
L3-Internship

Formal Proof for Gene Clustering

13/04/13 — 5/07/13
Université Pierre et Marie Curie, Paris

Author:
Mathias Fleury

Supervisors:
Bin-Minh Bui-Xuan†

Frédéric Peschanski‡

UPMC
Laboratory LIP 6

APR Team
† buixuan@lip6.fr

‡ frederic.peschanski@lip6.fr

31st December 2013

mailto:buixuan@lip6.fr
frederic.peschanski@lip6.fr

L3 Internship: Formal Proof

Abstract

We present a formal proof of Uno and Yagiura’s algorithm [16], using the
theorem proving assistant Coq. This is a fundamental combinatorial algorithm
which operates over permutation. Direct applications include computational
biology (e.g. heuristics in estimating the genealogical distance between two
species), text processing (e.g. generating the synchronous context-free grammar
of two sequences with many-to-many alignment links [18]), the problem has been
generalized to d permutations by Heber and Stoye [10], . . .

This text is part of an internship project which took place at LIP6, Uni-
versité Pierre & Marie Curie, Paris, under the joint supervision of B.M. Bui-
Xuan and F. Peschanski.

Acknowledgment

I would like to thank my two supervisors Bin and Frédéric. The first one support
my repetitive questions about Uno and Yagiura’s algorithm, even if he was
not able to concern me about a few other arithmetical questions.

I would like to thank also the PhD students, in whose office I worked. They
made me discover the work of a PhD student.

2013 ÉNS Rennes Mathias Fleury 1

L3 Internship: Formal Proof 1 INTRODUCTION

1 Introduction
It is a fundamental task in computational biology to classify species, with respect
to common ancestors such as in cladistics and taxonomy. For instance we would
like to know the age of the last common ancestor of turtles and birds or the
age of genetic ‘Adam’ and ‘Eve’. The DNA can help determining this age,
because if you know how fast changes happen and how many changes there are
between them, you can guess an estimation. Some models have been described
to simplify the problem, but the main idea is to work directly on genes and
not on the succession of the DNA–bases (A, T, C and G1) since the DNA–
base do change while there are different versions of genes, the alleles. One of
the most important mechanisms that changes the order of the genes happens
during the DNA duplicate process: since the DNA double helix is very long
(more than one meter in one cell nucleus), while copying, there are loops which
are sometimes copied in the wrong order. This can be seen on figure 1a on the
following page. Such changes can be composed as shown in the figure 1b. The
minimal number of reversals needed to go from one sequence to another is called
sorting by reversal (SBR). The SBR problem is known to be NP-hard (if gene
can appear more than once, even only twice[3]) or only polynomial if we know
the direction of genes [2] (remark that the mentioned direction is reversed when
the order changes in a loop). There are also approximation algorithms [11].

One way to simplify the problem is to look for the common intervals – sets
of number that are consecutive in both. As we work with genes repeated only
once, we consider the DNA as a permutation: we can consider, without loss of
generality, that one of the two permutations, is the identity. Then a common
interval is a set S such that there exists m and n with S = σ (Jm;nK). The
splitting into intervals can help find the SBR (see figure 2 on page 4).

The notion of common intervals links to the deep theory of modular decom-
position in graph theory. Indeed, if we draw the permutation as in the figure
3a on page 5, there are intersections: These intersections are the links of the
permutation graph (figure 3b). A module of a graph is a subset of the nodes
such that “compressing” them into one node does not change the view of the
other: on the figure 3b, if we compress the nodes 6 to 8 into a node 6 − 7 − 8,
we do not change the ways the other nodes see the group. More formally a
module is a subset X of the nodes such that all members of X have the same
neighborhood outside X. Solving the modular decomposition problem in linear
time has been a major challenge of the past decades, with more than ten papers
in less than twenty years: [12], [13], [5], [9], [6], [1], [15]. It took over 10 years to
go from “Linear-Time Modular Decomposition” to “Simple, linear-time modu-
lar decomposition”. It can be shown that each common interval as {6; 7; 8} is a
module of the permutation graph. The reciprocal property does not hold, but
in case of overlap-free common intervals (and strong modules), it is true. In fact
the algorithm we will see later is a way to encode a graph in a linear way and
to find the modular decomposition.

