800 and 100 ms) for each message

sent to the server.

The learning time mainly depends on the input alphabet and the resulting state
machine. The average learning time for the state machines in Sec. 5.1 is about
40 minutes, for the state machines in Sec. 5.3 it is about 3:50 hours, and for
the state machines in Sec. 5.2 it is about 49 hours. Similar work on protocol
state fuzzing of TLS implementations [10] ranged from about 9 minutes to over
8 hours. For approximately the same number of queries, our learning time is
considerably longer because of the timeouts and delays introduced.

E Learner’s Input Alphabet

This section describes the abstract alphabet of the learner and gives a short
description of the semantic of each symbol (in other words, the impact of the
symbol on the test harness). Table 2 contains the symbols referring to OpenVPN
messages and Table 3 contains the symbols referring to TLS messages.
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Message Description
CHRv1 Send a ClientHardResetV1 message with fresh session-id, packet-id

and TLS session.
wCHRv1 Send a ClientHardResetV1 message but keep the old parameters.
KeyNeg1 Generate fresh session-keys and send an ApplicationData TLS mes-

sage containing the new session-keys for key-method 1.
SoftReset Increment the key-id and send a SoftReset message.
DataPingReq Send a ping request to the server through the OpenVPN tunnel
CHRv2 Send a ClientHardResetV2 message with fresh session-id, packet-id

and TLS session.
KeyNeg2 Send a ApplicationData TLS message containing the session-key ran-

dom material for key-method 2.
Table 2. Description of the OpenVPN input symbols.

Message Description
Tls:ClientHelloAll Send a ClientHello TLS message.
Tls:ClientKeyExchange Send a ClientKeyExchange TLS message.
Tls:ClientCertificate Send a Certificate TLS message.
Tls:ClientCertificateVerify Send a CertificateVerify TLS message.
Tls:ChangeCipherSpec Send a ChangeCipherSpec TLS message.
Tls:Finished Send a Finished TLS message.
Tls:FullSession Send all the TLS messages from Tls:ClientHelloAll to

Tls:Finished, plus KeyNeg1
Tls:FullHandshake Send all the TLS handshake messages from

Tls:ClientKeyExchange to Tls:Finished
Table 3. Description of the TLS input symbols in their order of arrival in the initial-
ization of the TLS session.
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