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Introduction
Consider the following situation: S is a closed oriented surface of genus g ≥ 2, this surface
admits a hyperbolic metric. The set of all hyperbolic metrics over S can be quotiented by some
equivalence relations. We will study the quotient by orientation preserving isometries homotopic
to identity. This quotient space is the Teichmüller space T (S) of the surface S and can be
endowed with a natural topology such that it homeomorphically identifies with R6g−6. Our goal
in this paper is to study a compactification of this set.

Consider the hyperbolic plane H2: the usual way to compactify it is to add the boundary
at infinity which consists of the equivalence classes of geodesics in H2. Similarly, Thurston’s
compactification of the Teichmüller space consists in constructing its boundary as the set of
projective measured laminations PML(S) on S. We will follow Bonahon’s construction of this
compactification [Bon88] through the set of geodesic currents C(S). It consists in embedding
the Teichmüller space of S and the set of projective measured laminations over S into the set of
projective geodesic currents PC(S).
5.2.1: Theorem (Bonahon [Bon88]). A compactification of T (S) as a subset of the compact set
PC(S) is T (S) ∪ PML(S).

I will give next a section by section summary of the paper.

The first section will recall a few facts about geometry and topology of surfaces. In particular,
we will see some properties of homeomorphisms and diffeomorphisms, or homotopy and isotopy,
which we will require later. As we will focus on hyperbolic surfaces, in particular closed hyperbolic
surfaces, we will recall some of their properties. The properties exposed in this section will be
used throughout the document.

In the second section, we recall the definition of a Teichmüller space. Once we define the
notion of length over T (S) and its topology, we will discuss two well-known theorems. The first,
the existence of Fenchel-Nielson coordinates over T (S), induces a homeomorphism with R6g−6.
The second theorem is the 9g − 9-theorem which says that the class into the Teichmüller space
of a hyperbolic metric over S is uniquely determined by the length of 9g − 9 fixed curves.
2.5.1: 9g-9 Theorem. There is a collection of simple closed curves α1, ..., α9g−9 on S such that
the following map is a proper embedding.

` : T (S) → R9g−9
+

ρ 7→ (`ρ(αi))i=1,...,9g−9

Following the idea that we want to compactify T (S) this theorem will help us to understand
divergent sequences in T (S).

In the next section, we will continue studying Gromov hyperbolic spaces, mainly referring to
[GdlH90]. They will serve as an intermediate tool to study the action of the homeomorphisms
of a surface on the geodesics of the universal cover. Indeed, we will study quasi-isometries over
Gromov hyperbolic spaces. Naturally, the hyperbolic plane is Gromov hyperbolic, and so all
results about quasi-isometries over hyperbolic spaces apply to H2. As a consequence we will be
able to extend lifted homemophisms to ∂H2 and to the geodesics of the universal cover of S. The
key result here is the Švarc-Milnor lemma which allows us to prove that lifted homeomorphisms
from closed hyperbolic surfaces are quasi isometries.
3.1.5: Švarc-Milnor Lemma. Let (X, d) be a proper simply connected geodesic metric space
and G a group whose action on X is cocompact by isometries and properly discontinuous. G is
finitely generated and for every x0 ∈ X the map g ∈ G 7→ g · x0 ∈ X is a quasi-isometry.

We will give a proof of this theorem in section 3.1.
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Armed with this facts about Gromov hyperbolic spaces, in section four we can study the
main objects we will need to compactify: measured laminations and currents. We will first
study geodesic laminations. Geodesic laminations are compact subsets of S which are made
of complete disjoint simple geodesics. This space can be naturally endowed with the topology
induced by the Hausdorff distance and is independent from the metric over S. The object we will
use in the compactification are measured laminations: they are geodesic laminations equipped
with measures over transverse arcs. A positive multiple of a measure is also a measure so the set
ML(S) of measured lamination can be projectivised to define PML(S). It is this set which will
appear as the boundary of T (S).

The last thing we will need to understand Bonahon’s compactification of T (S) is the notion
of currents. After a brief study of geodesic currents we will see how it is possible to make T (S)
andML(S) subsets of C(S). A geodesic current for S is a measure over the set of geodesics G(S̃)
in the universal cover S̃ of S. It is easy to identify ML(S) as a subset of C(S) but somewhat
more complicated for T (S). One first need to define the Liouville measure on T 1(H2) and get an
identification between currents and geodesic flip and geodesic flow invariant measures on T 1(S).
This identification will also lead to the compacity of PC(S).

The last section aims to compactify T (S). For that purpose, we will use a tool introduced in
[Bon88]: the intersection number.

5.1.2: Theorem. The intersection number between free homotopy classes of closed curves admits
a continuous symmetric bilinear extension i : C(S)× C(S)→ R+.

This intersection number will prove that T (S) embeds in PC(S) and will induce a character-
isation of currents coming from measured laminations. With those elements we will be able to
prove that a divergent sequence in T (S) converges to a projective measured lamination in PC(S).
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1 Topology and geometry of surfaces
The topic this thesis is on surfaces, so we begin by recalling some properties of their geometry and
topology. In what follows, we suppose that the surfaces considered are connected and oriented.

1.1 Topological properties
Our study will be focused on compact connected oriented surfaces. It is well-known that such a
surface is either a sphere or a g-torus with a finite number of disks removed, see [Kin93] for a
proof. More precisely we have the Classification theorem.

Theorem 1.1.1 (Classification theorem). If S and S′ are compact oriented and connected sur-
faces with the same number of boundary components and the same Euler characteristic then every
bijection between π0(∂S) and π0(∂S′) is induced by a homeomorphism Φ : S → S′ which can be
moreover chosen orientation preserving or reversing.

If S and S′ are smooth then Φ can be chosen to be a diffeomorphism and if S and S′ are
triangulated then Φ can be chosen to be piece-wise linear.

Noting that cutting a surface along a simple non separating closed curve does not change
the Euler characteristic, it appears that every two such curves γ and γ′ in a compact connected
oriented surface S can be mapped one to the other one by a homeomorphism of S.

Such an homeomorphism may be seen as a change of coordinates: every complex simple closed
curve can be study through an “easy” one.

According to Theorem 1.1.1, a surface is topologically determined by it’s Euler characteristic
and the number |π0(∂S)| of boundary components. There is a third constant, the genus g(S),
which is deeply related to χ(S) and |π0(∂S)|.

Definition 1.1.2. If S is a compact oriented connected surface with |π0(∂S)| = k (number of
connected components of the boundary), then the genus of S is

g(S) = 1
2(2− χ(S)− k).

The genus has some geometrical interpretations:

• g(S) is the number of simple closed curves along which you need to cut S to make it planar,

• g(S) is the maximal number of simple closed curves which together don’t separate S.

These properties can be proven using the fact that the Euler characteristic does not change when
we cut a surface along a simple closed curve.

One can reformulate the classification theorem saying that two surfaces with same number
of boundary components and same genus are homeomorphic. Hence, up to homeomorphism, the
compact connected oriented surfaces are the following:

g = 0 g = 1 g = 2 g = 3 ...
|π0(∂S)| = 0 Sphere Torus 2-Torus 3-Torus ...
|π0(∂S)|=1 Sphere�disk Torus�disk 2− Torus�disk 3− Torus�disk ...
|π0(∂S)| = 2 Sphere�2 disks Torus�2 disks 2− Torus�2 disks 3− Torus�2 disks ...
|π0(∂S)| = 3 Sphere�3 disks Torus�3 disks 2− Torus�3 disks 3− Torus�3 disks ...

= pair of pants
... ... ... ... ... ...

For more details on topology of surfaces see [Kin93] chapters 4 and 5.
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1.1 Topological properties Marie Trin

Besides the classification theorem, we will need in the following to understand the link between
isotopy and homotopy, or homeomorphisms and diffeomorphisms, on surfaces. The following
theorem is fundamental.

Theorem 1.1.3. Let S be a compact oriented surface other than the annulus or the disk, for any
ϕ,ψ ∈ Diff(S) the following are equivalent

• ϕ and ψ are homotopic,

• ϕ and ψ are isotopic,

• ϕψ−1 ∈ Diff0(S).

Fact. The same equivalences as above are true for orientation preserving diffeomorphisms.

Thus we will talk indifferently about isotopy or homotopy between diffeomorphisms. About
being a homeomorphism or a diffeomorphism, we have the following theorem, for more details
see [FM11] section 1.4.

Theorem 1.1.4. Let S and S′ be two surfaces as above, if f : S → S′ is a proper homotopy
equivalence then f is properly homotopic to a diffeomorphism.

Especially, it applies to homeomorphisms between compact surfaces which are all homotopic
to a diffeomorphism. Combinig the two preceding theorems we have

Diff+(S)�homotopy = Diff+(S)�isotopy = Diff+(S)�Diff+
0 (S)

= Homeo+(S)�homotopy = Homeo+(S)�Homeo+
0 (S),

where Diff+
0 (S) and Homeo+

0 (S) are the identity components of Diff+(S) and Homeo+(S). By
this way we can define the mapping class group of a surface.

Definition 1.1.5. The mapping class group of a closed oriented surface S is

Map+(S) = Diff+(S)/homotopy

and the extended mapping class group is

Map(S) = Diff(S)/homotopy

Example. For the torus we get Map(T) = GL2(Z) while Map+(T) = SL2(Z).

We will essentially work with closed surfaces so, we defined the mapping class group only in
that case. One can define it for surfaces with boundary however some additional elements come
into accounts, interested readers can refer to [FM11].

It is well-known that every map ϕ : S → S′ between surfaces induces a homomorphism
ϕ∗ : π1(S) → π1(S′) between fundamental groups. For some surfaces it is possible to go back
from homomorphism between fundamental groups to maps between surfaces.

Definition 1.1.6. Let X be a path-connected space and G a group, X is a Eilenberg-MacLane
K(G, 1) space if π1(X) ∼= G and X̃ is contractible.