This report is organized as follows. In section 2, we present how to formalize
the problem and the algorithm to find the common intervals. In section 3, we
focus on the proof in Coq.

1adenine (A), cytosine (C), guanine (G), thymine (T), but it does not matter fur computer-
scientist, even if it does for biologist

2013 ÉNS Rennes Mathias Fleury 2

L3 Internship: Formal Proof 1 INTRODUCTION

Theoretic order

1

2

3
4

5

6

1

5

4

3

2

6

Order used
After copy

(a) Example of a loop and a change of the order while copying

1

5

4

3

2
6

After copy

1

5

4

3

6

2

(b) After two others inversions (look at the two dark arrows).

Figure 1: Example of gene reordering

2013 ÉNS Rennes Mathias Fleury 3

L3 Internship: Formal Proof 2 FORMALIZATION AND ALGORITHM

1, 7, 2, 4, 3, 6, 5

1 7 2, 4, 3, 6, 5

2 4, 3, 6, 5

4, 3 6, 5

4 3 6 5

Figure 2: Decomposition of a permutation into some intervals: Red arrows show
the elements to permute in order to find J1; 7K. There are intervals that are not
shown as {2; 4; 3}

2 Formalization and algorithm
As we want to prove the correctness of the algorithm, we have to choose a
proving assistant. We have chosen to use Coq. It is a theorem proving assistant:
It can certify proofs, with user’s help since logic is not decidable (although some
parts such as Presburger arithmetic are). It is based on the idea of ML-language
with dependent types (Calculus of Constructions or Coc, therefore the name)
and written in Objective Caml. Several important proofs have been shown: the
four color theorem [8] proven by Georges Gonthier 2, also the classification
of finite simple groups, the proof of the Feit and Thompson theorem [7] (a
preliminary theorem for the decomposition of finite simple groups). Another
example is the CompCert compiler: it is a proven compiler of a subset of the
C-language (Xavier Leroy). It is guaranteed, that if the program is correct
(in the sense of the C-semantic), then the assembler instructions has the same
behavior: More precisely the generated program is guaranteed to have one of
the possible behaviors (since there are undefined behavior where everything can
happen).

2.1 Problem description
2.1.1 Unsigned case

As we have seen in the last section, we consider the genes as unique, therefore
we can number then as shown in the following table :

Reference species 1234567
Second species 1724365

2Who deeply changes the way Coq works with his extension Ssreflect: for example “2=3”
has type Boolean, while it has type proposition in the normal Coq

2013 ÉNS Rennes Mathias Fleury 4

http://compcert.inria.fr/compcert-C.html

L3 Internship: Formal Proof 2 FORMALIZATION AND ALGORITHM

1

2

3

4

5

6

7

8

9

10

2

4

1

6

7

8

9

3

10

5

(a) Example of two corresponding
sets, each intersection is marked
by a red circle

10

8 9

1

2

3

4

5

6 7

(b) Permutation graph generated:
each intersection becomes a link.

Figure 3: Example of a permutation and its given permutation graph

10

9

1

2

3

4

5

678

(a) The permutation where three
nodes are compressed

2013 ÉNS Rennes Mathias Fleury 5

L3 Internship: Formal Proof 2 FORMALIZATION AND ALGORITHM

The problem is formalized by considering that we have a permutation. In
the example, it is:

i 1 2 3 4 5 6 7
σ 1 7 2 4 3 6 5

On this case, the common intervals are images of an interval by a permuta-
tion. In the example described above, as

S := {4; 3; 6; 5} = σ (J4; 7K)

the set S is an interval. Notice that both the whole set and singletons are
common intervals.

More generally, we can find the distance between two permutations by re-
numbering, which means composing by a permutation in order to go to the last
case: It is the same as searching for the distance between Id = σ1 ◦ σ−1

1 and
σ = σ2 ◦ σ−1

1 .

2.1.2 Signed Case

If we want to work with the genes’ direction, the permutation is said to be
“signed”: We consider one direction to be positive and the other as negative.
We could have for example:

i 1 2 3 4 5 6 7
σ(i) +1 −7 −2 +4 −3 −6 +5

This formalization is given as indication and won’t be used further, as it is
beyond the scope of our internship, but [2] explains the algorithm to find the
transformation between the permutations.

