
Techniche Universität München

Internship 2014

Translation of Proofs Provided by External
Provers

More Automatic Prover Support for Isabelle: Two Higher-Order Provers
and a SMT Solver

May, 2. to July, 31
Author:
Mathias Fleury
ENS Rennes
Mathias.Fleury@ens-rennes.fr

Supervisor:
Dr. Jasmin Blanchette

TU München
blanchette@in.tum.de

Abstract. Sledgehammer is a powerful interface from Isabelle to automated provers, to discharge
subgoals that appear during the interactive proofs. It chooses facts related to this goal and asks some
automatic provers to find a proof. The proof can be either reconstructed or just used to extract the
relevant lemmas: in both cases the proof is not trusted. We extend the support by adding one first-order
prover (Zipperposition), the reconstruction for two higher-order ATPs (Leo-II and Satallax) and an SMT
solver veriT. The support of higher-order prover should especially improve Sledgehammer’s performance
for higher-order goals.

Keywords: Sledgehammer, Isabelle, Leo-II, Satallax, TSTP proof, Zipperposition, veriT, proof reconstruc-
tion, higher-order proofs

Acknowledgement I would like to thank Jasmin Blanchette for the internship about a very interesting subject,
and the members of the logic and verification chair for the welcome. Then Simon Cruanes and Pascal Fontaine
(developer of Zipperposition and veriT) were very helpful and provided many explanations concerning their
provers and bug fixes. I want to thank also Amélie Royer, Jasmin Blanchette, Nathanaël Cherrière, Martin
Desharnais and Alix Trieu for having read this report and given advice to improve it.

July, 31st 2014

mailto:Mathias.Fleury@ens-rennes.fr
mailto:blanchette@in.tum.de

1 Introduction

Interactive proving has become more and more widespread, since Milner’s LCF [1]. It has become more pow-
erful especially with more automation thanks to faster decision procedures and faster computers. Interactive
proving was able to verify mathematical proofs (like the four-colour theorem by Georges Gonthier [2]) or
verify systems and even cryptographic protocols [3]. Much work has been done to improve the readability of
the proofs and the ease to use. The interactive provers use a (as small as possible) trusted kernel, around a
few thousand lines of code.

On the other side, automatic theorem proving has been largely developed since the proof of Robbins
conjecture by the automated prover EQP [4]. It has become more and more powerful, and interactive theorem
proving can gain much with the use of such automated programs. The automated provers are built to be fast
and efficient, and represent tens of thousands of lines of code.

Although there might be bugs (because of the large code base), automatic theorem provers integration
is highly interesting for interactive provers, both to discharge the user from finding trivial proofs and from
remembering the name of thousands of lemmas. The integration has been done in the interactive theorem
prover Isabelle, with the Sledgehammer tool:

“I have recently been working on a new development. Sledgehammer has found some simply
incredible proofs. I would estimate the improvement in productivity as a factor of at least three,
maybe five.” (Larry Paulson, private communication to Jasmin Blanchette)

Sledgehammer is a bridge between two worlds: on one side, Isabelle/HOL, a proof assistant and on the
other side, automatic theorem proving. As you should not trust the generated proof (since there might be
bugs), Isabelle/HOL tries to replay the proof using some automated tactic and the used facts: the automatic
provers is only used as a fact filter. But the performance for higher-order goals were not very good:

“ Sledgehammer’s performance on higher-order problems is unimpressive, and given the inherent
difficulty of performing higher-order reasoning using first-order theorem provers, the way forward is
to integrate Sledgehammer with an actual higher-order theorem prover.” (Larry Paulson in [5])

To solve this problem two higher-order provers Leo-II and Satallax have been integrated to Isabelle/HOL
to find the needed facts: there were no proof reconstruction support and the overall performance is not
as good as expected, since the used tactics are not very powerful with respect to higher-order logic. This
work adds proof reconstruction support for different provers: Zipperposition, veriT, Leo-II and Satallax in
Isabelle/HOL. After some background information (section 2) and related works (section 3), we will then see
the three first provers whose proof output are similar to each other (section 4). Finally, we will introduce the
last prover Satallax, study its proof and the integration in Isabelle/HOL (section 5).

2 Context and Motivation

In this part, we will outline the different technologies used: Isabelle, automatic provers and Sledgehammer.

2.1 Isabelle

Isabelle [6] is a generic framework for interactive theorem proving: the use of a meta-logic Isabelle/Pure
allows a formalization for object logics. It is based on the ideas of LCF [1]: every proof goes through a trusted
kernel. It is written in SML, and has an Isabelle/jEdit interface through the asynchronous PIDE interface [7],
allowing parallelism in the execution of the proofs [8].

HOL higher order logic [9] is the most developed object logic in Isabelle: it is based on simple type theory,
Hilbert choice, polymorphism and axiomatic type classes. Isabelle/HOL’s term language is composed of
typed λ-terms, with constants and polymorphic types. Functions can be curried (f x y), and usual binary
operators can be used with the infix notation. The main proof method is the simplifier, which uses an

1

equation as oriented rewrite rules on the goals, including contextual and conditional rewriting (like rewriting
ys = Nil → rev ys = z into ys = Nil → rev Nil = z and after that, using the lemma that says rev Nil = Nil
to get ys = Nil → Nil = z). The list of lemmas that are used can be extended by the user’s lemmas.

Other object logics includes Isabelle/ZF (based on Zermelo-Fraenkel axiom system) and Isabelle/HOLCF
(based on Scott’s domain theory, formalized within HOL) [10, 11]. Isabelle has been used for pure mathematics
(the Prime Number Theorem1 verified by Avigad [12]), for system verification (the seL4 micro-kernel [13]),
and programming languages (the formalization of Java [14]).

Isabelle/HOL has also an impressive library of proofs, the Archive of Formal Proofs AFP. The aim is
to provide a “large resource of knowledge”. Most of the proofs are written in the Isar language proof: it is
designed to produce human understandable proofs [15].

As of now, Sledgehammer is a part of Isabelle/HOL, thus we will now write Isabelle instead of Isabelle/HOL.
Isabelle is built around tactics that transform the goals like simp, we have described before, including metis
(it is the built-in resolution prover in Isabelle [30]).

2.2 External provers

There are two types of external provers: automatic theorem provers (ATP) and satisfiability modulo theories
(SMT) solvers; we will distinguish them for historical reasons, but both of them are trying to prove auto-
matically. If we see them as black-boxes, they work in the same manner: they take facts and the conjecture.
The latter is negated, and then by combining the facts and the negated conjecture, a proof of ⊥ (false) is
found: this is a proof by contradiction. They are built to be fast and efficient: thus not using a small trusted
kernel, contrary to Isabelle’s tactics. ATPs have a more elegant approach for quantifiers, while SMT solvers
are faster for ground problems with a high number of facts: both are complementary. Thus using both is
quite interesting for a Sledgehammer user. Thankfully both are run in parallel, allowing the user to ignore
the difference between the two kinds of systems.

The ATPs world [16] is built around Thousands of Problem for Theorem Proving (TPTP). It is not only a
vast library of problems [17], but also specifications, hence allowing simpler interactions from Sledgehammer
to all of them. Internally the well-known first-order ATP prover E [18], SPASS [19], Vampire [20] are using
superposition: they combine the facts trying to get a contradiction from both known and deduced facts [21].
Recently some ATPs have gotten support of higher-order theorems like Leo-II and Satallax.

SMT solvers combine SAT solvers and decision procedures for first-order theories like equality and
arithmetic (contrary to ATP solvers). They are especially strong as fact filters: given many facts (a few
hundreds), they find efficiently the few needed facts (often less than a dozen). Famous provers include CVC4
(a full rewrite of CVC3) [22], Yices [23] and Z3 [24]. SMT solvers are not as organised as the ATPs, and
while there is an input format accepted by nearly all provers (the SMT-LIB format [25]), there is no output
standard, though some have been proposed [26, 27]. That can be explained, since the aim of most of them is
to find a proof, not to ensure that the proof can be checked, but this is unfortunate for us.