Example. For example, the torus whose universal cover is R2 is a K(Z2, 1) space. The universal
cover of the sphere is the sphere which is not contractible then S2 is not Eilenberg-MacLane. We
will see later that every closed oriented surface of genus g ≥ 2 is Eilenberg-MacLane.
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1.2 Hyperbolic surfaces Marie Trin

Now, homomorphisms from π1(X) to a group G are induced by maps X → X ′ for any
K(G, 1)-space X ′.

Theorem 1.1.7. If X is connected and X ′ is K(G, 1) for some G then every group homomor-
phism ρ : π1(X)→ G is of the form ϕ∗ and ϕ : X → X ′ is unique up to homotopy.

Moreover, if ρ is an isomorphism then ϕ is a equivalence homotopy.

For more details about K(G, 1)-spaces see [Hat02] section 1.B. The previous theorems can
be applied to the study of the mapping class group of a closed surface, the following corollary is
proved in [FM11].

Corollary 1.1.8. Let S be a closed surface of genus g ≥ 1, there is an isomorphism between
Map(S) and Out(π1(S)).

1.2 Hyperbolic surfaces
We will mainly be interested in hyperbolic surfaces. See [BP91] for details on their properties,
here we briefly recall some of them.

Definition 1.2.1. A Riemannian surface X is said to be hyperbolic if it is complete, has totally
geodesic boundary, and is locally isometric to H2.

A metric ρ on a surface S is said to be hyperbolic if the Riemannian surface X = (S, ρ) is
hyperbolic.

Equivalently, a hyperbolic surface X is a complete Riemannian 2-manifold which admits an
atlas {φU : U → V } where the U are opens subsets of X which cover X, the V are open subsets
of H2 and the φU are isometries.

It is also equivalent to take a smooth 2-manifold S having an atlas with values in H2 such
that the transition maps φ−1

U ′ ◦ φU are restrictions of global isometries.
Always equivalently, a hyperbolic surface is a complete Riemannian surface with constant

curvature −1.

Theorem 1.2.2. If S is a hyperbolic complete simply connected surface then S is isometric to
H2.

Up to isometry, there is a unique simply connected hyperbolic surface which is H2. If X is a
closed hyperbolic surface we even know that X = X̃�π1(X), where X̃ is the universal cover. We
can endow the universal cover with the pull back metric, we obtain a simply connected hyperbolic
surface and the action of π1(X) on X̃ by deck transformations is now by orientation preserving
isometries. According to Theorem 1.2.2, X̃ is isometric to H2. As a consequence, π1(X) identifies
with a subgroup of the isometries of H2 and every closed hyperbolic surface identifies with H

2
�Γ

where Γ is a subgroup of PSL2(R).

We have a precise characterisation of hyperbolic closed Riemannian surfaces.

Theorem 1.2.3. Let X be a closed Riemannian surface, X is hyperbolic if and only if it is
diffeomorphically isometric to H

2
�Γ, where Γ is a torsion free subgroup of PSL2(R) whose action

is discreet and free.

Remark. One can note that since H2 is contractible, every closed hyperbolic surface is an
Eilenberg-MacLane space.
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We would like to know which surfaces are hyperbolic. For the g-torus with g ≥ 2 it is possible
to build it by gluing two by two the sides of a 4g-gone. As H2 admits a tilling made of regular
4g-gones we have a hyperbolic structure on the g-torus.

For the closed surfaces of genus 1 and 0 we will use Theorem 1.2.3. A closed surface satisfying
this theorem has a universal cover diffeomorphically isometric to H2 and its fundamental group
is Γ. As the sphere is simply connected, it is its own universal cover so the sphere does not
admit hyperbolic metric. For the torus, one can prove that there is no copy of Z2 in PSL2(R)
which is torsion free and whose action on H2 is discreet and free, as a consequence the torus
as no hyperbolic structure. Following those observations there is a characterization of compact
hyperbolic surfaces.

Proposition 1.2.4. Let S be a compact oriented surface, S admits a hyperbolic metric if and
only if χ(S) < 0.

If S has no boundary we find what we saw above, indeed, χ(S) < 0 means g(S) > 1.

Example. As a consequence, the closed surfaces which admits hyperbolic metrics are the closed
surfaces of genus at least 2. For the surfaces with boundary, we will be interested in the pair of
pants, it has genus 0 and 3 boundary components, hence its Euler characteristic is −1 and the
pair of pants is hyperbolic.

2 Teichmüller spaces
We have seen above that every closed surface of genus g ≥ 2 admits at least a hyperbolic metric.
The goal here is to study some properties of the set of all hyperbolic metrics on a surface. We will
consider two equivalence relations over the set of hyperbolic metrics on S. They are linked by the
action of the mapping class group but differ in that one is easier to study than the other. That’s
why we will focus on the Teichmüller spaces. Most of the results of this section are available on
[FM11] chapter 10 and [BP91] section B.4. We will denote surfaces without fixed metric by S
and Riemannian surfaces by X.

2.1 Teichmüller and moduli spaces
Choosing a surface S which admits a hyperbolic metric we introduce here two equivalence relations
on the set of hyperbolic metrics on S.

Definition 2.1.1. Let S be a closed oriented surface such that g(S) ≥ 2. A marked hyperbolic
structure on S is a pair (X,φ) where X is a Riemannian surface with a complete hyperbolic
metric and φ : S → X is an orientation preserving diffeomorphism.

Two marked hyperbolic structures are equivalent (X1, φ1) ∼T (X2, φ2) if there exists an ori-
entation preserving isometry i : X1 → X2 such that the following diagram commutes up to
homotopy.

S
φ1

~~

φ2

  
X1 i

// X2

Remark. One can define it for surfaces with boundary, in that case the marked surface X is
asked to have totally geodesic boundary.

Consider the following application

{(X,φ) marked hyperbolic structure on S} → {ρ hyperbolic metric on S}
(X,φ) 7→ φ−1

∗ ρX

7



2.1 Teichmüller and moduli spaces Marie Trin

where ρX is the metric on X.
If (X1, φ1) and (X2, φ2) are equivalent then φ−1

2 ◦ i ◦ φ1 : (S, φ−1
1∗ ρX1) → (S, φ−1

2∗ ρX2) is an
Orientation Preserving Isometry Homotopic to the Identity (OPIHI).

The existence of an orientation preserving isometry homotopic to identity defines an equiva-
lence relation on the set of hyperbolic metrics on S and we have the following application :

{(X,φ) marked hyperbolic structure on S}�∼T → {ρ hyperbolic metric on S}�OPIHI
(X,φ) 7→ φ−1

∗ ρX .

It is a bijection an the reverse application is given by:

{ρ hyperbolic metric on S}�OPIHI →
{(X,φ) marked hyperbolic structure on S}�∼T

ρ 7→ id : S → (S, ρ)

As a map ϕ : (S, ρ1)→ (S, ρ2) is an isometry if an only if ϕ∗ρ1 = ρ2 then

{ρ hyperbolic metric on S}�OPIHI = {ρ hyperbolic metric on S}�Diff+
0 (S)

where Diff+
0 (S) acts via push forward.

Definition 2.1.2. The Teichmüller space of a closed oriented surface S with g(S) ≥ 2 is defined
by

T (S) = {(X,φ) marked hyperbolic structure on S}�∼T
= {ρ hyperbolic metric on S}�orientation preserving isometry homotopic to id
= {ρ hyperbolic metric on S}�Diff+

0 (S)
As discussed above, a closed oriented surface S is topologically characterized by its Euler

characteristic χ(S) or its genus g(S). Suppose that S is a closed surface with g(S) ≥ 2 and set
S = {X hyperbolic oriented surfaces of genus g(S)}, there is the following equivalence relation
on S :

X1 ∼M X2 ⇐⇒ ∃ϕ : X1 → X2 an orientation preserving isometry .

Arguing as in the case of the Teichmüller space, the set S�∼M is in bijection with the set of
hyperbolic metrics on S up to the action of Diff+(S) by push forward.

Definition 2.1.3. The moduli space of S is the set

M(S) = S�∼M
= {ρ hyperbolic metric on S}�Diff+(S).

To clarify the relation between T (S) andM(S) note that we can define an action of Map+(S)
on T (S) = {ρ hyperbolic metric on S}�Diff+

0 (S) given by

∀ [ψ]map ∈ Map+(S) and [ρ]T ∈ T (S) : [ψ]map · [ρ]T = [ψ∗ρ]T ,

where [ψ]map = {ϕ ◦ ψ : ϕ ∈ Diff+
0 (S)} and [ρ]T = {ϕ∗ρ : ϕ ∈ Diff+

0 (S)}.

We verify that the above formula is well defined as a group action :

• if ψ1 and ψ2 are two diffeomorphisms then (ψ1 ◦ ψ2)∗ = ψ1∗ ◦ ψ2∗ and [ψ1 ◦ ψ2]map · [ρ]T =
[ψ1]map · ([ψ2]map · [ρ]T ),
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2.2 Length function Marie Trin

• if ψ ∈ Diff+
0 (S) then [ψ]map = 1Map+(S) and [ψ]map · [ρ]T = [ψ∗ρ]T = [ρ]T by definition of

the Teichmüller space of S,

• consider φ ∈ Diff+(S), ϕ ∈ Diff+
0 (S) and ρ a hyperbolic metric on S,

(ϕ ◦ ψ)∗ρ = ϕ∗(ψ∗ρ) so [ϕ ◦ ψ]map · [ρ]T = [ψ]map · [ρ]T and the definition does not depend
on the representative of [ψ]map,
ψ∗(ϕ∗ρ) = (ψ◦ϕ)∗ρ where ϕ is isotopic to identity, thus ψ◦ϕ is isotopic to ψ and ψ◦ϕ◦ψ−1 to
identity (all with orientation preserved) and there is φ ∈ Diff+

0 (S) such that ψ ◦ϕ◦ψ−1 = φ
finally (ψ ◦ ϕ)∗ρ = φ∗(ψ∗ρ) and [ψ]map · [ϕ∗ρ]T = [ψ]map · [ρ]T and the definition does not
depend on the representative of [ρ]T .