2.2 Algorithm
Now that we have seen how to describe this problem formally, we will present
a few algorithms to find common intervals.

2.2.1 Naively

The most simple method is to test every possible link between both permutations
and testing if it is an interval, by verifying if all values between minimum and
maximum are included in it. This method has a complexity of O(n5), and is
therefore polynomial3.

2.2.2 A better method

The main idea of the characterization is to find a link between the length of the
interval and the values inside. As there are no duplicate, we have the following
property:

I is an interval ⇔ max I −min I + 1 = |I|
3The polynomial complexity is not contradicting with the NP-completeness describe above:

we are not speaking from the same problem (sorting by reversal distance and finding common
intervals).

2013 ÉNS Rennes Mathias Fleury 6

L3 Internship: Formal Proof 2 FORMALIZATION AND ALGORITHM

1 7 2 4 3 6 5

max4;3 = 4

min4;3 = 3
<

min2;4;3 = 2

>

max2;4;3 = 4

Figure 5: Quadratic algorithm: reevaluation of minimum and maximum after
adding one element (here 2 in red), is simple since we have only to test whether
2 < 4 = max or 2 > 3 = min. In fact only one case is possible: One test is
enough.

where |I| is the length of the interval.
To take an example I = {7; 5; 4; 6}, there are at most max I −min I + 1 =

7− 4 + 1 = 4 elements for |I| = 4 places. Therefore I is an interval.

2.2.3 Using it

The first idea is to have two indexes i and j (j 6 i) that we change to test every
interval. This algorithm has a complexity O

(
n2× evaluation of maximum and

minimum
)
, i.e.:

1. if we have to reevaluate the maximum and minimum at every test, the
complexity is O(n3), since evaluating minimum and maximum is O(n)

2. hopefully, as we add only value each time, reevaluation is a O(1), since
only two comparisons are necessary (see figure 5 on the current page)

2.3 To a linear algorithm
The first version of the algorithm was published in 2000 by Uno and Yagiura
[16], both bio-computer scientists. The complexity of that algorithm is O(n+K)
where K is the number of common intervals (K = O(n2) and it is reached for
example for J1;nK). Their proof was quite unclear, therefore it lasted five years
until their paper was accepted.

Their algorithm was enhanced by Bui Xuan [17], to have a linear complexity
in O(n), without a dependence of the number of intervals.

The algorithm is quite complex since it uses three single-linked lists 4 (see
4the original article speaks about doubly-linked lists, that’s better (and easier to program),

but not necessary

2013 ÉNS Rennes Mathias Fleury 7

L3 Internship: Formal Proof 2 FORMALIZATION AND ALGORITHM

11 9 8 4 3 1

11 9 10 8 4 5 7 3 1 2 6 12 14 13 15

11 12 14 15

interval list: {11,15}; {11,13}; {11,12}; {11,6}; {11,8}; {11,10}; {11,11};
{9,6}; {9,8}; {9,10}; {9,9}; {10,10}; {8,6}; {8,8}; {4,6}; {4,5}; {4,4};
{5,5}; {7,7}; {3,2}; {3,3}; {1,2}; {1,1}; {2,2}; {6,6}; {12,15}; {12,13};
{12,12}; {14,15}; {14,13}; {14,14}; {13,13}; {15,15}

Figure 6: Example of the quiet complex data structure.

figure 6 on this page). We will first discuss the general principles of the al-
gorithm.

2.3.1 Main Idea

The main idea of the algorithm is to work on the variations of the max and min
functions. We remember those variations in three lists:

i) one containing the variations of the maximum function;

ii) the potential list where we maintain the elements of the permutation;

iii) one containing the variations of the minimum function.

We maintain also pointers between the lists in order to find the correspondence
easily.

We have to maintain this structure and its properties, when a number is
added. After that, we can watch, if it is (or not) an interval. Thanks to the
pointers, finding the maximum and the minimum costs O(1).

As the above description is very difficult to understand, we will now go throw
an example. First of all, we will see an algorithm, which manipulate the same
structure than that of the linear algorithm, but whose complexity is O(n2).