2.3 Sledgehammer

Let us first see a detailed example of a typical Sledgehammer call. First the prover wants to prove that
rev [a, 1 + 1] = [2, a] where rev is the function to reverse list. Then we can call the sledgehammer
command. First all the lemmas, definition, axioms,... in the Isabelle theories are listed: all these facts are
filtered to find those related to the goal, including for example rev.simps(2): for any x of type ’a and xs
of type ’a list, rev (x # xs) = rev xs @ [x] (# is the cons operator, and @ the infix append function).
Then these and the goal are translated into the TPTP format in parallel for the provers E, SPASS by default,
while there is also a translation for the SMT solver Z3. The provers are started in parallel. When they find a
proof, the proof is parsed and depending on the prover and the option, we get either a simple metis call (here
by (metis rev_append rev_eq_Cons_iff rev_rev_ident)) or a full Isar proof (Isabelle proof language).
As ATPs do not know arithmetic, E produces a proof including one_add_one (1 + 1 = 2): the metis call is
1 The number of primes under n, π(n), satisfies π(n) ∼ n

ln n
.

2

by (metis append.simps one_add_one rev.simps(2) singleton_rev_conv), while Z3 does not need it,
since it supports arithmetic. Here is the Isar proof produced by Z3:

proof -
have "rev [a, 2] = rev [2] @ rev (rev [] @ [a])" using rev.simps rev_eq_Cons_iff by auto
hence "rev [a, 2] = [2, a]" using rev_eq_Cons_iff by fastforce
thus "rev [a, 1 + 1] = [2, a]" by auto

qed

Sledgehammer

Fact filtering and ATP Translation Fact filtering and SMT Translation

E Spass
Zipper-
position Vampire Leo-II Satallax veriT Z3 CVC3 Yices

: fact filtering is supported.

: proof reconstruction is sup-
ported.

Gray mean that the support has
been developed during the intern-
ship

Fig. 1: Sledgehammer organisation with reconstruction support with some of the supported provers

Sledgehammer tries to find a proof by calling an external (untrusted) automated theorem prover. First,
the user gives a goal to prove. Then Sledgehammer will filter some facts related to the goal (see figure 1
on this page). Until recently this fact choice was based on the proximity between the lemma and the goal:
the more symbols are shared, the more likely the fact were chosen. That works but a better approach has
been developed recently, based on machine learning [28]. ATPs and SMT solvers are pretty much the same
thing: both try to deduce contradiction from the hypotheses, but they are originating from two different
communities. For historical reason, Sledgehammer distinguishes both: at the beginning there was no support
for arithmetic in ATPs, whereas SMT solvers do support it, thus the latter do not need lemmas like 1 + 1
= 2 (it is a tautology for them), but ATPs do not know them.

The number of facts that are translated depends on the prover: as a user you want the provers to have as
many facts as possible, but the more facts, the less efficient they become (because the search space increases).
Thus, a compromise has to be found (see for example [29] for Leo-II and Satallax). After that the facts are
translated to a format supported by the prover. There are two formats depending on whether the prover is
an SMT solver or an ATP prover.

We will distinguish the facts (Isabelle’s theorem that are exported) from the hypotheses (the hypotheses
of the theorem, that the user wants to prove) and the negated conjecture. For example if we want to
prove that under the assumptions even p and prime p, we have p < 3, even p is one of the hypothesis, the
negated conjecture is ¬(p < 3), and one related fact is for example that prime p → p > 2 → odd p (called
prime_odd_nat in Isabelle).

The prover uses the negated conjecture, the hypotheses and the facts and tries to derive false. If they
obtain it, the output depends on the prover:

– the prover can give all facts (and not only the needed facts), like CVC3, either because it cannot output
the proof (i.e. only outputs sat or unsat — unprovable or provable) or produces an unsupported proof.

3

Then the needed facts are minimized to find out only those needed: the prover is restarted with only half
of the facts, and so after a few steps, we can get only the used facts. Minimizing is not only interesting in
that case, but can also be interesting for all provers, since they often use more facts than actually needed.

– it can give only the needed facts (called unsatisfiable core). Then, because the provers often use more facts
than needed, Sledgehammer tries to minimize the number of facts as described before. This is slightly
faster than the previous approach, since we are minimizing a few facts, and not a few hundreds.

– the prover can also give a real proof, like Z3. Then the proof can be translated in Isar, or we can extract
only the needed facts.

Most provers that can output a proof can also output the unsatisfiable core, like Satallax. The core can
easily be deduced from the proof, since it makes no sense to be able to reconstruct a proof without finding
the facts, because the proof needs the facts. Whether printing the proof depends on Isabelle support for the
given format.

Given the facts, a metis proof is then tested by giving all the needed facts as arguments: metis is the
built-in resolution prover in Isabelle [30] (given an infinite amount of time and memory, it is complete for
a first-order fragment of higher-order logic). Sometimes the replaying fails or is quite long, especially for
higher-order goals. Then a reconstructed proof is the only way to get an Isabelle proof.

Before being proposed to the user, the proof is redirected (to obtain a direct proof, and not a refutation
proof) and compressed (provers often give much more details and proof steps, than needed by Isabelle proofs’
tactics) [31], thus allowing shorter proofs and for the user, easier to understand.

Sadly there are a few problems for reconstructing proofs: some provers give no proof at all. Others give
only a proof sketch that is useless, and does not even contain enough information to find out which facts have
been used, like CVC4. What’s more, they use a proof format LFSC [27], that does not remind the proof term
(the term that is produced at each step), thus forbidding any reconstruction without “reverse-engineering”
the proof. Contrary to their input, there is no standard format and every SMT prover uses either its own,
either do not produce proofs. Often there is no documentation about the meaning of the proofs. This is
specially important when Satallax interprets the TPTP format on its own very different way (see section 5
on page 8).

2.4 Motivation

For higher-order logic, the extracted facts are often not enough to find the proof, as both tactic used to find
the proof are incomplete and inefficient for higher-order functions. A single example: with the definition of ◦,
f ◦ g = λx. f(g x), metis is unable to prove that P (f ◦ g) (λx. f(g x)) = P (λx. f(g x)) (f ◦ g) where P , f
and g are some function with the correct type.

One of the solution is to reconstruct the proof step-by-step in Isabelle, instead of extracting only the facts:
“reconstructing” means to output an Isabelle proof with the steps, instead of a call to a tactic using only the
needed facts. As the steps are little enough, thus at least one of the tactics should work. If the reconstruction
fails, it means that there is a bug in the reconstruction or that there is a bug in the prover; while if the call
to the tactic with the facts fails, it does only mean that the tactic is not powerful enough (or that you have
not waited long enough). Adding new provers is also interesting, since different provers can have different
strengths, thus allowing the user to care less about the details, and more about the proof globally. A simple
proof like the one above is compressed in a one-line proof (not calling metis): different tactics work (here
simp), but in longer proofs, they are not powerful enough.

Now we have introduced the background information needed to understand what we are working on, we
can speak about the new support of three provers, after describing the other work that exists on the subject.

3 Related Work

3.1 In Isabelle

Our work to add new provers is closely linked to Sledgehammer (as you can see on figure 1 on the preceding
page), that has been developed by Larry Paulson at Cambridge and then expanded at Munich. Some ATPs

4

have been added and are even part of the Isabelle distribution like E and SPASS. As some provers provide
an internet access to a server like Vampire: it allows their usage without having to install them.

On this ATP side, many first-order solvers are supported for both reconstruction and fact filtering. Our
work was adding proof reconstruction for the higher order provers Leo-II and Satallax, since only reconstruction
for first order provers was supported before.

Some SMT solvers have already been integrated like CVC3, CVC4 and Yices, but only the Z3 proof
output is supported for reconstruction (because the others have either no proof output, or the reconstruction
is too hard). We added the support for the SMT solver veriT, Böhme had already added the support for the
SMT solver Z3 [32]. It is important to notice that integrating ATPs is very different from integrating SMT
solvers, e.g. because of the support for arithmetic.

3.2 In other provers assistants

HOL(y)Hammer[33] (inspired by Sledgehammer) and Sledgehammer have the same aim: being fully automatic
(no work from the user), constructing a proof (no assumption that the prover is correct) and source code
delivery (after finding a proof, there is no need to have the solver installed). As far as we know, these are
the only work with these goals.

Ωmega is another proof assistant that has been expressively developed for proof planning and support for
theorem translation and proofs translation from one system to another. Sledgehammer has inspired MizAR
for Mizar (based on Vampire and SInE) [34], and the integration of the equational prover Waldmeister in
Agda has been developed [35]. On the SMT side, PVS uses Yices as an oracle (i.e. trusting the tool). HOL
Light integrates CVC Lite and reconstruct the proof. There is work to support the SMT solver veriT in Coq.
Satallax is able to translate the proof into a Coq script: the main difference is that Satallax reconstruct the
proof itself. The interactive theorem prover should reconstruct the proof and not the contrary, since each
automatic prover would have to make a translation to every possible interactive prover.