Remark. If we consider the elements of T (S) as classes of hyperbolic marked structures on S,
then the action is given by [ψ]map · [(X,φ)]T = [(X,φ ◦ ψ−1)]T .

Proposition 2.1.4. With the above action

T (S)�Map+(S) =M(S)

Proof. Consider T (S) andM(S) as quotients of the set of hyperbolic metrics on S.
If the following applications are well defined then they are inverses of one other.

M(S) → T (S)�Map+(S)
T (S)�Map+(S) → M(S)

[ρ]M 7→ [[ρ]T ]map [[ρ]T ]map 7→ [ρ]M

• If ρ and ρ′ represent the same element of M(S) then there is ϕ in Diff+(S) such that
ρ = ϕ∗ρ.
However [[ρ]T ]map = {[ψ]map · [ρ]T | [ψ]map ∈ Map+(S)} = {[ψ∗ρ]T |ψ ∈ Diff+(S)} so
[ρ′]T ∈ [[ρ]T ]map and finally [[ρ′]T ]map = [[ρ]T ]map and the first application is well defined.

• Now, if [[ρ′]T ]map = [[ρ]T ]map then there is [ψ]map ∈ Map+(S) such that [ψ]map · [ρ]T =
[ρ′]T . It means that ∃ψ ∈ Diff+(S) : [ψ∗ρ]T = [ρ′]T and ∃ψ ∈ Diff+(S), ϕ ∈ Diff+

0 (S) :
ϕ∗(ψ∗ρ) = ρ′. However ϕ∗(ψ∗ρ) = (ϕ ◦ψ)∗ρ where ϕ ◦ψ ∈ Diff+(S) thus [ρ]M = [ρ′]M and
the reverse application is well defined.

2.2 Length function
We have defined two quotient spaces, the moduli space and the Teichmüller space. The moduli
space is easier to imagine as two hyperbolic metrics over S are equivalent in M(S) if they are
isometric, however we will work with the Teichmüller space. It is often easier to work with T (S)
rather than withM(S). For example, length functions are defined on T (S) and not onM(S).

Let S be a closed oriented surface of genus at least 2 and ρ a hyperbolic metric on S. If α is
a simple closed curve in S and [α] its free homotopy class then [α] contains a unique ρ-geodesic
αρ. We can define `ρ([α]) as the length `ρ(αρ) of the unique geodesic representative αρ of [α] on
(S, ρ).

Theorem 2.2.1. Let T be an element of T (S) and S(S) the set of free isotopy classes of simple
closed curves in S. The length function `T is well defined.

lT : S(S) → R+

[α] 7→ `ρ([α]) if T = [ρ]
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2.3 Topology of T (S) Marie Trin

Proof. We want to show that the definition of `T does not depend on the representing of T.
Let ρ and ρ′ be two metrics on S which represent the same element of T (S): there is an

orientation preserving isometry isotopic to identity ϕ : (S, ρ) → (S, ρ′) and ρ′ = ϕ∗ρ. Let
H : [0, 1] × S → S be an isotopy such that H0 = id and H1 = ϕ. As a consequence, if α is a
simple closed curve in S the map H·(α(·)) is a free isotopy between α and ϕ(α) and ϕ preserves
[α].

Moreover, ϕ is an isometry so it maps geodesics to geodesics and preserves the lengths:
ϕ(αρ) = αρ′ and `ρ(αρ) = `ρ′(αρ′) thus

`ρ′([α]) = `ρ′(αρ′) = `ρ(αρ) = `ρ([α]).

We have shown that `T is well defined.

Remark. If we consider elements of T (S) as hyperbolic marked structures then `T becomes

lT : S(S) → R+

[α] 7→ `ρX ([Φ(α)]) if T = [(X,Φ)].

As shown above, the application is well defined because the isometry ϕ is isotopic to identity.
For M(S) the quotient is by isometries but they are not necessarily isotopic to identity, thus
isotopy classes are not preserved. There is no length function on M(S). Length function will
have a key role in the next results.

2.3 Topology of T (S)
To equip T (S) with a topology we are going to identify T (S) with a space with a well-known
topology.

Theorem 2.3.1. If g ≥ 2 is the genus of S, then T (S) is in bijection with DF (π1(S), PSL2(R))�PGL2(R)
where DF (π1(S), PSL2(R)) is the set of discrete and faithful representations ρ : π1(S) →
PSL2(R) and PGL2(R) acts on this set by conjugation.

Remark. PSL2(R) is the group of orientation preserving isometries of H2 and PGL2(R) the
group of isometries.

Proof. Constructing a discrete faithful representation from (X,Φ) a marked hyperbolic structure:
Φ : S → X is a diffeomorphism thus Φ∗ : π1(S) → π1(X) is an isomorphism, moreover π1(X)
could be identified with the group of deck transformations which is discrete and whose action on
X̃ is free, properly discountinuous and by orientation preserving isometries. Take η : H2 → X̃
an isometry comming from the hyperbolic structure on X̃, we have the following discrete and
faithful action

ρ : π1(S) → PSL2(R)
[α] 7→ η−1 ◦ Φ∗([α]) ◦ η

We want to prove that that if we change the isometry η or the representative (X,Φ) then the
new representation is conjugated in PGL2(R) to ρ.

• If η′ is another isometry between H2 and X̃ then η−1 ◦ η′ = ν is an isometry of H2 thus
ν ∈ PGL2(R) and ρ′ = ν−1ρν,

• if (X ′,Φ′) represents the same element of T (S) as (X,Φ) then there is an isometry i : X →
X ′ such that i ◦ Φ is homotopic to Φ′. Thus i∗ ◦ Φ∗ = Φ′∗ and the definition of ρ does not
change.

10
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Take ρ : π1(S)→ PSL2(R) a faithful discrete action: as ρ(π1(S)) is discrete in PSL2(R) its
action on H2 is properly discontinuous. If this action is not free then there is [α] ∈ π1(S)
non-trivial such that ρ([α]) has a fixed point z0 in H2. Therefore ρ([α]) = f is a non-trivial
rotation of H2. Moreover, f comes from an element of π1(S) and has therefore infinite order:
∀n ∈ N, fn(z0) = z0. The set {fn|n ∈ N} is infinite, which is not compatible with a properly
discontinuous action: the action is free.

ρ(π1(S)) is torsion free since π1(S) is and its action on H2 is free and properly discontinuous
thus H

2
�ρ(π1(S)) is a hyperbolic surface X, with fundamental group ρ(π1(S)) and universal cover

H2. As H2 is contractible, X is a Eilenberg-MacLane space and according to Theorem 1.1.7 there
is a homotopy equivalence ϕ : S → X such that ϕ∗ = ρ. Such a map is continuous and between
compact surfaces with no boundary so it is proper and according to Theorem 1.1.4, ϕ is homotopic
to a diffeomorphism Φ and finally we obtained (X,Φ) a hyperbolic marked structure on S.

This marked structure is defined up to the choice of ρ on its conjugacy class. If ρ′ = νρν−1 is
conjugated to ρ then the following map is an isometry and the marked structures from ρ and ρ′
are the same element of T (S).

H2
�ρ(π1(S)) → H2

�ρ′(π1(S))
[z] 7→ [ν(z)].

We are going to use this bijection to endow T (S) with a topology. If S is the genus g ≥ 2 sur-
face then π1(S) = 〈a1, ..., ag, b1, ..., bg|

g∏
i=1

[ai, bi] = 1〉. Consider DF (π1(S), PSL2(R)) as a subset

of Hom(π1(S), PSL2(R)) ≡ {A1, .., Ag, B1, ..., Bg ∈ PSL2(R)|
g∏
i=1

[Ai, Bi] = Id} ⊂ PSL2(R)2g. If

we have a section of DF�PGL2 → DF then we have an identification of T (S) as a subset of
PSL2(R)2g where there is a well-known topology. If A1, ..., Ag, B1, ..., Bg represent an element of
DF (π1(S), PSL2(R)) then they are hyperbolic elements of PSL2(R), all of them fix a geodesic
ai or bi in H2 which have an attractive and a repulsive endpoint a∞i and a−∞i or b∞i and b−∞i .
In the conjugacy class of A1, ..., Bg there is a unique element such that a∞1 = i, a−∞1 = −i and
b∞1 = 1 since the action of PGL2(R) on H2 is three transitive.

The map from DF�PGL2 to DF which associates to every element the representative de-
scribed above provides us section of the quotient and thus we have endow T (S) with a topology.

11
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2.4 The Fenchel Nielsen coordinates
The Fenchel Nielsen coordinates on T (S) consist in associating to each marked hyperbolic struc-
ture X on S a unique system of coordinates based on a fixed pants decomposition of S. Since with
a certain gluing of 2g − 2 pairs of pants we can construct the g-torus for every g ≥ 2, Theorem
1.1.1 makes clear that every hyperbolic closed surface admits at least a pants decomposition. We
have some precision about this decomposition in [FM11] pages 248-249.

Theorem 2.4.1. Let S be a closed surface of genus g ≥ 2, S admits a pants decomposition made
of 2g − 2 pairs of pants which are obtained cutting along 3g − 3 simple closed curves and all the
pants decomposition of S are of this type.

Let P be a (topological) pair of pants with boundary components α1, α2, α3 and Y a hyper-
bolic surface with totally geodesic boundary equipped with an orientation preserving homeomor-
phism Φ : P → Y (ie. a hyperbolic marked structure on P ).

Thus Φ(α1),Φ(α2) and Φ(α3) denote the geodesics of the boundaries components of Y (now
we will forget the Φ). For every i 6= j ∈ {1, 2, 3} there is a unique Y -geodesic δi,j joining αi and
αj orthogonally.

α1

α2

α3

Cutting along the δi,j one obtains a decomposition of the pair of pants into two right angled
hexagons with three non consecutive edges of the first one equal to three non consecutive edges
of the second one.