2.3.2 Example, quadratic algorithm

Maintaining the structure when adding an element We illustrate it on
an example. We start from the structure below:

2013 ÉNS Rennes Mathias Fleury 8

L3 Internship: Formal Proof 2 FORMALIZATION AND ALGORITHM

Potential

Maximum

Minimum

56

6

5

We want to insert a new value 3. We insert 3 in every of the three lists.
Then we compare: In the minimum list, since 3 < 5, we have to remove 5. In
the maximum list, as 3 < 6, we do not have to remove 6. After that, we have to
update the value the pointers point on: In the minimum list 3 is the minimum of
all three elements, so the right pointer of the value 5 that we removed, become
the right pointer of the value 3. It is clear that 3 is the minimum of the values 3
to 6. In the maximum list, we only have to add 3 in the list. 6 is the maximum
of the values 6 to 5 and 3 is the maximum of the single value 3.

Potential

Maximum

Minimum

56

6

�5

3

3

3

<

>

Potential

Maximum

Minimum

56

6

3

3

3

Now we want to insert 4. To do so, in the minimum list, we test whether
4 > 3 or not. As it is, the minimum of the part of list (that is covered by the
minimum values 4 and 3) does not change, and we only have to insert 4 in the
minimum list. In the maximum list, as 4 > 3, 4 is the maximum of the part
covert by the two maximum values 4 and 3: We have to remove 3, from the
maximum list.

Potential

Maximum

Minimum

56

6

3

�3

3

4

4

4

<

>

Potential

Maximum

Minimum

56

6

3

3

4

4

4

<

We do a new comparison: As 4 < 6, we just have to insert 4 in the maximum
list. 4 is the maximum of the part covered by the value (aka 4 and 3), and 6 is
the maximum of 6 and 5).

2013 ÉNS Rennes Mathias Fleury 9

L3 Internship: Formal Proof 2 FORMALIZATION AND ALGORITHM

Potential

Maximum

Minimum

56

6

3

3

4

4

4

Searching for the common intervals After every insertion, we go through
the potential list to find the common intervals. To watch for the maximum
(resp. minimum) of the list, we begin with the element we have just added, and
then we check: If there is a pointer, we choose the value pointed; else we keep
the maximum (resp. minimum) computed before.

We begin with our three-list structure. We begin with the first value of
the potential list, here 4. There are two pointers starting from the considered
element: One to the maximum value 4 and one to the minimum value 4. We
test with our characterization seen before: 4− 4 + 1 = |{4}|, so it is an interval.

Potential

Maximum

Minimum

56

6

3

3

4

4

4

Found interval : ∅

Potential

Maximum

Minimum

56

6

3

3

4

4

4

Found interval : {{4}}

Now we add the next value of the potential list, here 3: We now consider the
set {4; 3}. the maximum does not change (4) and the minimum does (3). Using
the characterization, we see that it is an interval. After that we consider the
set {4; 3; 6}. As 6 as no pointer to a minimum value, we do not have to change
the minimum value we have seen before (3), whereas the maximum changes and
become 6. Using the characterization, we can see that it is not an interval.

Potential

Maximum

Minimum

56

6

3

3

4

4

4

Found interval :

{{4}; {4; 3}}

Potential

Maximum

Minimum

56

6

3

3

4

4

4

Found interval :

{{4}; {4; 3}}

We do the same process as before, and see that {4; 3; 6; 5} is a set. As 5; was
the last element is our potential list, we can stop the process.

2013 ÉNS Rennes Mathias Fleury 10

L3 Internship: Formal Proof 2 FORMALIZATION AND ALGORITHM

Potential

Maximum

Minimum

56

6

3

3

4

4

4

Found interval :

{{4}; {4; 3}}; {4; 3; 6; 5}}

2.3.3 The linear version: Removing elements in the potential list

The main idea is the same as in the previous section, but we can remove some
elements of the potential list. If we remove n maximums (resp. minimums),
then we remove the (n−1) corresponding values in the potential list. Moreover,
we test the intervals and stop when reaching a set which is not an interval.

We start with the same example as before: When we inserts 6, there is no
change like the algorithm described above.

Potential

Maximum

Minimum

5

5

5

{5}

Potential

Maximum

Minimum

5

6

5

6

{5}; {6}; {6; 5}

On the left figure below, when we add 3, we remove 6 (blue), because of the
update of the minimum: the value 5 is “eaten”.