4 Adding a new Prover: a simple Case

While we have said before that SMT solvers do not have a common proof format contrary to ATPs, the
situation is not that simple: TPTP defines a guideline and ATPs can interpret this differently: they do not
share a semantic, that would allow us to verify the proofs of all of them (see section 5 on page 8 for Satallax
proofs). In this part, we will give general ideas about how to add a prover to Isabelle and some special rules
used.

4.1 Presentation of the three provers

Before speaking about the support in Isabelle, we will present them briefly.
Zipperposition2 is a recent prover developed by Cruanes. It is a superposition prover written in OCaml

and had participated to the CADE 2013 (Conference on Automated Deduction) competition and performed
correctly (for a prover written for experimenting, rather that speed): it solved 91 of the 300 problems (Vampire
solved 281) at the 2013 CADE ATP System Competition [36]. The prover is able to produce a standard
TSTP output. Since the competition, some code has been rewritten and at the beginning we have found some
bugs in the prover: the prover derived false from a consistent set of axioms because of unsound inferences.
These bugs have since been corrected, after we contacted the author.

Leo-II3 is a higher-order resolution solver: it works on higher-order clauses and it calls periodically a
first-order prover, usually E, that tries to find out a proof of false with the first-order clauses. It implements
a relevance filter if there are more than one hundred axioms. It is developed by Benzmüller, Theiss and
Sultana in OCaml. Some work has been done to explain the proof format and the applied rules by Sultana
2 Available at https://www.rocq.inria.fr/deducteam/zipperposition/.
3 Available at http://page.mi.fu-berlin.de/cbenzmueller/leo/.

5

https://www.rocq.inria.fr/deducteam/zipperposition/
http://page.mi.fu-berlin.de/cbenzmueller/leo/

and Benzmüller [37]. Leo-II took part at the 2013 CADE ATP Competition (in a different class than
Zipperposition): it solved fewer goals than Satallax (76 out of 150, while Satallax that we will study in the
next section, solved 119).

veriT is an SMT solver developed by P. Fontaine et al. [38] at the LORIA in Nancy. Similarly, to Leo-II,
it uses a first-order logic solver, that is periodically called. As an SMT solver it supports arithmetic. At the
2014 SMT contest, it performed the best (but Z3 did not take part to that contest), and did not mark false
theorem as proved contrary to some other provers (like Yices). It is programmed in C++ (around 67 000
lines of code).

4.2 ATPs: Leo-II and Zipperposition

While both Leo-II and Zipperposition are ATPs, they do not use the same output format, since Leo-II is
higher order, while Zipperposition is not.

TPTP language hierarchy The TPTP infrastructure defines a hierarchy of languages, starting from
first-order form FOF (first-order logic, with equality over untyped types), over typed first-order form TFF0,
to typed higher-order form THF0. There is a strict inclusion FOF (TFF0 (THF0, except for few minor
syntactic differences. THF0 types can be type constants κ or functions between type constants σ → τ . The
intended semantics is Henkin’s with extensionality and Hilbert choice. Zipperposition uses TFF0 while Leo-
II THF0. Both format are supported by Sledgehammer since Blanchette’s work on supporting Leo-II and
Satallax (without proof reconstruction).

Output format The output format is a standard, and both use a common interpretation of the standard.
The output is a proof starting from the facts and goes to the conclusion (see 5.2 for a different structure).
As this is the most used way for proofs, Sledgehammer supports it, if the output is parsed and transformed
with respect to the prover’s peculiarities. Moreover, the output is partly typed like p= [̂X1:int]:X1: all the
types have not to be reconstructed to be accepted by Isabelle.

As the input format is different (not the same things have to be expressed), so is the output format, since
one use higher-order logic wile the other does not. That changes the output (THF, TFF), but the difference
is in the term encoding (mostly), and not in the proof output. The output is like that:

〈step〉 ::= 〈description〉(〈name〉, definition, 〈proof term〉, file(〈file access〉, 〈fact_number〉)).
| 〈description〉(〈number〉, 〈role〉, 〈proof term〉, 〈dependency list〉*).

〈description〉 ::= ’cnf’ | ’thf’ | ’tff’

where 〈description〉 depends on the format. The proof is done by contradiction, thus the final conclusion is
always ⊥.

In Isabelle After parsing the higher-order terms, like the following: p= [̂X1:int]:X1 corresponding to
p = λx :: int. x, Isabelle has a standard reconstruction for ATPs proofs as said above. Most steps can be
replayed with metis and most of the time, more than one step is done at a time ; but as described above
metis is not complete for higher-order logic, thus other tactics might have been called.

We have to cope with the ATPs’ bugs or unintended behaviours for the reconstruction:

– Zipperposition writes the steps in the opposite direction than all others: we had to reverse them;
– Leo-II does not write all the labels correctly: thf(comp, definition, (comp = ...), file(’prob_leo2_1’,

comp)). while the name of the fact was given in the following definition: thf(fact_0_o__def, definition,
((comp = ...))).

– Leo-II is higher order and uses E to find contradiction: sometimes E finds a proof, but Leo-II is not able
to give the facts needed. In this every single step is given as an assumption to the final ⊥-step. That
leads to more complex proof after the reconstruction, or even steps, that are impossible to show with an

6

Isabelle tactic: in this case, all the assumptions are marked as used, while this is wrong. This is also a
fact in favour of minimisation: as we restart the provers with only half of the needed facts, there might
be no bug in the interaction between Leo-II and E.

That is all we have to do to add the support for a new prover in Isabelle, thanks to the standard output
format. The work to do is very different for SMT solvers.

4.3 SMT solver: veriT

veriT’s output format has been proposed as a standard in [26], it is thus well described. The information
included in the output format are close to that of the TPTP format:

〈step〉 ::= (set 〈label〉 〈rule〉 :clause(〈dependency label〉*) :args(〈arg〉*) :concl(〈proof terms〉)).

The proof step is close to the THF0 format with more or less the same information: 〈label〉 is of the
form .c followed by a number or if it used as a dependency it can also be the name of one the facts of
Sledgehammer. 〈rule〉 is the applied rules to get the conclusion using the assumptions. 〈dependency label〉? is
the list of used assumptions. It can be either one of the introduced clauses or one the facts. Contrary to Z3,
veriT uses the name of the fact defined by the :name-tag defined by the SMT-LIB2 format. If there are not
named, then the used facts are reminded at the beginning. As our facts are named, we can avoid recognizing
the term to find out which facts are used. :args is the information about how variables are bound after an
instantiation. This information is not used in by Isabelle. :concl is the conclusion by the application of the
rule 〈rule〉 on the assumption. It can be empty (then it means false) or it can be a list of different formulae:
as internally, veriT uses multi-sets, the ∨ are not always written (the rewriting is done by the or-rule, but
can also be done when hypotheses are recalled).

This work is related to Böhme’s reconstruction of Z3 proofs [32]: both works are linked to reconstructing
the proof output of an SMT solver, but the output format are quite different. The proof formulae are written
in the same format, so that we could reuse part of Böhme’s code in Isabelle, including his work on finding
the types (the output is untyped, but Isabelle needs the type information).

As every single step is a very little step,most rules can be compressed and several steps can be reconstructed
by a single metis- call in Isabelle. Some rules have to be treated in a special manner:

ite_elim: transforms the facts like (if x then u else v) = z into α = z ∧ if x then α = u else α = v.
This step can be either an introduction for a new variable or the reuse of an existing variable: in the
first case, we have to tell Isabelle that this is a skolemisation, in the second case, we have to add the
dependency to the step that introduced the variable.

sub-proofs: they are described in [39]. Subproofs are like proofs a logical set with assumptions, proof steps
and a conclusion, here is an example:

(set .c15
(subproof
(set .c1 (input :conclusion ((=> (p 0 @sk0) (p (ite (<= 0 1) 1 0) @sk0)))))
(set .c2 (tmp_ite_elim :clauses (.c1) :conclusion
((and (=> (p 0 @sk0) (p @ite0 @sk0)) (ite (<= 0 1) (= @ite0 1) (= @ite0 0))))))

:conclusion
(or (not (=> (p 0 @sk0) (p (ite (<= 0 1) 1 0) @sk0)))

(and (=> (p 0 @sk0) (p @ite0 @sk0)) (ite (<= 0 1) (= @ite0 1) (= @ite0 0))))))

There is ite_elim, we have described before. As Sledgehammer does not support them (because they
are not present in any other prover), we inline the assumption (here .c1 in .c2).