α1
3

δ2,3

α1
2

δ1,2

α1
1

δ3,1

α2
3

δ2,3

α2
2

δ1,2

α2
1

δ3,1

Proposition 2.4.2. If a marked hyperbolic hexagon is a hexagon with one vertex marked then
every hyperbolic right angled marked hexagon is uniquely determined, up to orientation preserving
isometry, by the length of three non consecutive edges, starting at the marked vertex and going in
the forward direction.

A proof of this proposition is exposed in [FM11] page 289.
In our decomposition we mark the intersection point between α1 and δ3,1, therefore the

hexagon is uniquely determined by the length of δ3,1,δ2,3 and δ1,2 and the two hexagons in the
decomposition of Y are the same and are uniquely determined by the length of α1,α2 and α3.
These leads to the following theorem.

12
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Theorem 2.4.3. T (P ) → R3
+

T 7→ (`T(α1), `T(α2), `T(α3)) is an homeomorphism.

One can find more details about the study of the pair of pants in [FM11] section 10.5.

Now, go back to our closed oriented surface S and recall that it admits pants decompositions.
Fix one such decomposition and call γ1,...,γ3g−3 the curves along which we cut. If (X,Φ) is a
marked hyperbolic structure on S, the structure of each pant in the decomposition is uniquely
determined by the lengths of the curves γi in X. It gives the first 3g−3 coordinates of the Fenchel
Nielsen system: the length parameters. The 3g − 3 last ones consist in specifying the way how
we glue the pants: they are the twist parameters.

Let β1, ..., βn be a set of curves in S such that in every pant of the decomposition the βi
consist in three disjoint arcs joining the boundary components two by two.

The idea of the twist parameters is to fix a “canonical way” to glue the pairs of pants and
measure how the way we glue to obtain X is different from the canonical gluing.

We already know that in every pant of the decomposition their are three unique geodesics
which join orthogonally and two by two the boundary components. As seen before they cut the
boundary components into two equal arcs: say that the canonical way to glue the pants is to
match the feet of the geodesics. By this way the different arcs of the βi in the pants will not
necessarily correspond: the twist parameter θi near αi is the angle we have to turn the pants
near αi to glue the arcs of the βj together.

Theorem 2.4.4. If their is a fixed system of curves αi, βj as above in S then the following

map is a homeomorphism: FN : T (S) → R3g−3
+ × R3g−3

T 7→ (`T(α1), ..., `T(α3g−3), θ1(T), ..., θ3g−3(T)). As

a consequence T (S) is homeomorphic to R6g−6.

One can find more details about this decomposition in [FM11] section 10.6.

Remark. There is as many “Fenchel Nielsen” coordinates as ways to define the “canonical glu-
ing”. This canonical gluing can be seen as a section for L : T 7→ (`T(α1), ..., `T(α3g−3)) for which
the fibers in T (S) are the orbits for the action by twist along the αi of R3g−3. One can refer to
[BBFS13] for more details about this construction.

2.5 The 9g-9 theorem

As an extension of Theorem 2.2.1 we can define a function from T (S) to RS(S)
+ with

` : T (S) → RS(S)
+

T 7→ `T.

13
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Theorem 2.5.1 (9g-9 theorem). There is a collection of simple closed curves α1, ..., α9g−9 on S
such that the following map is a proper embedding.

` : T (S) → R9g−9
+

T 7→ (`T(αi))i=1,...,9g−9

We will not prove this theorem but the reader can refer to [FM11] page 300. However we can
use it to study divergent sequences in T (S).

Corollary 2.5.2. If (Tn)n∈N ∈ T (S)N is unbounded then there exists α a simple closed curve in
S such that the sequence `Tn(α) is unbounded in R+.

3 Gromov hyperbolic spaces
In this section we are going to use Gromov hyperbolicity to deduce properties of hyperbolic
surfaces. In particular, this will allow us to study the action of homeomorphisms in the boundary
of the universal cover of a surface and on its geodesics. Gromov hyperbolic spaces are studied in
greater detail in [GdlH90].

3.1 Quasi-isometries
The main topic of this section are quasi-isometries: if X and X ′ are hyperbolic surfaces and
ϕ̃ : X̃ → X̃ ′ a lift on the universal covers of a homeomorphism ϕ : X → X ′ then ϕ̃ is a
quasi-isometry.

Definition 3.1.1. Let (X, d) and (X ′, d′) be two metric spaces. They are said to be quasi-isometric
if there exist two positive constants c, λ and two maps f : X → X ′, g : X ′ → X such that the
following holds:

• ∀x, y ∈ X, d′(f(x), f(y)) ≤ λd(x, y) + c,

• ∀x′, y′ ∈ X ′, d(g(x′), g(y′)) ≤ λd′(x′, y′) + c,

• ∀x ∈ X, d(g(f(x)), x) ≤ c,

• ∀x′ ∈ X ′, d(f(g(x′)), x′) ≤ c.

Now give a characterisation of this property in terms of maps called quasi-isometries.

Definition 3.1.2. With (X, d) and (X ′, d′) two metric spaces, a map f : X → X ′ is a
(λ, c)-quasi-isometric embedding if

∀x, y ∈ X, 1
λ
d(x, y)− c ≤ d′(f(x), f(y)) ≤ λd(x, y) + c.

Two (λ, c)-quasi-isometric embeddings f : X → X ′ and g : X ′ → X are (λ, c)-quasi-inverses
if there is a positive constant δ such that:

• ∀x ∈ X, d(g(f(x)), x) ≤ δ,

• ∀x′ ∈ X ′, d′(f(g(x′)), x′) ≤ δ.

Hence a map f : (X, d)→ (X ′, d′) is a (λ, c)-quasi-isometry if it admits a (λ, c)-quasi-inverse.

A computation proves that every f and g as in Definition 3.1.1 are (λ,max(c, 3c/λ))-quasi-
inverses. Hence, two metric spaces are quasi-isometric if and only if there exists a pair of quasi-
isometries between them.

14
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Example. The natural injection and the integer part are quasi-inverses between Z and R

The main example of quasi-isometric metric spaces may be constructed endowing finitely
generated groups with metric structures.

Let G be a finitely generated group. A finite set of generators S is said to be symmetric if it
does not contain 1G and it is its own inverse (ie. S−1 = S). If S is such a generating set then
define `S(g), for all g ∈ G, the S-length of g, as the length of the shortest reduced word in the
alphabet S which is equal to g. For example `S(1G) = 0 and if s ∈ S then `S(s) = 1.

Definition 3.1.3. If S is a symmetric generating set of G then `S endows G with a left invariant
metric associated to S:

dS(h, g) = `S(g−1h)

For example, the fundamental group of a hyperbolic closed surface admits a metric space
structure with the previous construction.

What is important is that, up to quasi-isometries, we can talk about the metric of a finitely
generated group.

Proposition 3.1.4. If S and S′ are to symmetric generating sets of G then id : (G, dS)→ (G, dS′)
is a quasi-isometry.

Proof. If l = max
s∈S

(`S′(s)) and l′ = max
s∈S′

(`S(s)) then for every element g in the group, `S(g) ≤
l.`S′(g) and lS′(g) ≤ l.`S(g) and the identity map is a (max(l, l′), 0)-quasi-isometry.

The reason why this example is interesting is because of the Švarc-Milnor lemma ([BH99]
page 140): it implies that a group acting on a space is, under certain conditions, quasi-isometric
to the space it acts on.

Theorem 3.1.5 (Švarc-Milnor Lemma). Let (X, d) be a proper simply connected geodesic metric
space and a group G whose action on X is cocompact, via isometries, and properly discontinuous.
G is finitely generated and for every x0 ∈ X the map g ∈ G 7→ g · x0 ∈ X is a quasi-isometry.

Proof. As the action of G is cocompact the diameter d of X�G is finite.

For x0 ∈ X fixed, consider the following set:
S = {g ∈ G|d(x0, gx0) ≤ 3d}.
If h is an element of G then cut a geodesic
between x0 and hx0 into segments of length
at most d and note xi the successive points
of this decomposition with xn = hx0. By
definition of d, there exists for all i ∈
{0, ..., n} gi ∈ G such that d(xi, gix0) ≤ d,
with g0 = 1G and gn = h. So for every
i we have d(gix0, gi+1x0) ≤ d(gix0, xi) +
d(xi, xi+1) + d(xi+1, gi+1x0) ≤ 3d.

Since the action is via isometries, g−1
i gi+1 ∈ S. Thus gi+1 = gisi where si ∈ S and h = gn =

sn−1...s1. Finally S is a generating set for G.
The action is properly discontinuous so S have to be finite and G is finitely generated.
As the action is by isometries S is symmetric and induces a notion of length `S on G, and

with the preceding, for h a point in G we obtain `S(h) ≤ d(x0,hx0)
d + 1.
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We now want to prove that ev0 : g ∈ G 7→ gx0 ∈ X is a quasi-isometry, for that, consider
m : x ∈ X 7→ gx ∈ G where gx is such that d(x, gxx0) ≤ d. For x, y ∈ X and g, h ∈ G we have

dS(mx,my) = `S(g−1
x gy)

≤ d(gxx0, gyx0)
d

+ 1
≤ 1

d(d(gxx0, x) + d(x, y) + d(gyx0, y)) + 1
≤ 1

dd(x, y) + 3

d(x0, gx0) = d(x0, sn...s1x0) since S generates G
≤ d(x0, sns0) + d(snx0, snsn−1x0)

+d(snsn−1, snsn−1sn−2x0) + ...
+d(sn..sn−kx0, sn..sn−ksn−k−1x0) + ...
+d(sn...s2x0, sn...s1x0)

= d(x0, snx0) + ...+ d(x0, sn−kx0) + ...+ d(x0, s1x0)
≤ 3d`S(g)

Finally dS(mx,my) ≤ max(1
d , 3d)d(x, y)+3 and d(ev0h, ev0g) ≤ max(1

d , 3d)dS(h, g)+3. Moreover
d(x, ev0gx) = d(x, gxx0) ≤ d and dS(g, gev0g) = dS(g, ggx0) ≤ d(gx0,ggx0x0)

d + 1 ≤ 2 by definition of
gx and ev0. Thus, G and X are quasi-isometric and ev0 is a quasi-isometry whatever x.