On the right figure, this step of the algorithm is the same than the algorithm
described above. As the inserting of a value and the searching of common
intervals are the same than the previous algorithm, there are not described.

Potential

Maximum

Minimum

5

6

3

�63

3

{5}; {6}; {6; 5}; {3}

Potential

Maximum

Minimum

5

6

3

4 3

4

4

{5}; {6}; {6; 5}; {4}
{4; . . . ; 3}; {4; . . . ; 5}

On the left figure, we want to insert 2, as it is the minimum of the whole
list, all the values of the minimum list are “eaten”. Therefore we remove all
values of the potential list except the last one. As we can see, searching for
the common intervals is much easier and it is shorter than testing all possible
common intervals. we can also notice, that values in the maximum list, have
not to be in the potential list anymore.

2013 ÉNS Rennes Mathias Fleury 11

L3 Internship: Formal Proof 3 FORMAL PROOF IN COQ

Potential

Maximum

Minimum

5

6

2

2

{5}; {6}; {6; 5}; {4}
{4 . . . 3}; {4 . . . 5}; {2 . . . 6}

Potential

Maximum

Minimum

5

7

2

7

{5}; {6}; {6; 5}; {4}
{4 . . . 3}; {4 . . . 5}; {2 . . . 6}

{7 . . . 5}

This algorithm seems very surprising, but it was the aim of the internship
to show that it is indeed correct.

3 Formal proof in Coq
3.1 Proof of the first quadratic algorithm
3.1.1 Technical choices

Normally, the algorithm is implemented with arrays, which is impossible directly
in Coq: it is a pure functional language without side-effects. We have chosen to
work with lists, manipulated as arrays: we have worked on the position inside
a list (it is the function called list_at ` i: it gives access to i-th element of the
list), and not on the inductive principles on lists.

That has changed the way we worked: In Coq, all functions have to termin-
ate and we cannot work on the lists property. The reason why every function
have to terminate is easy: all proofs are conducted by induction. Fixpoint is
the keyword to explain to Coq that a function is recursive.

Fixpoint fonction_qui_ne_finit_pas (x:nat)
:= fonction_qui_ne_finit_pas x

This function has type nat -> A where A can be any type. So we can choose
A=False. After that the proofs become easy, as every proposition can be derived
from False and we get False without hypothesis. The logical system becomes
less interesting.

To simplify the termination problem and in order to make Coq to accept
the definitions; instead of manipulating two indices i (beginning index) and j
(ending index), we will manipulate j and δ = j− i. The proof that the function
stops, will be the structural decreasing of delta (it means, delta decreasing until
0, which is a terminal case). This structural decreasing is automatically detected
by Coq: There is nothing special to do.

To make the link between our program and the one working on arrays, we
should develop a memory model, where arrays would be represented as contigu-
ous cells, but it is not the most important point when discussing correctness
(not complexity).

We use Coq’s libraries and Pierce files in his book Software foundation [14],
where a function is defined and is able to give labels to subgoals in proofs (useful
to structure induction proofs).

2013 ÉNS Rennes Mathias Fleury 12

L3 Internship: Formal Proof 3 FORMAL PROOF IN COQ

3.1.2 Idea of the proof

To prove the correctness of the algorithm, We have formalized the equivalence
between the program evaluating maximum and minimum at each step. Proving
that this program is correct is easy, because the definition of the intervals is
max ` − min ` + 1 = |`| and we try every combinations. We have chosen that
definition of interval because working with permutations was far more difficult
than initially expected.

3.1.3 Organization of the proof

The proof is divided into a few files:

• list.v: it contains a few properties of lists, and the definition of max-
imum and minimum (and we prove that find_max and find_min have the
expected properties)

• algon3_boucle_interieur.v contains the definition of the inner loop of
the algorithm, that means that at final index fixed, we begin to vary the
initial index. It contains also a few proofs.

• algon3_boucle_exterieur.v contains the definition of the outer loop and
the proof

• the more efficient version of the algorithm is divided into two files:

1. algon2_boucle_interieur.v shows the equivalence of both inner
loops: with the same arguments, they produce the same output.

2. algon2_boucle_exterieur.v is the whole program (the equivalence
is shown).

