TOPOLOGIE GÉNÉRALE

TD 5

Exercice 1 : Soit X et Y des espaces métriques et $f: X \to Y$. Montrer l'équivalence des propositions suivantes.

(i) f est continue

(ii)
$$\forall B \subset Y, \ f^{-1}(\overset{\circ}{B}) \subset \widehat{f^{-1}(B)}$$

(iii)
$$\forall B \subset Y, \ \overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$$

(iv)
$$\forall B \subset Y, \ \partial f^{-1}(B) \subset f^{-1}(\partial B)$$

Exercice 2 : Soit (X,T) un espace topologique. On munit $X \times X$ de la topologie produit. Montrer que (X,T) est séparé si et seulement si la diagonale $\Delta = \{(x,x) \mid x \in X\}$ est un fermé de $X \times X$.

Exercice 3 : On munit $X = \{0, 1\}$ de la topologie discrète. Montrer que la topologie produit sur X^I est strictement moins fine que la topologie discrète dès que I est infini.

Exercice 4 : Soit $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$ muni de la topologie τ dont les ouverts sont les parties U vérifiant les conditions suivantes

(i)
$$\forall x \in \mathbb{R}, \ x \in U \Rightarrow \exists a, b \in \mathbb{R}, a < x < b \text{ et }]a, b [\subset U]$$

(ii)
$$-\infty \in U \Rightarrow \exists a \in \mathbb{R},]-\infty, a[\subset U]$$

(iii)
$$+\infty \in U \Rightarrow \exists a \in \mathbb{R},]a, +\infty[\subset U$$

Montrer que $(\overline{\mathbb{R}}, \tau)$ est homéomorphe à ([-1, 1], |.|).

Exercice 5 : Soit $\widehat{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ muni de la topologie τ dont les ouverts sont les parties U vérifiant les conditions suivantes

(i)
$$\forall x \in \mathbb{R}, x \in U \Rightarrow \exists a, b \in \mathbb{R}, a < x < b \text{ et }]a, b[\subset U$$

(ii)
$$\infty \in U \Rightarrow \exists a \in \mathbb{R},]-\infty, -a[\subset U \text{ et }]a, +\infty[\subset U$$

Montrer que $(\widehat{\mathbb{R}}, \tau)$ est homéomorphe à $(\mathbb{S}^1, |.|)$.

Exercice 6 : Montrer que $\mathbb{R}^2 \setminus \{0\}$ est homéomorphe à $\mathbb{S}^1 \times \mathbb{R}_+^*$.

Exercice 7 : On considère la relation d'équivalence sur [0,1] définie par :

$$x\mathcal{R}y$$
 si et seulement si $\{x,y\} = \{0,1\}$ ou $x = y$

Montrer que $[0,1]/\mathcal{R}$ est homéomorphe à S^1 .

Exercice 8 : Soit $(X_n, d_n)_{n \in \mathbb{N}}$ une famille dénombrable d'espaces métriques. Montrer que la topologie produit sur $\prod_{n \in \mathbb{N}} X_n$ est métrisable. Indication : Considérer $d(x, y) = \sum_{n \in \mathbb{N}} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$.

Exercice 9 : Étant donnés (E, τ_E) est un espace topologique, I un ensemble d'indices, X un ensemble et $(f_i)_{i \in I}$ une famille de fonctions de X dans E, on appelle **topologie initiale** induite par les $(f_i)_{i \in I}$, la topologie la moins fine sur X rendant f_i continue pour tout $i \in I$. On la notera ici τ_X^i .

- 1) Montrer qu'une intersection de topologie est une topologie. En déduire que τ_X^i est bien définie.
- 2) Montrer que tout ouvert de τ_X^i s'écrit comme union d'intersection finie de parties de la forme $f_i^{-1}(U)$ avec $i \in I$ et $U \in \tau_E$.
- 3) Soit (H, τ_H) un espace topologique. Montrer que $q \in \mathcal{C}^0((H, \tau_H); (X, \tau_x^i)) \iff \forall i \in I, f_i \circ q \in \mathcal{C}^0((H, \tau_H); (E, \tau_E)).$
- 4) Soit $x_n \in X$, montrer que

$$x_n \xrightarrow[n \to \infty]{} x \iff \forall i \in I, \ f_i(x_n) \xrightarrow[n \to \infty]{} f_i(x).$$

- 5) Si $X \subset E$, $I = \{0\}$ et $\forall x \in X$, $f_0(x) = x$, montrer que τ_X^i est la topologie induite par (E, τ_E) sur X.
- 6) On pose

$$E = \mathbb{R}, \ X = l^2(\mathbb{N}) = \{a_n \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n \in \mathbb{N}} a_n^2 < \infty\}.$$

On introduit le produit scalaire de $l^2(\mathbb{N})$

$$\langle a|b\rangle := \sum_{n\in\mathbb{N}} a_n b_n,$$

pour poser $I = l^2(\mathbb{N})$ et $f_i(a) = \langle i|a\rangle$.

- a) Montrer que $\tau^i_{l^2(\mathbb{N})}$ est séparée.
- b) Montrer que $((\mathbb{1}_{k=n})_{n\in\mathbb{N}})_{k\in\mathbb{N}}$ converge vers 0.
- c) On suppose par l'absurde qu'il existe une distance d telle que $\tau_{l^2(\mathbb{N})}^i$ soit la topologie induite par d.
 - i) Si r>0, montrer qu'il existe une suite finie $b^1,\ldots,b^N\in l^2(\mathbb{N})$ telle que

$$\forall j \in [1, N], \langle b^j, a \rangle = 0 \implies a \in B(0, r).$$

ii) En déduire que si r>0 et $m\in\mathbb{N},$ il existe $a\in B(0,r)\setminus\{0\}$ telle que

$$\#\operatorname{Supp}(a) < \infty, \ a_n \neq 0 \Rightarrow n \geq m \text{ et } \mathbb{R}a \subset B(0,r).$$

iii) En déduire qu'il existe $(a^k)_{k\in\mathbb{N}^*}$ à supports finis et disjoints vérifiant

$$\mathbb{R}a^k \subset B(0,\frac{1}{k}).$$

iv) Conclure que $\tau^i_{l^2(\mathbb{N})}$ n'est pas métrisable.

Indication: Considérer
$$i_n = \sum_k \frac{a_n^k}{k||a^k||} et \left(\frac{ka^k}{||a^k||}\right)$$
.

Exercice 10 : Soit $f: \mathbb{R} \to \mathbb{R}$ injective et $d: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$d(x,y) = |f(x) - f(y)|.$$

Montrer que d est une distance sur \mathbb{R} . Etudier l'équivalence métrique et topologique avec la distance usuelle |x-y| dans les cas $f(x)=x^3$ et $f(x)=\arctan(x)$.

Exercice 11: Soit $f: X \to Y$. On dit que f est séquentiellement continue si pour toute suite (x_n) de X, $x_n \xrightarrow[n \to \infty]{} x \Rightarrow f(x_n) \xrightarrow[n \to \infty]{} f(x)$.

- a) Montrer que si X est un espace métrique alors f est continue si et seulement si elle est séquentiellement continue.
- b) Proposer un exemple de fonction surjective séquentiellement continue mais non continue.