Therefore, if X is a closed hyperbolic surface with its fundamental group acting by deck
transformations on the universal cover X̃ then π1(X) is quasi-isometric to X̃ and to H2. Following
this remark, let us go back to hyperbolic surfaces.
Corollary 3.1.6. Let X and X ′ be closed hyperbolic surfaces and ϕ : X → X ′ a homeomorphism,
every lift ϕ̃ : X̃ → X̃ ′ of ϕ is a quasi isometry.
Proof. Fix some base-points in X and X ′ and a lift of this base-points in the universal covers, all
of them noted ∗.

As ϕ is a homeomorphism the induced map ϕ∗ : π1(X, ∗)→ π1(X ′, ∗) is an isomorphism and
with well chosen generating sets in the fundamental groups ϕ∗ is an isometry.

According to the Švarc-Milnor Lemma 3.1.5, g ∈ π1(X, ∗) 7→ g∗ ∈ X̃ and g ∈ π1(X ′, ∗) 7→
g∗ ∈ X̃ ′ are quasi-isometries. We even know that lifted morphisms are π1-equivariant, in other
words for x ∈ X̃ and g ∈ π1 we have ϕ̃(gx) = ϕ∗(g)ϕ̃(x). As a consequence the following diagram
commutes and ϕ̃ is a quasi-isometry as a composition of quasi-isometries.

X̃
ϕ̃ //

	

X̃ ′

π1(X, ∗) ϕ∗
//

OO

π1(X ′, ∗)

OO

3.2 Gromov hyperbolic spaces
Quasi-isometries have a particular behavior in spaces called Gromov hyperbolic spaces. From
now on suppose that all the metric spaces are geodesics, meaning that there is a shortest path
between every two points: if x, y ∈ X are at distance d then there is a isometry g : [0, d] → X
with base-point x and endpoint y. Such a geodesic path will be noted [x, y]. A map g : R → X
is a minimizing geodesic if every sub-segment is a geodesic path.

We note that the geodesic path g between x and y is not necessarily unique: in H2 there is a
unique geodesic path between two points while not in S2 (between the poles there are infinitely
many).
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Definition 3.2.1. Let (X, d) be a geodesic metric space and δ a positive constant.
The space X is said to be δ-hyperbolic if in every geodesic triangle ∆ = [x, y] ∪ [y, z] ∪ [z, x]

all edges verifies that all of its points are at distance at most δ of the union of the other two.
One says that X is (Gromov)-hyperbolic if it is δ-hyperbolic for some δ.

The above condition over triangles is called a Rips condition. There are equivalent condi-
tions to define hyperbolic spaces. One introducing the Gromov product: (y|z)x = 1

2(d(x, y) +
d(x, z) − d(y, z)). It is equal to 0 if x ∈ [y, z] and min(d(x, y), d(x, z)) if not. In that case, X is
δ-hyperbolic if for every x, y, z, w ∈ X (x|z)w ≥ min((x|y)w, (y|z)w)− δ. There exists other defi-
nitions introducing some quantities on triangles. To find more informations see [GdlH90] chapter
2.

Theorem 3.2.2. The hyperbolic plane is Gromov-hyperbolic.

Proof. A property of hyperbolic triangles is that their area is π minus the sum of their angles, as
a consequence, there is no hyperbolic triangle of area grater than π.

Let δ be three times the radius of a π area disc in H2. If ∆ is a triangle with a point of an
edge at distance larger than δ of the other two then ∆ contains a half disc of radius δ (centered
at this point) which strictly contains a disc of radius δ/3. Thus, the area of ∆ is larger than the
area of this disc: the area of ∆ is strictly larger than π, we noticed earlier that it was impossible.
We have proved that H2 is δ-hyperbolic.

We will from now on call quasi-geodesic (resp. quasi-segment, resp. quasi-ray) a quasi-
isometric embedding from R (resp. [a, b], resp. [0,∞)). We want to know how far from geodesic
paths are quasi-segments. The following theorem is admitted here, one can find proofs in [GdlH90]
pages 82 and 101, but we are going to apply it to prove that quasi-isometries preserve Gromov
hyperbolicity.

For this we introduce the Hausdorff distance. If (X, d) is a metric space then we have an
induced function on the set of nonempty closed subsets of X called the Hausdorff distance:

dH(U, V ) = inf{ε > 0|∀(u, v) ∈ U × V, d(u, V ) ≤ ε, d(v, U) ≤ ε}.

It is not a distance as it might take infinite values but if verifies the triangle inequality.

Theorem 3.2.3. Let δ ≥ 0, λ ≥ 1 and c > 0 be three constants.
There is a constant H(δ, λ, c) such that in every δ-hyperbolic space (X, d) and for every x, y ∈

X, if g is a (λ, c)-quasi-geodesic and g′ a geodesic between x and y, then dH(Im(g), Im(g′)) ≤
H(δ, λ, c).

There exists a constant H̃(δ, λ, c) such that in every proper δ-hyperbolic space (X, d) all the
(λ, c)-quasi-geodesics are at distance at most H̃(λ, δ, c) of a minimizing geodesic.

The same result is true for quasi-rays.

We are now able to apply it to prove that quasi-isometries preserve Gromov hyperbolic spaces.

Corollary 3.2.4. Let (X, d) and (X ′, d′) be geodesic metric spaces with f : X → X ′ and g : X ′ →
X some (λ, c)-quasi-isometries. Suppose that X is δ-hyperbolic then X ′ is Gromov hyperbolic.

Proof. With the same notations as in the corollary consider ∆ = [x, y] ∪ [y, z] ∪ [z, x] a geodesic
triangle in X ′ and ∆′ = [gx, gy] ∪ [gy, gz] ∪ [gz, gx] a geodesic triangle in X with vertices gx, gy
and gz.
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dH([x, z], [y, z] ∪ [y, x]) ≤ dH([x, z], fg[x, z])
+ dH(fg[x, z], fg([y, z] ∪ [x, y]))
+ dH(fg([x, z] ∪ [x, y]), [x, y] ∪ [y, z])
≤ c f and g are (λ, c)-quasi-isometries
+ λdH(g[x, z], g([x, y] ∪ [y, z])) + c f is a (λ, c)-quasi-isometric embedding
+ c f and g are (λ, c)-quasi-isometries

dH(g[x, z], g([x, y] ∪ [y, z])) ≤ dH(g[x, z], [gx, gz])
+ dH([gx, gz], [gx, gy] ∪ [gy, gz])
+ dH([gx, gy] ∪ [gy, gz], g([x, y] ∪ [y, z]))
≤ H(δ, λ, c) By the previous theorem
+ δ X is a δ-hyperbolic space
+ H(δ, λ, c) By the previous theorem

We have therefore proved that dH([x, z], [y, z]∪ [y, x]) ≤ 3c+λ(δ+2H(δ(δ, λ, c)) and with the
same computations every side of δ is at distance at most 3c+λ(δ+2H(δ(δ, λ, c)) of the union of the
other two. So, we have proved thatX ′ is Gromov hyperbolic with δ′ = 3c+λ(δ+2H(δ(δ, λ, c)).

3.3 Notion of boundary
Since we want to extend lifted homeomorphisms to the boundary of H2 we need to study the
boundary of a Gromov hyperbolic space.
Definition 3.3.1. Let (X, d) be a Gromov hyperbolic space. Two quasi-rays are said to be equiv-
alent if they are at finite Hausdorff distance: the boundary ∂X of X is the set of equivalence
classes of quasi-rays.
Fact. The quasi-rays f and g are equivalent if and only if sup

t≥0
d(f(t), g(t)) <∞.

In H2, the ordinary boundary is the set of equivalence classes of geodesic rays, with Theorem
3.2.3 it is clear that the previous definition of boundary is the same as the well-known one.

We can endow the boundary with a topology thanks to a
neighborhood basis for every point of ∂X. Fix a base point
x0 ∈ X, in every class of ∂X there is at least a geodesic
ray γ based at x0.
If t, r are positive real numbers and γ a geodesic ray based
at x0, then the (t, r)-neighborhood of [γ] is the set Vt,r([γ])
of all classes of geodesic rays based at x0 which path
through the ball of center γ(t) and radius r.
We construct a topology with the basis of neighborhood
given above.

It is now possible to extend quasi-isometries to the boundary.
Theorem 3.3.2. Let (X, d) and (X ′, d′) be two proper δ-hyperbolic spaces. Every (λ, c)-quasi-
isometry f : (X, d)→ (X ′, d′) induces a well defined homeomorphism ∂f between the boundaries:

∂f : ∂X → ∂X ′

[α] 7→ [f ◦ α].
Proof. If f : (X, d) → (X ′, d′) is a (λ, c)-quasi-isometry and α : R+ → X a quasi-ray then
f ◦ α is a quasi-ray in X ′ and if [γ] denotes the equivalence class of the quasi-ray γ then we set
∂f([α]) := [f ◦ α].

It remains to prove that ∂f is well defined. If α and β are two equivalent quasi-rays in X,
sup
t≥0

d(α(t), β(t)) = h <∞ and for t ∈ R+
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d(f(α(t)), f(β(t))) ≤ λd(α(t), β(t)) + c
≤ λh+ c

Thus sup
t≥0

d(f ◦ α(t), f ◦ β(t)) <∞ and f ◦ α and f ◦ β are equivalent quasi-rays in X ′ and ∂f is

well defined.
Moreover, if g is a quasi-inverse for f then ∂g = ∂f−1. With the same computations as above

it is clear that ∂f and ∂g are continuous for the above topology.