An extract of the pdf file generated by coqdoc can be find in the annex (see
?? on page ??).

3.2 Linear algorithm
3.2.1 Pointers

One of the main difficulties of the algorithm is to implement pointers: in Coq,
there exists no notion of native pointer. We have chosen to remember the
positions in the list (in the reverse order to avoid renumbering at each step: 0
on the tail and |`| on the head). We were also able to remove a few pointers by
using lists instead of double linked lists.

To prove the algorithm with real pointers, we should develop a memory
model, where we make a link between the position in the list and the memory:
for example instead of remembering that the pointer points to a the third ele-
ment of the list, it points to an address (like 00FF74). But it won’t change the
correctness part of the proof: it is another level of abstraction, but it relies on
the proof, if we prove a bijection with the basic pointer operation.

2013 ÉNS Rennes Mathias Fleury 13

L3 Internship: Formal Proof 3 FORMAL PROOF IN COQ

3.2.2 Termination

Principle Since we manipulate three lists (internally described by a type), we
often must prove that at least one is decreasing each time we make a recursive
call. As Coq is not able do detect it automatically, we have to prove it “by
hand”, with the help of the keyword Function: We must add two arguments,
one is the decreasing function and the other is the argument of the function
that is decreasing. When trying to define the function, it generates a goal
corresponding to the termination proof: the function is defined only when the
termination is proven. In our case the function is the length of one of the lists:
therefore we have only to prove that |`| < |a :: l|⇐⇒|`| < |`|+ 1, which is true
by theorem lt_n_Sn.

Example First we need a type:

(∗ the type LLL i s de f ined as a func t i on (uy l) wi th t h r ee
arguments : t h r e e i n t e g e r l i s t s : ∗)
Inductive LLL : Type :=
uyl : l i s t nat → l i s t nat → l i s t nat → LLL

Then we use a function that will extract the second list of a LLL-element,
by working only on the second list, and making it decreasing

Function t e s t (l l l : LLL) {measure get_length } :=
match l l l with

| uyl lu ly l l ⇒
match l y with

| [] ⇒ []
| a : : ly ’ ⇒ a : : (t e s t (uyl lu ly ’ l l))

end
end .

This code generates a theorem to prove:

(∗ F i r s t a l l the used v a r i a b l e s ∗)
∀ l l l lu l y l l a ,
(∗ then the r e are the as s i gned va l u e s ∗)
l y = a : : ly ’⇒ l l l = uyl lu (a : : ly ’) l l ⇒
(∗The decreas ing we want to prove . ∗)
get_length (uyl lu ly ’ l l) <

get_length (uyl lu (a : : ly ’) l l)

After simplification, we have to prove that (we wrote |·| instead of get_length):

| lu |+| ly |+| l l | < | lu |+S (| l y |)+ | l l |
(∗ (S n) i s the succe s sor o f n∗)

which can be solved by the Omega-tactic (that implements a method to solve a
goal in Presburger arithmetic).

3.2.3 Proofs

To prove the quadratic algorithm (the one where we do not remove elements
in the potential list), our idea was to demonstrate that the elements are the

2013 ÉNS Rennes Mathias Fleury 14

L3 Internship: Formal Proof REFERENCES

maximum and the minimum. But the proof becomes very complicated because
of the pointers; we were not able to finish it, although we tried to specify the
function used. The work we have done, represents more than ten thousand lines
of code.

Conclusion
We present formal theory proving tools to be used under Coq and subsequently
use them in order to prove algorithms from Uno and Yagiura seminal pa-
per [16]. It would have been interesting to simplify the proofs with parts in
Ltac (the tactic language in Coq5) to find what is really important and what
is less useful. The last linear algorithm is left unproven due to complexity of
the underlying data structure, but the foundations for such a proof are now
established.

It would be interesting to combine our work with tools in order to achieve
Uno and Yagiura’s algorithm. Proving this algorithm would act as a major
step toward a formal proof of modular graph decomposition algorithm (in the
case of permutation graph): the modular graph decomposition can be divided
into two parts, first Uno and Yagiura’s algorithm and then a second part to
conclude.