This kind of subproofs sometimes appears especially related to the ite_elim rule. The assumptions have to
be discharged when the subproof is used (more precisely, the prover uses this just in that way). The main
problem is that Isabelle’s Sledgehammer does not support those subproofs. Our solution was to inline the

7

assumption, removing the now unused assumption and renumber this steps. Remark that the :conclusion
of the subproof is correct unconditionally, (i.e. without having to inline the assumptions).

All the provers of this section (Leo-II, Satallax and veriT) share two important properties: the proof
terms are written (and we need this to be able to reconstruct an Isar proof), and the proofs start with the
assumption. Not all provers work like that: Satallax is another higher order prover, but works quite differently.

5 Understanding Satallax Proofs

Satallax4 and Leo-II are two higher order ATP provers, but their proof output is very different. We have not
described the proof produced by Leo-II in details, but we have seen that it is the same as other ATP solvers.

5.1 Satallax

Satallax [40] is a higher-order prover based on Church’s simple type theory with extensionality and choice
operators. It uses the tableau [41] method internally. Like Leo-II, it generates propositional clauses and does
periodically call a first-order prover (recently E [18]). If the first-order prover finds a refutation, we obtain
a proof. It is programmed in OCaml (around 18 000 lines of code). Satallax can produce TSTP-like proofs
(but that does not follow the other ATP provers’ format rules), or Coq proofs.

Satallax and Satallax-MaLeS (the same code base, but the strategy scheduler is based on machine learning)
won the two first place at the 2013 CADE ATP System Competition [36], while Leo-II was fifth place, behind
Isabelle that internally does not call Satallax and Leo-II through Sledgehammer.

5.2 Satallax proofs

Forward and backward proof Satallax proof works like a Coq proof backwards5, contrary to (as far as we
know) all other prover’s TSTP output: instead of going from the hypothesis to the conclusion, the backward
proof goes from the conclusion (here false), and introduces hypotheses. Then it has to prove ⊥ with these
newly introduced hypotheses. To explain the difference in a more formal way:

forward proofs: you want to show that [A1, . . . , An]→ G (G is the goal, A1, . . . , An are the assumption),
you also know that [Ai, . . . , Aj] → H, thus we add H to our hypothesis and it remains to show that
[A1, . . . , An, H] → G. The proof is finished when G is added to the assumptions. This is the kind of
proofs produced by Leo-II.

backward proofs: we will use a different representation for backward proof: instead of [A1, . . . , An]→ G,
we will write A1, . . . , An

G
, but it means the same (we have to prove G under assumptions A1, . . . , An).

If you know for example that [B1, . . . , Bj]→ G, thus it remains to show j subgoals: A1, . . . , An

B1
, . . . ,

A1, . . . , An

Bj
. This is the kind of proof produced by Satallax (probably because of Coq).

For example, to prove that 2 < 3 with a forward proof: if we use Peano’s integer construction and write S
for the successor and define inductively < as: A := 0 < S_ is true and B := ∀(m,n) ∈ N. n < m→ Sn < Sm.
The assumptions are [A;B]:

[A;B]: as A→ 0 < 1, we can add 0 < S 0 to the hypotheses
[A;B; 0 < S 0]: as B → 0 < S 0→ S 0 < S S 0, we have new assumptions
[A;B; 0 < S 0; S 0 < S S 0]: finally, as B → S 0 < S S 0→ S S 0 < S S S 0
[A;B; 0 < S 0; S 0 < S S 0; S S 0 < S S S 0]: 2 < 3 is true.

In contrast for the backward proof using the same formalism: we start with the goal A,B

S S 0 < S S S 0
:

4 Available at satallax.com.
5 The word “backwards” sometimes refers to proof by contradiction, but it is not the case here.

8

satallax.com

1 A,B

S S 0 < S S S 0
: as we know that B → S 0 < S S 0→ S S 0 < S S S 0, we have two new goals, numbered
2 and 3

2 A,B

B
is straighford because B is an assumption: it remains to show that 3 is true

3 A,B

S 0 < S S 0
as B → 0 < S 0→ S 0 < S S 0, we have two new goals, numbered 4 and 5

4 A,B

B
same proof as before, it remains to show that 5 is true

5 A,B

0 < S 0
is true thanks to A: no goal remains, the proof is finished.

The main difference between the two proof methods is that it is easy to produce case distinction in the
backward mode. For example if you assume A ∨ B to show G; you only have to prove G once under the
assumption A and once under the assumption B. To express this in a forward proof style, we have to prove
it A→ G and B → G: it is a bit less natural, since for backward proof it is a deduction rule, while we have
to change the goal for forward proofs.

Proof representation We introduce now a representation of a proof based on graphs.

¬R ¬P ∨R P ∨Q ¬Q ∨R

¬P

Q

R

⊥

Fig. 2: Example of a forward proof

First, forward proofs (without case distinction, since Sledgeham-
mer does not support them) can be represented as a dependency
graph (it is a directed acyclic graph) where the nodes go from the
hypothesis to the new hypotheses.

For example, let’s see a proof that [¬R,¬Q∨R,P∨Q]→ ¬(¬P∨
R). As we are proving by contradiction, it is the same as showing
that [¬R; (¬P ∨ R);P ∨ Q;¬Q ∨ R] → ⊥ (backward and forward
are not linked with contradiction or not, but we are speaking of
automatic provers that always prove by contradiction).

In this graph, the thicker arrows means that using the two known
facts ¬R and ¬P ∨R, we have ¬P . A fact can be used more than
only once.

This is the kind of representation that is supported in Sledge-
hammer: to represent this kind of proofs, in each step you have the
term, the step number and the dependencies. It is also the most
natural way to write proves, starting from the assumptions and

going to the conclusion.
We have not here indicated the rule that is applied on each arrow since it is simple first order logic; but

in the general case, this rule is needed for the reconstruction. Remark that not all the assumptions have to
be used: the prover is called with many facts and not all are useful.

Backward proofs cannot be represented that way: the destination cannot be ⊥. We will use a representation
as a directed graph, close to the representation from the tableau method: the nodes are the fact and the
conclusion, and the arrows are the proof steps. As we can introduce new subgoals several arrows can start
from a given node, see figure 3. The arrows are labelled by the used rule. The different subgoals are numbered
from 1 to 7. We apply here two different rules:

(i): (A ∨B)→ (A→ ⊥)→ (B → ⊥)→ ((A ∨B)→ ⊥)
(ii): (¬ (A ∧B))→ (¬A→ ⊥)→ (¬B → ⊥)→ (¬ (A ∧B)→ ⊥)

We have simplified a bit contrary to our previous example: as A∨B is always in the assumptions (otherwise
applying the rule make no sense), we have not written the goal H′

A ∨B for some hypothesis H′ where A∨B
is included in H′. As you can see, on each step we introduce new assumptions. The label on the left of the
goal means is the rule on which we are applying (i), the label on the right are the contradicting hypotheses.
At each step we introduce the name of the new assumption to be close to the proofs generated by Satallax
(given in annex B).

9

h0: ¬(P ∧ ¬R)
a2: ¬Q ∨R

1: ⊥

h0; h2: R
a1 : ¬R a1, h2

7: ⊥
h0; h1: ¬Qa3: P ∨Q

2: ⊥

h0; h1; h3: P
h0 3: ⊥

h0; h1; h4: Q h4, h1
6: ⊥

h0; h1; h3; h5: ¬P h3, h5
4: ⊥

h0; h1; h3; h6: Q a1: ¬R, h6
5: ⊥

(i) (i)

(i) (i)

(ii)(ii)

Fig. 3: Backward proof example

Organisation of the backward proof As Satallax is using a backward approach, each step adds a new
hypothesis and changes the goal (although false is always the goal). In the TSTP proofs generated, we
will distinguish two kinds of steps: the hypothesis and the goals. Hypotheses are the steps with identifier
beginning with h, like h1, h2 and so on. These steps are marked with assumption or axiom. The subgoals
are numbered 1, 2,. . . They contain the indication about the proof itself, as we will describe it. There is a
third type of steps: the types indicating that the type is inhabited (necessary for creating variables bound by
∃). There seems to be no rule in the order of appearance in the two types of steps. The goal 1 is the goal we
want to prove, from this the goal 2 is introduced, and so on. They are in reversed order (i.e. 1 is at the end).
Satallax even recall as the step 0 the theorem it has proved.