As a consequence, for X and X ′ two closed hyperbolic surfaces if ϕ : X → X ′ is a homeomor-
phism, it induces π1-equivariant quasi-isometries ϕ̃ : X̃ → X̃ ′ which lead to maps ∂ϕ̃ : ∂X̃ → ∂X̃ ′.

Property 3.3.3. Let X and X ′ be two closed hyperbolic surfaces, if ϕ : X → X ′ and φ : X → X ′

are homotopic then they induced the same applications between ∂X̃ and ∂X̃ ′ for some lifts.

Proof. Let H : [0, 1] × X → X ′ be a homotopy with H0 = ϕ and H1 = φ. This homotopy
lifts to a homotopy H̃ : [0, 1] × X̃ → X̃ ′ with H̃0 = ϕ̃ a lift of ϕ and H̃1 = φ̃ a lift of φ. For
every x̃ ∈ X̃, H̃t∈[0,1](x̃) is a a continuous path between ϕ̃(x̃) and φ̃(x̃) and so d(ϕ̃(x̃), φ̃(x̃)) ≤
`X̃′(H̃t∈[0,1](x̃)) = `X′(Ht∈[0,1](x)). Since X is compact x ∈ X 7→ `X′(Ht∈[0,1](x)) is bounded:

∃d > 0 : ∀x̃ ∈ X̃ d(ϕ̃(x̃), φ̃(x̃)) ≤ d.

As a consequence, if α is a quasi ray in X̃ its images through ϕ̃ and φ̃ are at bounded distance
and ∂ϕ̃ = ∂φ̃.

4 Laminations and currents
This section will be dedicated to the study of sets of geodesics. First, geodesic laminations which
are compact subsets of surfaces made of geodesics and later geodesic currents which are measures
on G(X̃).

If X is a closed hyperbolic surface there is a canonical bijection between the set of unoriented
geodesics G(X̃) in X̃ and ∂X̃ × ∂X̃ −∆�≡ where ∆ is the diagonal and (x, y) ≡ (y, x). Then ∂ϕ̃
naturally induces a map ϕ̃g : G(X)→ G(X ′).

Corollary 4.0.1. If ϕ : X → X ′ is a homeomorphism between closed hyperbolic surfaces then
every lift ϕ̃ of ϕ induces a π1-equivariant homeomorphism ϕ̃g : G(X̃) → G(X ′) where the spaces
of geodesics are equipped with the uniform convergence on compact sets.

We note that ∂ϕ̃ maps a geodesic g to the unique geodesic of X̃ ′ which is at bounded distance
of the quasi-geodesic ϕ̃ ◦ g.

Fact. It follows directly from Property 3.3.3 that if ϕ : X → X ′ and φ : X → X ′ are homotopic
then they induce the same applications between G(X̃) and G(X̃ ′).

If X and X ′ are two copies of a closed surface S of genus at least 2 endowed with different
hyperbolic metrics then id : X → X ′ induces a homeomorphism between G(X̃) and G(X̃ ′). Thus
it is possible to speak about G(S̃) without reference to the metric.

Remark. Remark that if X and X ′ are the same element of T (S) then there is an isometry
i : X → X ′ and X̃ and X̃ ′ are isometric too. Isometries map geodesics to geodesics so, if X = X ′

in T (S), then the map ĩg maps a geodesic to its image trough ĩ.
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4.1 Geodesic laminations
Now we work on a closed hyperbolic surface X, it means a closed surface S of genus at least 2
endowed with a hyperbolic metric ρ. The main reference of this section is [CB88].

Definition 4.1.1. A geodesic lamination λ on X is a non-empty compact subset of X which is
a disjoint union of simple complete unoriented geodesics. The geodesics are called the leaves of λ
and we will note L(X)1 the set of geodesics laminations on X.

Example. For instance a union of disjoint simple closed geodesics is a geodesic lamination.

The surface X is closed and so compact, as a consequence the Hausdorff distance on K(X), the
set of closed subsets of X, is a distance and induced a topology. K(X) is compact for this topology
as X is compact. As a consequence, we can endow L(X) with a topology whose properties we
will see later.

Given a geodesic γ in X, a lift γ̃ of γ is a complete geodesic in X̃ such that its projection is γ,
note ˜̃γ = π−1(γ) the set of all the lifts of γ with π : X̃ → X the projection: it is a π1(X)-invariant
subset of G(X̃). The same construction with geodesic laminations give a correspondence between
a geodesic lamination λ and a closed non empty and π1(X)-invariant subset ˜̃λ of G(X̃) made of
disjoint geodesics.

Proposition 4.1.2. Let X and X ′ be two closed hyperbolic surfaces, every homeomorphism
ϕ ∈ Homeo(X,X ′) induces a homeomorphism ϕΛ : L(X)→ L(X ′).

Proof. We even know by Theorem 4.0.1 that every lift ϕ̃ of ϕ induces a π1-equivariant homeo-
morphism ϕ̃g between G(X̃) and G(X̃ ′), this application will map closed non empty and π1(X)-
invariant subset of G(X̃) made of disjoint geodesics to closed non empty and π1(X ′)-invariant
subset of G(X̃ ′) made of disjoint geodesics. If we prove that this map does not depend on the lift
then it will induce a well defined homeomorphism ϕΛ : L(X)→ L(X ′).

Let ϕ̃ and ϕ̃′ be two lifts of ϕ, they differ from a deck transformation α ∈ π1(X): ϕ′ = ϕ ◦ α
and ϕ̃′g = ϕ̃g ◦α. If ˜̃λ is the subset of G(X̃) corresponding to a geodesic lamination λ then ϕ̃′g(

˜̃λ) =
ϕ̃g(α(˜̃λ)), but ˜̃λ is π1(X)-invariant so α(˜̃λ) = ˜̃λ and thus ϕ̃′g(

˜̃λ) = ϕ̃g(˜̃λ) and ϕΛ(λ) = π ◦ ϕ̃g(˜̃λ)
does not depend on the lift and is a homeomorphism because ϕ̃g is a homeomorphism.

Reasoning as with the geodesics, if X and X ′ are two copies of S endowed with different
metrics, where S is a closed surface of genus g ≥ 2, then we can pass from L(X) to L(X ′)
homeomorphically: even if there is no notion of geodesic on S, we can talk about L(S) the set of
geodesic laminations on S.

By definition, a geodesic lamination is a compact subset of X which admits a decomposition
as union of geodesics. This decomposition is unique but to see this we first need the following
observation.

Consider two geodesics which are close near a given point. Intuitively, if their directions are
too different then they will meet. This observation leads to the following lemma.

Lemma 4.1.3. If λ = ⋃
x∈L

γx is a decomposition of a geodesic lamination into geodesics then the

direction of γx at x varies continuously with X.

As a consequence, a geodesic lamination λ ∈ L(X) is a strict subset of X. Indeed, as the
direction of the geodesics varies continuously, a decomposition of λ into disjoint simple closed
geodesics induced a non vanishing vector field on λ, but a vector field on a closed orientable
(connected) hyperbolic surface admits at least one singularity so λ is proper.

1L will be used as a notation for the Liouville measure too, the context will prevent any confusion.
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Lemma 4.1.4. A geodesic lamination in a closed oriented hyperbolic surface has no interior and
has a unique decomposition as a union of disjoint simple geodesics.

Proof. Fix a decomposition of λ ∈ L(X) into geodesics and suppose that λ contains an open ball
B. If λ̃ is a lift of λ and B̃ a lift of B then we can consider α an arc into B̃ such that at every point
x of α, the lifted geodesic γ̃x is transversal to α. This is possible thanks to lemma 4.1.3. See X̃
as H2 and define φ : [0, 1]× R → λ̃ ⊂ H2

(s, t) 7→ γ̃α(s)(t)
. The image of φ is a region of H2 bounded by

γα(0) and γα(1) which contains balls of arbitrarily large diameter. Take a ball of diameter larger
than the one of X, we have a lift of X covered by λ̃ and by projection X is covered by λ: we
have seen above that it is impossible. Hence we have proved that λ has no interior.

The first part of the proof is based on the existence of a transverse arc so, with the same
reasoning we prove that there is a unique decomposition into geodesics.

The only example of geodesic lamination we gave is the union of simple closed curves. The
following property gives a way to construct some others.

Proposition 4.1.5. The closure of a non-empty disjoint union of simple geodesics in X is a
lamination.

Proof. Let L be a disjoint union of simple geodesics and L its closure, we have to prove that each
point of L\L belongs to a geodesics γ included in L and that all the geodesics in L are disjoints.

Let (xn)n∈N be a sequence in L which converge to a point x of X and note γn the geodesic
through xn in L for every n.

For every n the direction of γn at xn is a point of RP1 which is a compact set then the
sequence of the directions admits a sub-sequence (we may forget that it is a sub-sequence for the
rest) which converges. Let γ be the unique geodesic through x with this limit direction.

If y is a point at distance d from x in γ and yn at same distance from xn in γn, as geodesics
are solutions of an ordinary differential equation whose flow is continuous in every variable, the
yn converges to y and then γ belongs to L.

In light of the foregoing, every geodesic of L can locally be approached by geodesics of L.
Then, if two geodesics γ, γ′ of L intersect transversely in x (if the intersection is not transversal
then they are equal), they can be approach as close as possible by two geodesics β, β′ of L and
such β and β′ will intersect transversely but that is excluded. A similar argument can be made
to prove that the geodesics of L are simple. We have proved that L is a geodesic lamination.

The last point on our brief study of geodesics laminations is to look at the topology. The
natural topology on L(X) is the Hausdorff topology induced by the Hausdorff metric on K(X).
But another way to deal with the topology on L(X) is to consider it as a closed subset of the
projective tangent bundle PT (X) where PT (X) = {(x, d)|x ∈ X, d ∈ RP1}. This set appears as
a bundle on X with the following commutative diagram:

PT (U) ∼ //

p
%%

U × RP1

xx
U ⊂ X.

