Security Amplification against Meet-in-the-Middle Attacks Using Whitening

Pierre-Alain Fouque[†] Pierre Karpman^{*}

[†]Université de Rennes 1 & Institut universitaire de France *École normale supérieure de Rennes

14th IMA Conference on Cryptography & Coding, Oxford 2013–12–18

Security amplification VS MiTM attacks

 $^{2013-12-18}$ 1/16Pierre Karpman

The standard Meet-in-the-Middle (MiTM) attack

Idea

- decomposition $E(k, \cdot) = E_2(k_2) \circ E_1(k_1)(\cdot)$ with $k_1 \cap k_2 = \emptyset$
- use $im = \mathbf{E}_1(k_1, p) = \mathbf{E}_2^{-1}(k_2, c)$ to filter wrong guesses

- Time complexity: $\sim \max(2^{\kappa_1}, 2^{\kappa_2})$ instead of $\sim 2^{\kappa_1 + \kappa_2}$
- ► Memory complexity: ~ min(2^{k1}, 2^{k2}) instead of ~ 1
- Data complexity: ~1

Security amplification VS MiTM attacks

The standard Meet-in-the-Middle (MiTM) attack

Idea

- decomposition $\mathbf{E}(k, \cdot) = \mathbf{E}_2(k_2) \circ \mathbf{E}_1(k_1)(\cdot)$ with $k_1 \cap k_2 = \emptyset$
- use $im = \mathbf{E}_1(k_1, p) = \mathbf{E}_2^{-1}(k_2, c)$ to filter wrong guesses

- Time complexity: $\sim \max(2^{\kappa_1}, 2^{\kappa_2})$ instead of $\sim 2^{\kappa_1 + \kappa_2}$
- ► Memory complexity: ~ min(2^{k1}, 2^{k2}) instead of ~ 1
- Data complexity: ~1

Security amplification VS MiTM attacks

^{2013–12–18} **2**/16 Pierre Karpman

The standard Meet-in-the-Middle (MiTM) attack

Idea

- decomposition $\mathbf{E}(k, \cdot) = \mathbf{E}_2(k_2) \circ \mathbf{E}_1(k_1)(\cdot)$ with $k_1 \cap k_2 = \emptyset$
- use $im = \mathbf{E}_1(k_1, p) = \mathbf{E}_2^{-1}(k_2, c)$ to filter wrong guesses

- Time complexity: ~ max $(2^{\kappa_1}, 2^{\kappa_2})$ instead of ~ $2^{\kappa_1+\kappa_2}$
- Memory complexity: ~ min $(2^{\kappa_1}, 2^{\kappa_2})$ instead of ~ 1
- ► Data complexity: ~1

(Recent) MiTM attacks in practice

- Best attacks on reduced AES (Demirci, Selçuk, FSE2008; DKS, ASIACRYPT2010; DFJ, EUROCRYPT2013)
- Best attacks on reduced IDEA (Biham, Dunkelman, Keller, Shamir, 2011)
- Best attacks on full GOST (Isobe, FSE2011; Dinur Dunkelman, Shamir, FSE2012)
- Preimages on the MD4 family, Splice & cut and Initial structures (Sasaki, Aoki, EUROCRYPT2009, CRYPT02009)
- Biclique attacks on AES & IDEA (Bogdanov, Khovratovich, Rechberger, ASIACRYPT2011; KLR, EUROCRYPT2012)

Security amplification VS MiTM attacks

Context

- No theory behind key schedule design (linear, non-linear, heavy, light?)
- Hard to go beyond ad hoc analysis

Requirements

• Be generic \Rightarrow Black box construction

Objective

 Resulting cipher is more secure w.r.t. (standard) MiTM attacks

Usual objective

- Increase equivalent key-length
- In our case
 - Don't introduce new key material!
 - Don't redefine security parameters
 - Start by fully using the existing key!
 - (Low overhead)

Example black boxes

Figure : Cascade encryption (Diffie, Hellman, 1977, & Others)