TSTP proofs The assumption steps are of the following form:

〈assumption_steps〉 ::= 〈hypothesis_step〉 | 〈axiom_step〉

〈hypothesis_step〉 ::= thf(〈hypothesis rule number〉, assumption, 〈proof term〉, introduced(assumption, [])).

〈axiom_step〉 ::= thf(〈fact_name〉, axiom, 〈proof term〉).

The 〈rule number〉 is of the form h followed by a number (as said above). The 〈proof term〉 is a higher
order term following the THF0 norm. Here is an extract of the example of assumptions steps that Satallax
can produce (˜ means not, & and, | or). The proved theorem is reminded as step 0 (see annex B for the full
proof):

thf(conj_0,conjecture,(p & (~(r)))).
thf(h0,negated_conjecture,(~((p & (~(r))))),inference(assume_negation,

[status(cth)],[conj_0])).
thf(h1,assumption,(~(q)),introduced(assumption,[])).
thf(a1,axiom,(~(r))).

The proving steps follow the same format, but look different:

10

〈proving_step〉 ::= thf(〈proving_step_number〉, $false, inference(〈rule name〉), [〈status〉, assumptions(
〈hypothesis rule number〉*), 〈rule list with assumption〉, 〈optional extra arguments〉], 〈premises list〉).

where:

〈proving_step_number〉 is the number of the goal.
〈rule_name〉 is the name of the rule that is applied. It does only give information about how to get the

hypothesis, the precise rule is not stated here.
〈assumption_list〉 is the list of all the hypotheses of the current goal.
〈rule_list_with_assumption〉 this contains the rules applied to get the contradiction. It is a list of element

of rule(discharge,[used_assumptions]) like elements. The rule indicates what is deduced from the
〈used_assumption〉. The rules are described below in section 5.4.

〈premises_list〉 gives a lot of important information. It can be divided into three parts: the identifier of the
used hypotheses, the number of the generated subgoals and the new hypothesis. First, there are some
hypothesis steps’ name or a theorem. This gives the rule that is applied or the assumption on which work
is done; in that case it also contains information on how the variable are bind: h0:[bind(X1,$thf(a))]
means that X1 of (for example) h0 will bind as a in the next step. Then there are the number of the new
generated subgoals, and finally the number of the new hypotheses

It is important to remember that sometimes there is no new goal nor new hypothesis generated. More than
one single goal can also be generated.

An extract of the proof steps of the previous example are the following (see annex B for the full file):

thf(1,plain,$false,inference(tab_or,[status(thm),assumptions([h0]),
tab_or(discharge,[h1]),tab_or(discharge,[h2])],[a2,2,7,h1,h2])).

thf(0,theorem,(p & (~(r))),inference(contra,[status(thm),contra(discharge,[h0])],[1,h0])).

Let’s see for example the step 1: the number of the step is 1, the role (as defined by the TPTP format)
is plain, the theorem is $false, the rule to produce the new subgoals is tab_or and this produce two new
hypotheses as described in tab_or(discharge,[h1]),tab_or(discharge,[h2]). In the premises list there
are three parts: the assumption on which we apply the rule, here a2, the rule generates two new subgoals 2
and 7, the rules generates two new assumptions h1 and h7.

The last type of steps is of the following form:

〈inhabited_step〉 ::= tab_inh(〈type〉) __〈number〉.

For example tab_inh(a) __11. means that the variable eigen__11 that had been created before of type a
has a direction, since we cannot create variable in an uninhabited type. As one cannot define an empty type
in Isabelle, we can safely ignore this kind of steps.

5.3 Proof transformations

Now we have understood the proofs, we need to transform the backward proof into forward proof. One
possible solution is to inline all the assumptions and to change the sense of the proof: instead of creating a
subgoal, we assume it. And in each step we inline every assumptions A,B,C

⊥
will become A→ B → C → ⊥.

See the figure 4 below, for the example described above.
This kind of proof is hard to read, hard to understand and hard to maintain. Moreover, replaying the

proof step will become hard when there are many assumptions, especially since it is hard helping Isabelle to
find the contradiction.

To simplify the proofs, the first remark is that we do not need to inline every assumptions, but only the
one that are needed. An assumption is used in a step if it is used by the rule, i.e. if it is part of the premises
list. More generally an assumption is needed, if it is part of the assumptions and if it is used in either the
step itself or one of the produced subgoals. This produces a simpler proof with less implications in it (see in

11

Number Term Dependencies
4 h0→ h1→ h3→ h5→ ⊥
5 h0→ h1→ h3→ h6→ ⊥ a1
3 h0→ h1→ h3→ ⊥ 4, 5
6 h0→ h1→ h4→ ⊥
2 h0→ h1→ ⊥ 3, 6, a3
7 h0→ h2→ ⊥
1 h0→ ⊥ 3, 7, a2
0 ⊥ h0, 1

Number Term Dependencies
4 h3→ h5→ ⊥
5 h6→ ⊥ a1
3 h3→ ⊥ 4, 5
6 h1→ h4→ ⊥
2 h0→ h1→ ⊥ 3, 6, a3
7 h2→ ⊥ a1
1 h0→ ⊥ 3, 7, a2
0 ⊥ h0, 1

Fig. 4: Forward proof corresponding to the proof described in figure 3. On the left the most naive version
where every assumption have been inlined, and on the right the version where only the needed assumptions
are inlined.

figure 4). But we can do better since for example we do not need to inline h0 since we know that it is true.
We do not change the semantic of the proof, since we have removed only the assumptions we do not use.

In the general case, the proofs are composed of two parts, the linear parts (thicker arrows) and the split
part.

h0
⊥

h0, h1
⊥

h0, h1, h2
⊥

h0, h1, h2, h3
⊥

h0, h1, h2, h4
⊥

h0, h1, h2, h4, h5
⊥

h0, h1, h2, h4, h6
⊥

Fig. 5: General form of a backward proof

The linear part can be proven independently and
we do not need to inline this part: in the previous
example, we do not need to add h0 in each step, since
we know that h0 is true (we can derive it from the
assumptions). Thus, the linear part (composed of
steps that introduce a single new hypotheses), can
be transformed from proofs of false to proofs of a
new assumption: if we know that h0→ h1 and that
h0 is true, we have h1, we do not need to inline the
implication. This also simplifies the proof term at
each step.

It would be interesting to see if there is a way
to better understand which implication are really
needed by metis: this powerful tactic is complete
and thus should be able to find directly the proof
for some series of implications: if we have h1→ h2,
h2 → h3, h3 → h4, it is likely that it can directly
find that h1 → h4 (probably as fast). In the linear
part, the compression of Sledgehammer will correct
this, but in the terms, there are no simple ways to
compress the implications. For example proving that
(∃x.p x 0) → (∀y.p y 0 → p y 1) → (∀y.p y 1 →

q y)→ (∃x.qx) (the three hypotheses are named a, b and c), gives the following proof: on the right you can
see the Satallax proof and on the left the corresponding veriT proof. The term f1 is not needed in the proof,
but Sledgehammer is not able to compress it.

proof -
have f1: "not p x 1 \/ not not p x 1"
by metis

obtain x :: ’a where "p x 0" by (metis a)
hence "p x 1" by (metis c)
thus "EX y. q y" using f1 by (metis b)

qed

proof -
obtain x :: ’a where "p x 0"
using a by metis

hence "p x 1" by (metis c)
hence "q x" by (metis b)
thus "EX. y. q y" by metis

qed

12

After this transformation, Sledgehammer is able to deal with the proof. We will now see what are the
rules used by Satallax.

5.4 The rules

We were not able to find any list nor definitions of the rules that can be applied, but thankfully, as the proof
can also be exported to a Coq script, we were able to watch the Coq tactic definition in the files stt.v and
sttab.v (in the directory coq of the Satallax source file). The formula on the right is the formula used for
the step. Goals of the form P → ⊥ are directly transformed into ⊥ where P is added to the assumptions.
We do not indicate the unchanged hypotheses. Most rules (see annex A on page 16 for the list) are not very
interesting, especially as metis does not need the fact to reconstruct the proof (except some instantiation,
but as Sledgehammer preplays the proof, it finds that simp is better suited for this case).