So PT (X) is a compact 3-manifold and is metrizable such that the map p is continuous, as
a consequence K(PT (X)) is compact for the topology of the Hausdorff distance. Now, we can
embed L(X) into K(PT (X)).

Every geodesic γ of X admits a lift γ̂ = {(x, d)|x ∈ γ, d direction of γ at x} in PT (X) such
that every point of PT (X) lies in a unique lifted geodesic. It is now possible to lift a geodesic
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lamination with λ̂ = {γ̂|γ ⊂ λ}, thereby we obtain a closed subset of PT (X) and the set L(X)
lifts with L̂(X) = {λ̂|λ ∈ L(X)} ⊂ K(PT (X)).
Theorem 4.1.6. The Hausdorff distances on K(X) and K(PT (X)) induce the same topology on
L(X) and L(X) is compact for this topology.
Proof. The continuous function p : PT (X)→ X induces a continuous function pλ : λ̂→ λ, for ev-

ery geodesic lamination λ and we can consider its inverse p−1
λ : λ → λ̂

x 7→ (x,direction of γx at x)
which is continuous by Lemma 4.1.3. So pλ is a homeomorphism and λ̂ is compact as λ is compact
and then closed too. We can consider L̂(X) as a subset of K(PT (X)).

Hence, p∗ : L̂(X) → L(X)
λ̂ 7→ pλ(λ̂) is bijective and continuous.

If we prove that L̂ is compact then p∗ will be a homeomorphism and L will be compact: that
is what we want to prove.

Consider a sequence of lifted geodesic laminations (λ̂n)n∈N and A ∈ K(PT (X)) the limit of
this sequence. We want to show that A is a lifted geodesic lamination: A = λ̂.

Take λ = p(A), as A is a closed subset of a compact, A is compact and by continuity of p the
set λ is compact and non-empty for the same reason.

Let (a, da) be a point of A, there is a sequence of points (xn, dn) ∈ λ̂n which converges to
(a, da) then the xn converge to a and the directions dn to da, and for the same reason as in 4.1.5
the closed set λ is a geodesic lamination and A = p−1

∗ (λ) = λ̂ is a lifted geodesic lamination.

We have then proved that L̂ is a closed subset of K(PT (X)) which is compact, thus L̂ is
compact and the proof is complete.

We have seen that geodesic laminations are defined on a closed surface S, fix such a surface
S of genus at least two, we want to add some measures to the geodesic laminations to obtain the
set of measured laminationsML(S) on S.
Definition 4.1.7. If λ is a geodesic lamination on S, a transverse measure on λ is a collection
of Radon measures λI on I for every arc I transverse to L such that:

• if J ⊂ I is a subarc of I then λJ = (λI)|J ,

• if I and J are homotopic via a homotopy H fixing the leaves of L then λJ = (H1 ◦H−1
0 )∗λI .

A measured lamination is a a geodesic lamination endowed with a transverse measure. The pair
will be noted λ too.

For example, consider L = α1 ∪ ... ∪ αn a finite union of closed simple geodesics and assign
to each geodesic a positive weight ti, if λ consists in counting the intersections taking in account
the weights then (L, λ) is a measured lamination: for A a Borel subset of I a transversal arc,
λI(A) =

n∑
i=1

tn|E ∩ L|. If L is made of a single geodesic α with weight 1 then the corresponding
geodesic lamination is noted µα.

We can endowML(S), the set of measured laminations on S, with a topology: λn converge
to λ if for every arc I which is not contained in any simple complete geodesic and every f : I → R
we have ∫

I
fdλnI −→

n→+∞

∫
I
fdλI .

Remark that measured laminations can be multiplied by positive numbers so we can defined
the set of projective measured laminations PML(S) = ML(S) \ {0}�R+, it is this set that we
will use for the compactification of T (S).
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One can prove that PML(S) is a finite dimensional sphere. The reader can find a proof of
the following statement in [AL10].
Theorem 4.1.8. If S is closed oriented surface of genus at least 2 then PML(S) is homeomorphic
to S6g−7.

4.2 Geodesic currents
The last element we need for the compactification is the notion of currents. We will compactify
T (S) by embedding T (S) and PML(S) in the set C(S) of geodesic currents.
Definition 4.2.1. Let X be a hyperbolic surface, a geodesic current on X is a π1(X)- invariant
radon measure on G(X̃).

If S is a closed surface of genus at least 2 we can talk about geodesic currents without
specifying the metric on S. As seen before, if we have two distinct metrics on S then there is a
π1-equivariant bijective correspondence between the associated sets of geodesics in the universal
cover. As we can push-forward the measures it is not necessary to precise the metric over S.

The space of geodesic currents is endowed with the weak* topology: a sequence (µn)n∈N
of currents converges to a current µ if for every continuous R-valued and compactly supported
functions f ∈ Cc(G(S̃),R) the following holds:∫

G(S̃)
fdµn −→

n→+∞

∫
G(S̃)

fdµ.

Example. We can embed S(S) the set of free isotopy classes of simple closed curves into C(S)
as follows. Let α be the geodesic representing an element of S(S) and ˜̃α its preimage in S̃, ˜̃α
is a discrete π1(S)-invariant subset of G(S̃), as this set is π1(S)-invariant the associated Dirac
measure α̂ is a geodesic current. Using the same construction, every geodesic γ in S induces a
current γ̂.

Remark. We noticed that G(S̃) identifies with ∂S̃ × ∂S̃ −∆�≡ and thus to S
1 × S1 −∆�≡. An

open basis for the topology on G(S̃) with this identification is provided by the pairs {(eiθ1 , eiθ2),
(eiθ3 , eiθ4)} such that the θi satisfy θ1 ≤ θ2 ≤ θ3 ≤ θ4 and θ4 − θ1 ≤ 2π.

Hence, to define a geodesic current it suffices to give the measure of such sets.
As an example, construct an injective map fromML(S) to C(S).
Suppose given a measured lamination λ of S. If {(eiθ1 , eiθ2), (eiθ3 , eiθ4)} is as in the remark,

then there is a unique geodesic segment I which joins orthogonally the geodesics (eiθ1 , eiθ4) and
(eiθ2 , eiθ3).
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If this segment is transverse to ˜̃λ, the preimage of λ in S̃, then this arc descends to an arc in S
transversal to λ. We define the measure of the open set {(eiθ1 , eiθ2), (eiθ3 , eiθ4)} as the λ-measure
of the transversal arc in S. If the arc is not transverse then the measure is 0. The corresponding
current is noted λ̂.

Proposition 4.2.2. The previous construction is an injection ofML(S) into C(S).

Proof. The construction of a measure associated to a measured lamination is described above.
One can remark that this measure is supported on ˜̃λ as the λ-measures are supported on λ,
proving that the application is injective.

We can use the same process to define geodesic currents from measures on the unit tangent
bundle T 1(S) which are invariant under geodesic flip and geodesic flow.

Consider µ a flip and flow invariant measure on T 1(S) and {(eiθ1 , eiθ2), (eiθ3 , eiθ4)} and I as
above, the current µ̂ on G(S̃) associated to µ satisfies

µ̂({(eiθ1 , eiθ2), (eiθ3 , eiθ4)}) = 2µ̃(
⋃

t∈[0,1]
Ft(I))

where µ̃ is a lift of µ on T 1(S̃).
This construction appears as a bijective correspondence illustrated in [ES] chapter 3.

Theorem 4.2.3. If Σ is a hyperbolic surface then there is a bijective correspondence between
C(Σ) and the set of geodesic flip and geodesic flow invariant measures on T 1(Σ).

We are going to use this identification to construct geodesic currents from elements of the
Teichmüller space T (S).

Corollary 4.2.4. Let S be a closed surface of genus at least 2, each element of T (S) identifies
with an element of C(S).

We will see later that the following construction is an embedding.

Proof. Liouville measure on T 1(H2): There is a bi-invariant measure on PSL2(R) called the Haar
measure. We can use it to construct a flip and flow invariant measure on T 1(H2) called the
Liouville measure.

The group SL2(R) acts on T 1(H2) by homography with(
a b
c d

)
· (z,~v) = (az + b

cz + d
,

~v

(cz + d)2 ).

This action is free and transitive and the stabilizer of (i,
(

0
1

)
) is ±I2, thus PSL2(R) identifies

to T 1(H2) via the orbit of V0 = (i,
(

0
1

)
). Thereby, the Liouville measure L is defined on T 1(H2)

from the Haar measure. It remains to prove that it is flip and flow invariant.

If F is the geodesic flow then for every t ∈ R and g in PSL2(R) we have
(
et/2 0
0 e−t/2

)
· V0 =

Ft(V0) and Ft(g · V0) = g · Ft(V0). Thus the action of the geodesic flow over T 1(H2) correspond
to the multiplication on the right by matrix of SL2(R). The Haar measure is invariant by right
multiplication and thus L is geodesic flow invariant.
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Now
(

0 −1
1 0

)
· V0 = (i,

(
0
−1

)
) and if g · V0 = (z,~v) then g

(
0 −1
1 0

)
· V0 = (z,−~v). As(

0 −1
1 0

)
∈ SL2(R) the Liouville measure on T 1(H2) is invariant under geodesic flip.

Note L the Liouville measure on T 1(H2), it is a flip and flow invariant measure.

Liouville currents: Let ρ be a hyperbolic metric on S and note X the hyperbolic surface
(S, ρ), it induces a isometric diffeomorphism ϕρ : X̃ → H2 which itself define a homeomorphism
ϕρ,g : G(X̃)→ G(H2).

According to Theorem 4.2.3 the Liouville measure L on T 1(H2) descends to a current L̂ on
H2: a Radon measure on G(H2) since H2 is its own universal cover. The Liouville measure is
invariant under the action of PSL2(R) then the associated current is invariant too. We can
pull-back the current L̂ via ϕρ,g, we obtain a π1(S)-invariant Radon measure on G(S̃) since π1(S)
identifies with a subgroup of PSL2(R). Moreover, if ϕρ and ϕ′ρ are to different isometries for ρ
then they differ from a deck transformation which identifies with an element of PSL2(R) then
the corresponding pull-back metrics are the same. We have then construct a current L̂ρ over S.