References
[1] Luca Aceto et al., eds. Automata, Languages and Programming, 35th

International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity,
and Games. Vol. 5125. Lecture Notes in Computer Science. Springer, 2008.
isbn: 978-3-540-70574-1.

[2] David A. Bader, Bernard M.E. Moret and Mi Yan. ‘A Linear-Time Al-
gorithm for Computing Inversion Distance between Signed Permutations
with an Experimental Study’. In: vol. 8. 2001, pp. 483–491.

[3] Guillaume Blin, Cedric Chauve and Guillaume Fertin. The breakpoint dis-
tance for signed sequences (extended abstract). 2004.

[4] Adam Chlipala. Certified Programming with Dependent Types. http://
adam.chlipala.net/cpdt/. 2013.

[5] Elias Dahlhaus, Jens Gustedt and Ross M. McConnell. ‘Efficient and Prac-
tical Algorithms for Sequential Modular Decomposition’. In: J. Algorithms
41.2 (2001), pp. 360–387.

[6] Elias Dahlhaus, Jens Gustedt and Ross M. McConnell. ‘Efficient and Prac-
tical Modular Decomposition’. In: SODA. 1997, pp. 26–35.

[7] Georges Gonthier. ‘Engineering mathematics: the odd order theorem proof’.
In: POPL. 2013, pp. 1–2.

[8] Georges Gonthier. ‘The Four Colour Theorem: Engineering of a Formal
Proof’. In: ASCM. 2007, p. 333.

5See an introduction in [4]

2013 ÉNS Rennes Mathias Fleury 15

http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

L3 Internship: Formal Proof REFERENCES

[9] Michel Habib, Fabien de Montgolfier and Christophe Paul. ‘A Simple
Linear-Time Modular Decomposition Algorithm for Graphs, Using Order
Extension’. In: SWAT. 2004, pp. 187–198.

[10] Steffen Heber and Jens Stoye. ‘Finding all common intervals of k permuta-
tions’. In: In Combinatorial Pattern Matching, 12th Annual Symposium,
CPM 2001. Springer Verlag, 2001, pp. 207–218.

[11] Petr Kolman. ‘Approximating reversal distance for strings with bounded
number of duplicates’. In: In Proceedings of the 30th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS), volume
3618 of Lecture Notes in Computer Science. 2005, pp. 580–590.

[12] Ross M. McConnell and Fabien de Montgolfier. ‘Linear-time modular de-
composition of directed graphs’. In: Discrete Applied Mathematics 145.2
(2005), pp. 198–209.

[13] Ross M. McConnell and Jeremy Spinrad. ‘Linear-Time Modular Decom-
position and Efficient Transitive Orientation of Comparability Graphs’.
In: SODA. 1994, pp. 536–545.

[14] Benjamin C. Pierce et al. Software Foundations. http://www.cis.upenn.
edu/~bcpierce/sf. Electronic textbook, 2012.

[15] Marc Tedder et al. ‘Simple, linear-time modular decomposition’. In: CoRR
abs/0710.3901 (2007).

[16] Takeaki Uno and Mutsunori Yagiura. ‘Fast Algorithms to Enumerate
All Common Intervals of Two Permutations’. In: Algorithmica 26 (2000),
p. 2000.

[17] Binh-minh Bui Xuan, Michel Habib and Christophe Paul. ‘Revisiting
T. Uno and M. Yagiura’s algorithm’. In: Proc. 16th International Sym-
posium on Algorithms and Computation, in Lecture Notes in Comput. Sci.
Springer, 2005, pp. 146–155.

[18] Hao Zhang, Daniel Gildea and David Chiang. ‘Extracting synchronous
grammar rules from word-level alignments in linear time’. In: In Proceed-
ings of the 22nd International Conference on Computational Linguistics
(COLING-08). 2008.

2013 ÉNS Rennes Mathias Fleury 16

http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf

	Introduction
	Formalization and algorithm
	Problem description
	Unsigned case
	Signed Case

	Algorithm
	Naively
	A better method
	Using it

	To a linear algorithm
	Main Idea
	Example, quadratic algorithm
	The linear version: Removing elements in the potential list

	Formal proof in Coq
	Proof of the first quadratic algorithm
	Technical choices
	Idea of the proof
	Organization of the proof

	Linear algorithm
	Pointers
	Termination
	Proofs