6 Conclusion

This report presents the integration of three new provers to Sledgehammer and their corresponding proof
reconstruction. Adding the reconstruction for a higher-order prover should improve the usability of Sledge-
hammer for higher-order goals. First-order prover support is still interesting, because, even if the ones we
added is not part of the best provers, each one has its strengths and weaknesses. On the ATP side, we have
seen some bugs that can be solved and some problems (like the Ecall that does not produce a proof). We
hope that an output standard will emerge in SMT world, allowing us easier set up for them in Isabelle/HOL.

Future work More testing by using Böhme and Nipkow’s Judgement Day [42] would be interesting to see how
much the reconstruction improves the efficiency compared to a metis call with the facts. Proof support have
been announced for CVC4 and there is work on a new higher-order prover HolyHammer. It is important to
notice that the format does slightly change when the version changes. More generally it would be interesting
to see if the exchange between automatic theorem prover and the Isabelle lemma can help to develop the
provers such that they are more efficient: integrating automated provers is interesting for people who want to
prove something, but the former could also be improved to be more efficient for goals generated by humans
and not only for TPTP problems.

References

[1] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a mechanized logic of computation,
volume 78 of Lecture Notes in Computer Science. 1979.

[2] Georges Gonthier. “The Four Colour Theorem: Engineering of a Formal Proof”. English. In: Computer Mathe-
matics. Ed. by Deepak Kapur. Vol. 5081. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp. 333–333. isbn: 978-3-540-87826-1. doi: 10.1007/978-3-540-87827-8_28.

[3] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, and Pierre-Yves Strub.
“Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS”. In: IEEE Symposium
on Security & Privacy (Oakland). 2014. url: pubs/triple-handshakes-and-cookie-cutters-sp14.pdf.

[4] William Mccune. “Solution of the Robbins Problem”. English. In: Journal of Automated Reasoning 19.3 (1997),
pp. 263–276. issn: 0168-7433. doi: 10.1023/A:1005843212881.

[5] Renate A. Schmidt, Stephan Schulz, and Boris Konev, eds. Proceedings of the 2nd Workshop on Practical Aspects
of Automated Reasoning, PAAR-2010, Edinburgh, Scotland, UK, July 14, 2010. Vol. 9. EPiC Series. EasyChair,
2012.

[6] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Berlin, Heidelberg: Springer-Verlag, 2002. isbn: 3-540-43376-7.

[7] Makarius Wenzel. “Isabelle/jEdit – A Prover IDE within the PIDE Framework”. English. In: Intelligent
Computer Mathematics. Ed. by Johan Jeuring, JohnA. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka,
Makarius Wenzel, and Volker Sorge. Vol. 7362. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 468–471. isbn: 978-3-642-31373-8. doi: 10.1007/978-3-642-31374-5_38.

13

http://dx.doi.org/10.1007/978-3-540-87827-8_28
pubs/triple-handshakes-and-cookie-cutters-sp14.pdf
http://dx.doi.org/10.1023/A:1005843212881
http://dx.doi.org/10.1007/978-3-642-31374-5_38

[8] David C.J. Matthews and Makarius Wenzel. “Efficient Parallel Programming in Poly/ML and Isabelle/ML”.
In: Proceedings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming. DAMP
’10. Madrid, Spain: ACM, 2010, pp. 53–62. isbn: 978-1-60558-859-9. doi: 10.1145/1708046.1708058. url:
http://doi.acm.org/10.1145/1708046.1708058.

[9] Mike Gordon. “Proof, Language, and Interaction”. In: ed. by Gordon Plotkin, Colin Stirling, and Mads Tofte.
Cambridge, MA, USA: MIT Press, 2000. Chap. From LCF to HOL: A Short History, pp. 169–185. isbn:
0-262-16188-5. url: http://dl.acm.org/citation.cfm?id=345868.345890.

[10] Lawrence C. Paulson. “Set theory for verification: I. From foundations to functions”. English. In: Journal of
Automated Reasoning 11.3 (1993), pp. 353–389. issn: 0168-7433. doi: 10.1007/BF00881873.

[11] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch. “HOLCF = HOL + LCF”. In: Journal of
Functional Programming 9 (02 Mar. 1999), pp. 191–223. issn: 1469-7653. doi: 10.1017/S095679689900341X.

[12] Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. “A Formally Verified Proof of the Prime Number
Theorem”. In: ACM Trans. Comput. Logic 9.1 (Dec. 2007). issn: 1529-3785. doi: 10.1145/1297658.1297660.
url: http://doi.acm.org/10.1145/1297658.1297660.

[13] Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and Stefan M. Petters. “Towards Trustworthy
Computing Systems: Taking Microkernels to the Next Level”. In: SIGOPS Oper. Syst. Rev. 41.4 (July 2007),
pp. 3–11. issn: 0163-5980. doi: 10.1145/1278901.1278904. url: http://doi.acm.org/10.1145/1278901.
1278904.

[14] Gerwin Klein and Tobias Nipkow. “A Machine-checked Model for a Java-like Language, Virtual Machine,
and Compiler”. In: ACM Trans. Program. Lang. Syst. 28.4 (July 2006), pp. 619–695. issn: 0164-0925. doi:
10.1145/1146809.1146811.

[15] Makarius Wenzel. “Isabelle/Isar – a generic framework for human-readable proof documents”. In: UNIVERSITY
OF BIALYSTOK. 2007.

[16] Geoff Sutcliffe. “The TPTP World – Infrastructure for Automated Reasoning”. English. In: Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. Ed. by EdmundM. Clarke and Andrei Voronkov. Vol. 6355.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 1–12. isbn: 978-3-642-17510-7. doi:
10.1007/978-3-642-17511-4_1.

[17] Geoff Sutcliffe. “The TPTP Problem Library and Associated Infrastructure”. English. In: Journal of Automated
Reasoning 43.4 (2009), pp. 337–362. issn: 0168-7433. doi: 10.1007/s10817-009-9143-8.

[18] Stephan Schulz. “System Description: E 1.8”. English. In: Logic for Programming, Artificial Intelligence, and
Reasoning. Ed. by Ken McMillan, Aart Middeldorp, and Andrei Voronkov. Vol. 8312. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 735–743. isbn: 978-3-642-45220-8. doi: 10.1007/978-3-642-
45221-5_49.

[19] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick Wischnewski.
“SPASS Version 3.5”. English. In: Automated Deduction – CADE-22. Ed. by RenateA. Schmidt. Vol. 5663.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 140–145. isbn: 978-3-642-02958-5.
doi: 10.1007/978-3-642-02959-2_10.

[20] Laura Kovács and Andrei Voronkov. “First-Order Theorem Proving and Vampire”. English. In: Computer
Aided Verification. Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 1–35. isbn: 978-3-642-39798-1. doi: 10.1007/978-3-642-39799-8_1.

[21] Stephan Schulz. “E - a Brainiac Theorem Prover”. In: AI Commun. 15.2,3 (Aug. 2002), pp. 111–126. issn:
0921-7126. url: http://dl.acm.org/citation.cfm?id=1218615.1218621.

[22] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew
Reynolds, and Cesare Tinelli. “CVC4”. English. In: Computer Aided Verification. Ed. by Ganesh Gopalakrishnan
and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 171–177.
isbn: 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1_14.

[23] Bruno Dutertre. “Yices 2.2”. English. In: Computer Aided Verification. Ed. by Armin Biere and Roderick Bloem.
Vol. 8559. Lecture Notes in Computer Science. Springer International Publishing, 2014, pp. 737–744. isbn:
978-3-319-08866-2. doi: 10.1007/978-3-319-08867-949.

[24] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. English. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by C.R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2008, pp. 337–340. isbn: 978-3-540-78799-0. doi:
10.1007/978-3-540-78800-3_24.

[25] Clark Barrett, Aaron Stump, and Cesare Tinelli. “The smt-lib standard: Version 2.0”. In: Proceedings of the
8th International Workshop on Satisfiability Modulo Theories (Edinburgh, England). Vol. 13. 2010, p. 14.