From L̂ρ to L̂T: if ρ and ρ′ are the same element T in T (S) then there is an isometry isotopic
to identity i : (S, ρ) = X → (S, ρ′) = X ′. Note H the isotopy with H0 = id and H1 = i.
We can lift H to H̃ : [0, 1] × S̃ → S̃. If ϕρ′ : X̃ ′ → H2 is an isometric diffeomorphism then
ϕρ′ ◦ H̃1 : X̃ → H2 is an isometric diffeomorphism and we can take ϕρ = ϕρ′ ◦ H̃1. Since H̃1 is
isotopic to identity then H̃1g = id and ρ and ρ′ induce the same map on lifted geodesics: we can
talk about L̂T instead of L̂ρ.

The compacity of PC(S) also derives from Theorem 4.2.3. With this theorem we can associate
to every element of PC(S) a unique probability measure in T 1(S). The set of flip and flow invariant
probability measures is a closed subset of Prob(T 1(S)), the set of all probability measures on
T 1(S) so, it suffices prove that Prob(T 1(S)) is compact. It is possible to prove that the set of
probability measures over a compact set is weak* compact, since S is compact T 1(S) is compact
and it follows that PC(S) is.

Corollary 4.2.5. PC(S) is compact for the quotient topology.

5 Compactification of Teichmüller spaces
In this section we explain how T (S) ∪ PML(S) can be seen as a compactification of T (S).
Everything here will be based on the notion of intersection number between currents. It allows to
prove that there is an embedding in 4.2.4 which extends to PC(S). It also gives a characterisation
of the currents which come from geodesic laminations. It is by bringing together these properties
that we will be able to prove that divergent sequences in T (S) converge to projective measured
laminations in PC(S).

5.1 Intersection number
In order to construct the intersection number over C(S) we consider the subset DG(S̃) of G(S̃)×
G(S̃) made of the pairs of geodesics which intersect transversely. We have some interpretations
of this space.

DG(S) = {α, β ∈ G(S̃)|α and β intersect transversely}
= {{a, b}, {c, d} ∈ (S1)2|a and b are not in the same components of S1\{c, d}}
= {(x, [u], [v])|(x, [u]), (x, [v]) ∈ PT (S̃), [u] 6= [v]}
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The action of π1(S) on S̃ extends to a free and properly discontinuous action on DG((̃S))
and DG(S̃)�π1(S) = DG(S). For every pair of currents (µ, ν) in C(S) the measure µ ⊗ ν is a
π1(S)-invariant measure on DG(S̃) and induces a measure, also noted µ⊗ ν, on DG(S).

Definition 5.1.1. Let S be a closed surface of genus at least 2, if µ and ν are two currents then
their intersection number is

i(µ, ν) =
∫

DG(S)

dµ⊗ dν

Theorem 5.1.2. The intersection number is continuous, bilinear and symmetric from C(S)×C(S)
to R+ and corresponds to the classical intersection number between geodesics.

Proof. i is obviously symmetric and bilinear, we have to prove that it is continuous and finite
and that it corresponds with the classical intersection number for geodesics.

i has values in R+: The only thing we have to prove is that i has finite values. Take µ and ν
to currents, note ˜DG(S) a lift of DG(S) in DG(S̃) and ∆ a lift of S in S̃.

i(µ, ν) = µ⊗ ν(DG(S))
= µ⊗ ν( ˜DG(S))
≤ µ({geodesics in S̃ through ∆}) · ν({geodesics in S̃ through ∆})

However, S is compact then ∆ is compact and µ, ν are Radon measures, so i(µ, ν) <∞.

Intersection number between geodesics: Take α and β two geodesics on S, they induce the
currents α̂ and β̂ with i(α̂, β̂) = α̂ ⊗ β̂(DG(S)) = δα∩β(DG(S)) = |α ∩ β|. We find the classical
definition of the intersection number between geodesics.

Continuity of i: Intuitively, the continuity of i may come from the continuity of the operator
⊗ and the fact that DG(S) embeds in G(S)×G(S). The map (µ, ν) 7→ µ⊗ ν|DG(S) is continuous
and i is also continuous. One can find a detailed proof in [Bon86] section 4.2.

Continue with the property of the intersection number when it applies to the Liouville currents.
We start with a link between intersection number and length functions which allows us to say
that the identification of T (S) as a subset of C(S) via Liouville currents is an injection.

Proposition 5.1.3. Let S be a closed surface of genus at least 2, if T ∈ T (S) and α a simple
closed curve in S then i(L̂T, α̂) = `T(α).
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Proof. Take α and T as in the proposition and I a segment of γ̃ which cover γ once. We note
φ : S̃ → H2 an isomorphism done by T.

i(L̂T, α̂) = L̂T ⊗ α̂(DG(S))
= L̂T({Geodesics ini S̃ meeting I})
= φ∗L̂T(φ({Geodesics ini S̃ meeting I}))
= L̂({Geodesics ini H2 meeting φ(I)})
= C.`H2(φ(I))
= C.`T(α)

The constant C does not depends on the element T of T (S) and disappears if we rescale the
Liouville measure.

Proposition 5.1.4. With the same notations as above i(L̂T, L̂T) = π2|χ(S)|.

Proof. We have a canonical projection p : DG(H2) → H2 and we can push-forward L̂ ⊗ L̂ to a
measure in H2. Since the Liouville measure is PSL2(R)-invariant the measure we obtained by
push-forward is a measure on H2 invariant by PSL2(R): it is a multiple of the volume form.
However the area of a hyperbolic surface is a multiple of |χ(S)| then i(L̂T, L̂T), which consists
in integrating along L̂T × L̂T, is a fixed multiple of the area. One can prove that with the same
rescaling of the Liouville measure as in Proposition 5.1.3 the constant is π2.

About the rescaling of the Liouville measure, one can find more details in [Bon88].
Corollary 5.1.5. If S is a closed surface with g ≥ 2 then T (S)→ C(S)→ PC(S) are embeddings.
Proof. Applying the 9g−9-theorem there is some simple closed curves γ1, ..., γ9g−9 in S such that
two elements of the Teichmüller space are the same if and only if these 9g − 9 curves have the
same length in each of them. Therefore, it follows from Proposition 5.1.3 that T (S) → C(S) is
injective, we don’t prove the continuity here.

Now, if there is t ∈ R+ and two elements T and T′ in T (S) such that L̂T = tL̂T′ then

π2|χ(S)| = i(L̂T, L̂T) = t2i(L̂T′ , L̂T′) = t2π2|χ(S)|.

As a consequence t = 1 and T (S)→ PC(S) is injective.

To concludes this section we give a characterisations of the elements of C(S) which are mea-
sured laminations thanks to the intersection number.
Proposition 5.1.6. Let µ be a current, there is λ ∈ ML(S) such that µ = λ̂ if and only if
i(µ, µ) = 0.
Proof. Start with µ a current such that i(µ, µ) = 0. Its support Supp(µ) is a closed π1(S)-
invariant subset of G(S̃) since a current is a π1(S)-invariant measure. If there is in Supp(µ) two
geodesics α, β which intersect transversely then they descend to a pair (π(α), π(β)) in DG(S)
such that µ2(π(α), π(β))) 6= 0, its follows that µ2(DG(S)) 6= 0. As a consequence, the support of
µ is the preimage in S̃ of a lamination λ. Moreover, µ naturally defined a transverse measure on
λ inspired from the construction on λ̂, such that λ̂ = µ.

Reciprocally, if λ is a measured lamination the support of λ̂ ⊗ λ̂ in DG(S) is among the
elements (α, β) ∈ DG(S) where α ⊂ λ, β ⊂ λ with α and β intersecting transversely: such an
element does not exist by definition of a lamination. As a consequence i(λ̂, λ̂) = 0.

This property immediately proves that PML(S) is a closed subset of PC(S), and we also
deduce the following corollary.
Corollary 5.1.7. T (S) and PML(S) are disjoint subsets of PC(S).
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5.2 Effective compactification
Theorem 5.2.1 (Bonahon [Bon88]). A compactification of T (S) as a subset of the compact set
PC(S) is T (S) ∪ PML(S).

Proof. Consider (Tn)n∈N a sequence in T (S) which converges in PC(S) to a point [µ] ∈ PC(S)\T (S).
Going back to C(S), their exists a sequence of positive real numbers tn such that the sequence
tn.L̂Tn converges to µ.

Applying Theorem 2.5.1, there is a simple closed curve α in S such that lim
n→∞

`Tn(α) = ∞.
But i is continuous so

tn`Tn(α) = tni(α̂, L̂Tn) = i(α̂, tnL̂Tn)→ i(α̂, µ) <∞

and lim
n→∞

tn = 0.
As a consequence,

i(α̂, α̂) = lim
n→∞

i(tnL̂Tn , tnL̂Tn) = lim
n→∞

t2ni(L̂Tn , L̂Tn) = π2|χ(S)| lim
n→∞

t2n = 0.

Applying Proposition 4.1.5, µ is a measured lamination.
Moreover PML(S) is closed so T (S) ∪ PML(S) is closed in a compact: it is compact.
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6 Notations

χ(S): Euler characteristic of S

C(S): Geodesic currents on S

g(S): Genus of S

G(X): Sets of complete unoriented geodesics
of X

G0: Connected component of 1G

K(S): Set of closed subsets of S

L(S): Set of geodesic laminations on S

M(S): Moduli space of S

Map+(S): Mapping class group of S

ML(S): Set of measured laminations on S

π1(S): Fundamental group of S

π0(S): Connected components of S

PT (S): Projective tangent bundle of S

S(S): Free isotopy classes of simple closed
curves on S

T (S): Teichmüller space of S

T 1(S): Unit tangent bundle of S
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