14

http://dx.doi.org/10.1145/1708046.1708058
http://doi.acm.org/10.1145/1708046.1708058
http://dl.acm.org/citation.cfm?id=345868.345890
http://dx.doi.org/10.1007/BF00881873
http://dx.doi.org/10.1017/S095679689900341X
http://dx.doi.org/10.1145/1297658.1297660
http://doi.acm.org/10.1145/1297658.1297660
http://dx.doi.org/10.1145/1278901.1278904
http://doi.acm.org/10.1145/1278901.1278904
http://doi.acm.org/10.1145/1278901.1278904
http://dx.doi.org/10.1145/1146809.1146811
http://dx.doi.org/10.1007/978-3-642-17511-4_1
http://dx.doi.org/10.1007/s10817-009-9143-8
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dl.acm.org/citation.cfm?id=1218615.1218621
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-319-08867-9 49
http://dx.doi.org/10.1007/978-3-540-78800-3_24

[26] Frédéric Besson, Pascal Fontaine, and Laurent Théry. “A Flexible Proof Format for SMT: a Proposal”. English.
In: First International Workshop on Proof eXchange for Theorem Proving - PxTP 2011. Ed. by Pascal Fontaine
and Aaron Stump. Wroclaw, Pologne, Aug. 2011. url: http://hal.inria.fr/hal-00642544.

[27] Aaron Stump and Duckki Oe. “Towards an SMT Proof Format”. In: Proceedings of the Joint Workshops of the
6th International Workshop on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise
Reasoning. SMT ’08/BPR ’08. Princeton, New Jersey: ACM, 2008, pp. 27–32. isbn: 978-1-60558-440-9. doi:
10.1145/1512464.1512470. url: http://doi.acm.org/10.1145/1512464.1512470.

[28] Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. “MaSh: Machine Learning
for Sledgehammer”. English. In: Interactive Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin-Mohring,
and David Pichardie. Vol. 7998. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 35–50.
isbn: 978-3-642-39633-5. doi: 10.1007/978-3-642-39634-2_6.

[29] Nik Sultana, Jasmin Christian Blanchette, and Lawrence C. Paulson. “LEO-II and Satallax on the Sledgehammer
test bench”. In: Journal of Applied Logic 11.1 (2013), pp. 91–102. issn: 1570-8683. doi: http://dx.doi.
org / 10 . 1016 / j . jal . 2012 . 12 . 002. url: http : / / www . sciencedirect . com / science / article / pii /
S1570868312000766.

[30] Joe Hurd. “First-Order Proof Tactics in Higher-Order Logic Theorem Provers”. In: pp. 56–68. url: http:
//www.gilith.com/research/papers.

[31] Jasmin Christian Blanchette. “Redirecting Proofs by Contradiction”. In: PxTP 2013. Ed. by Jasmin Christian
Blanchette and Josef Urban. Vol. 14. EPiC Series. EasyChair, 2013, pp. 11–26. doi: 10.1.1.299.2517. url:
http://www.easychair.org/publications/?page=1248043783.

[32] Sascha Böhme. “Proof Reconstruction for Z3 in Isabelle/HOL”. In: 7th International Workshop on Satisfiability
Modulo Theories (SMT ’09). 2009.

[33] Cezary Kaliszyk and Josef Urban. “PRocH: Proof Reconstruction for HOL Light”. English. In: Automated
Deduction – CADE-24. Ed. by MariaPaola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 267–274. isbn: 978-3-642-38573-5. doi: 10.1007/978-3-642-38574-2_18.

[34] Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. “ATP and Presentation Service for Mizar Formalizations”.
English. In: Journal of Automated Reasoning 50.2 (2013), pp. 229–241. issn: 0168-7433. doi: 10.1007/s10817-
012-9269-y.

[35] Simon Foster and Georg Struth. “Integrating an Automated Theorem Prover into Agda”. English. In: NASA
Formal Methods. Ed. by Mihaela Bobaru, Klaus Havelund, GerardJ. Holzmann, and Rajeev Joshi. Vol. 6617.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 116–130. isbn: 978-3-642-20397-8.
doi: 10.1007/978-3-642-20398-5.

[36] Geoff Sutcliffe. “The 6th IJCAR Automated Theorem Proving System Competition –CASC-J6”. In: AI Commun.
26.2 (Apr. 2013), pp. 211–223. issn: 0921-7126. url: http://dl.acm.org/citation.cfm?id=2594582.
2594586.

[37] Nik Sultana and Christoph Benzmüller. “Understanding LEO-II’s Proofs”. In: The 9th International Workshop
on the Implementation of Logics (IWIL-2012, affiliated with LPAR-2012). Ed. by Eugenia Ternovska, Konstantin
Korovin, and Stephan Schulz. Merida, Venezuela, 2012.

[38] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. “veriT: An Open, Trustable
and Efficient SMT-Solver”. English. In: Automated Deduction – CADE-22. Ed. by RenateA. Schmidt. Vol. 5663.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 151–156. isbn: 978-3-642-02958-5.
doi: 10.1007/978-3-642-02959-2_12.

[39] Joseph Boudou and Bruno Woltzenlogel Paleo. “Compression of Propositional Resolution Proofs by Lowering
Subproofs”. English. In: Automated Reasoning with Analytic Tableaux and Related Methods. Ed. by Didier
Galmiche and Dominique Larchey-Wendling. Vol. 8123. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 59–73. isbn: 978-3-642-40536-5. doi: 10.1007/978-3-642-40537-2_7.

[40] ChadE. Brown. “Satallax: An Automatic Higher-Order Prover”. English. In: Automated Reasoning. Ed. by
Bernhard Gramlich, Dale Miller, and Uli Sattler. Vol. 7364. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 111–117. isbn: 978-3-642-31364-6. doi: 10.1007/978-3-642-31365-3_11.

[41] Olivier Gasquet, Andreas Herzig, Bilal Said, and François Schwarzentruber. Kripke’s Worlds - An Introduction
to Modal Logics via Tableaux. Studies in Universal Logic. Birkhäuser, 2014, pp. I–XV, 1–198. isbn: 978-3-7643-
8503-3.

[42] Sascha Böhme and Tobias Nipkow. “Sledgehammer: Judgement Day”. English. In: Automated Reasoning. Ed. by
Jürgen Giesl and Reiner Hähnle. Vol. 6173. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2010, pp. 107–121. isbn: 978-3-642-14202-4. doi: 10.1007/978-3-642-14203-1_9.

15

http://hal.inria.fr/hal-00642544
http://dx.doi.org/10.1145/1512464.1512470
http://doi.acm.org/10.1145/1512464.1512470
http://dx.doi.org/10.1007/978-3-642-39634-2_6
http://dx.doi.org/http://dx.doi.org/10.1016/j.jal.2012.12.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.jal.2012.12.002
http://www.sciencedirect.com/science/article/pii/S1570868312000766
http://www.sciencedirect.com/science/article/pii/S1570868312000766
http://www.gilith.com/research/papers
http://www.gilith.com/research/papers
http://dx.doi.org/10.1.1.299.2517
http://www.easychair.org/publications/?page=1248043783
http://dx.doi.org/10.1007/978-3-642-38574-2_18
http://dx.doi.org/10.1007/s10817-012-9269-y
http://dx.doi.org/10.1007/s10817-012-9269-y
http://dx.doi.org/10.1007/978-3-642-20398-5
http://dl.acm.org/citation.cfm?id=2594582.2594586
http://dl.acm.org/citation.cfm?id=2594582.2594586
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-642-40537-2_7
http://dx.doi.org/10.1007/978-3-642-31365-3_11
http://dx.doi.org/10.1007/978-3-642-14203-1_9

A Satallax rules

To shorten the notation we will use: ¬P ` ⊥ Q ` ⊥ (P → Q)→ (¬P → ⊥)→ (Q→ ⊥)→ ⊥
(P → Q) ` ⊥

to mean

that to prove P → Q

⊥
, we must show that ¬P

⊥ and Q

⊥
.

First there are some proofs theorems, that Satallax knows and introduce as a dependency. It is mostly
first-order rewriting.

A.1 Satallax’ theorems

eq_ind P x→ (∀y, x = y → P y)
eq_trans2 x = y → z = y → x = z
eq_trans3 y = x→ y = z → x = z
eq_neg_neg_id ¬¬x = x
eq_true > = ¬⊥
eq_and_nor x ∧ y = ¬ (¬x ∨ ¬y)
eq_or_nand x ∨ y = ¬ (¬x ∧ ¬y)
eq_or_imp x ∨ y = ¬x→ y
eq_and_imp x ∧ y = ¬ (x→ ¬y)
eq_imp_or x→ y = (¬xy)
eq_iff x ⇐⇒ t = (x = t)
eq_sym (s = t) = (t = s)
eq_forall_nexists (∀x.f x) = (¬∃x.¬f x)
eq_exists_nforall (∃x.f x) = (¬∀x.¬f x)
eq_leib1 (∀p.p s =⇒ p t) = (s = t)
eq_leib2 (∀p.¬p s =⇒ ¬p t) = (s = t)
eq_leib3 (∀p.p x x =⇒ p s t) = (s = t)
eq_leib4 (∀p.¬p x x =⇒ ¬p s t) = (s = t)
eq_eta (λf x. f x) = λf. f
SinhE (∀x, P)→ P (yes, P does not depend on x)
eq_forall_Seps (∀x.p x) = p (Sepsilon (λx.¬p x))
eq_SPi_Seps (λp.p) = (λp.p (Sepsilon (λx.¬p x)))
eq_exists_Seps (∃x. p x) = p (Sepsilon p)

Those theorems are used by tab_known. There are a lot of other rules, all starting with tab, since Satallax
is using the tableau method.

A.2 Rules

tab_conflict A = B,A¬B ` ⊥ or A = B,B¬A ` ⊥
tab_false ⊥ ` ⊥
tab_refl A 6= A ` ⊥
tab_imp ¬X → ⊥ ` ⊥ Y → ⊥ ` ⊥ (X → Y)→ (¬X → ⊥)→ (Y → ⊥)→ ⊥

X → Y ` ⊥
tab_or X → ⊥ ` ⊥ Y → ⊥ ` ⊥ (X ∨ Y)→ (X → ⊥)→ (Y → ⊥)→ ⊥

X ∨ Y ` ⊥
tab_nand ¬X → ⊥ ` ⊥ ¬Y → ⊥ ` ⊥ (¬X ∧ Y)→ (¬X → ⊥)→ (¬Y → ⊥)→ ⊥

¬X ∧ Y ` ⊥
tab_negimp X → ¬Y → ⊥ ` ⊥ (¬X → Y)→ (X → ¬Y → ⊥)→ ⊥

¬X → Y ` ⊥
tab_and X → Y → ⊥ ` ⊥ (X ∧ Y)→ (X → Y → ⊥)→ ⊥

X ∧ Y ` ⊥
tab_nor ¬X → ¬Y → ⊥ ` ⊥ (¬X ∨ Y)→ (¬X → ¬Y → ⊥)→ ⊥

¬X ∨ Y ` ⊥

16

tab_all ∀y : X, p y → ⊥ ` ⊥
(∀x : X, p x)→ (∀y : X, p y → ⊥)→ ⊥

∀x : X, p x ` ⊥
tab_negall ∀y : X,¬p y → ⊥ ` ⊥

(¬∀x : X, p x)→ (∀y : X,¬p y → ⊥)→ ⊥
¬∀x : X, p x ` ⊥

tab_ex ∀y : X, p y → ⊥ ` ⊥
(∃x : X, p x)→ (∀y : X, p y → ⊥)→ ⊥

∃x : X, p x ` ⊥
tab_negex ∀y : X,¬p y → ⊥ ` ⊥

(¬∃x : X, p x)→ (∀y : X,¬p y → ⊥)→ ⊥
¬∃x : X, p x ` ⊥

tab_mat s 6= t→ ⊥ ` ⊥
(p s→ ¬q t→ p 6= q → ⊥)→ (s 6= t→ ⊥)→ ⊥

p s→ ¬q t→ p 6= q → ⊥ ` ⊥
tab_dec p 6= q → ⊥ ` ⊥ s 6= t→ ⊥ ` ⊥

(p s 6= q t)→ (p 6= q → ⊥)→ (s 6= t→ ⊥)→ ⊥
p s 6= q t ` ⊥

otherwise we
would have p s 6= p s ` ⊥

tab_con Q ` ⊥ R ` ⊥
(P)→ (Q)→ (R)→ ⊥

P ` ⊥
where P = s = t → u 6= v, Q = s 6= u → t 6= u → ⊥

and R = s 6= v → t 6= v → ⊥
tab_trans s = u→ ⊥ ` ⊥ (s = t→ t = u)→ (s = u→ ⊥)→ ⊥

s = t→ t = u ` ⊥
tab_be X → ¬Y → ⊥ ` ⊥ ¬X → Y → ⊥ ` ⊥ (X 6= Y)→ (X → ¬Y → ⊥)→ (¬X → Y → ⊥)→ ⊥

X 6= Y ` ⊥
tab_bq X → Y → ⊥ ` ⊥ ¬X → ¬Y → ⊥ ` ⊥ (X = Y)→ (X → Y → ⊥)→ (¬X → ¬Y → ⊥)→ ⊥

X = Y ` ⊥
tab_negiff X → Y ` ⊥ ¬X → Y → ⊥ ` ⊥ (¬X ↔ Y)→ (X → Y)→ (¬X → Y → ⊥)→ ⊥

¬X ↔ Y ` ⊥
tab_iff X → Y → ⊥ ` ⊥ ¬X → ¬Y → ⊥ ` ⊥ (X ↔ Y)→ (X → Y → ⊥)→ (¬X → ¬Y → ⊥)→ ⊥

X ↔ Y ` ⊥
tab_fe ¬∀x, s x = t x→ ⊥ ` ⊥

(s 6= t)→ (¬∀x, s x = t x→ ⊥)→ ⊥
s 6= t ` ⊥

tab_fq ∀x, s x = t x→ ⊥ ` ⊥
(s = t)→ (∀x, s x = t x→ ⊥)→ ⊥

s = t ` ⊥
tab_choice ∀x,¬p x ` ⊥ p (Sε p) ` ⊥

(>)→ (∀x,¬p x)→ (p (Sε p))→ ⊥
> ` ⊥

tab_cut s ` ⊥ ¬s ` ⊥ (>)→ (s)→ (¬s)→ ⊥
> ` ⊥

tab_dn ¬A ` ⊥
A→ ⊥ ` ⊥

tab_delta delta reduction
tab_known is used to introduce some theorem known by Satallax like eq_ind see previous subsection

B Satallax proof example

thf(conj_0,conjecture,(p & (~(r)))).
thf(h0,negated_conjecture,(~((p & (~(r))))),inference(assume_negation,

[status(cth)],[conj_0])).
thf(h1,assumption,(~(q)),introduced(assumption,[])).
thf(h2,assumption,r,introduced(assumption,[])).
thf(h3,assumption,p,introduced(assumption,[])).
thf(h4,assumption,q,introduced(assumption,[])).
thf(h5,assumption,(~(p)),introduced(assumption,[])).
thf(h6,assumption,(~((~(r)))),introduced(assumption,[])).
thf(a1,axiom,(~(r))).
thf(a3,axiom,(p | q)).
thf(a2,axiom,((~(q)) | r)).
thf(4,plain,$false,inference(tab_conflict,[status(thm),
assumptions([h5,h3,h1,h0])],[h3,h5])).

thf(5,plain,$false,inference(tab_conflict,[status(thm),assumptions([h6,h3,

17

h1, h0])],[a1,h6])).
thf(3,plain,$false,inference(tab_nand,[status(thm),assumptions([h3,h1,h0]),
tab_nand(discharge,[h5]),tab_nand(discharge,[h6])],[h0,4,5,h5,h6])).
thf(6,plain,$false,inference(tab_conflict,[status(thm),assumptions([h4,h1,

h0])],[h4,h1])).
thf(2,plain,$false,inference(tab_or,[status(thm),assumptions([h1,h0]),
tab_or(discharge,[h3]),tab_or(discharge,[h4])],[a3,3,6,h3,h4])).
thf(7,plain,$false,inference(tab_conflict,[status(thm),assumptions([h2,

h0])],[h2,a1])).
thf(1,plain,$false,inference(tab_or,[status(thm),assumptions([h0]),
tab_or(discharge,[h1]),tab_or(discharge,[h2])],[a2,2,7,h1,h2])).
thf(0,theorem,(p & (~(r))),inference(contra,[status(thm),contra(

discharge,[h0])],[1,h0])).

18