Security amplification VS MiTM attacks

^{2013–12–18} **6**/16 Pierre Karpman

Example black boxes

Figure : DESX/FX (Rivest, 1995; Kilian, Rogaway, CRYPTO1996)

Security amplification VS MiTM attacks

^{2013–12–18} **6**/16 Pierre Karpman

Example black boxes

Figure : XOR Cascade (Gaži, Tessaro, EUROCRYPT2012)

Security amplification VS MiTM attacks

^{2013–12–18} **6**/16 Pierre Karpman

Our black box proposal

Security amplification VS MiTM attacks

^{2013–12–18} 7/16 Pierre Karpman

Our black box proposal

Intuition

- Attacker has to commit to a value for k
- Or he has to work with more 'key material'

Security amplification VS MiTM attacks

Requirements for ${\bf F}$

- Objective: F(x) 'thoroughly depends on x'
- Not knowing part of $x \Rightarrow F(x)$ seems random
- ► ⇒ F is an exposure resilient function (ERF) (CDHKS, EUROCRYPT2000)
 - Related to all-or-nothing transformation (AONT) (Rivest, FSE1997)
- ► The k-bit output of an ℓERF is indistinguishable from random when ℓ input bits are unknown
- Perfect ℓERF s can be built from linear codes if $\ell \ge k$
- ► Most secure symmetric primitives are computational 0/1 - ERFs

Sidenote on DESX

Nicer key-length for DESX/FX (Kilian, Rogaway, CRYPTO1996):

Security amplification VS MiTM attacks

^{2013–12–18} 9/16 Pierre Karpman

A model for MitM attacks

Idea

- MiTM attacks are most effective when
 - meeting on the whole block
 - $\kappa_1 = \kappa_2$
- ightarrow ightarrow Equivalent to attacking a 2-Cascade
- ► ⇒ Make 2-Cascade more secure
- ightarrow ightarrow Apply the technique to a single cipher

 $^{2013-12-18}$ 10/16 Pierre Karpman

Security amplification VS MiTM attacks

 $^{2013-12-18}$ 11/16Pierre Karpman

Security amplification VS MiTM attacks

^{2013–12–18} **11/16** Pierre Karpman

Security amplification VS MiTM attacks

2013–12–18 11/16Pierre Karpman

Security amplification VS MiTM attacks

2013–12–18 11/16Pierre Karpman

- Natural attack is MiTM
- ► Advantage of an adversary with t queries is $\leq t^2/2^{2\kappa}$ (ABCV, CRYPTO1998) and tight \Rightarrow only $\sim 2^{\kappa}$ queries for an advantage of one
- ► Apply a construction $C \Rightarrow$ success if advantage on C is $\ll t^2/2^{2\kappa}$

For $C(E_2 \circ E_1(k_1||k_2,x)) \triangleq E_2 \circ E_1(k_1||k_2,x \oplus F(k_1||k_2)) \oplus F(k_1||k_2)$ with F an ℓ -ERF:

► For an advantage of one $\Rightarrow 2^{2\kappa}/2^{\ell} \binom{n}{\ell}$ or $2^{\kappa+n}/D$ queries to the oracles $=_{(\ell=0, n=\kappa, D=1)} 2^{2\kappa}$ (instead of 2^{κ})

Security amplification VS MiTM attacks

 $^{2013-12-18}$ **13**/16 Pierre Karpman

Summary

- ▶ For $D \ll 2^n$, advantage on C ≪ advantage on the 2-Cascade
- Not true if $D \sim 2^n$
- Much more data needed for (theoretical) advantage comparable to 2-Cascade (not tight)
- Result carries on to a single cipher

About the proof

- Ideal cipher model
- ▶ Similar to DESX (Kilian, Rogaway, CRYPTO1996)
- Bound the probability of distinguishing the construction from a random permutation

Instantiating F

Some possibilities among many

- Use a stand-alone hash function
- ▶ Build the 'hash function' from **E** or \tilde{E} : $F(x) = \tilde{E}(x) \oplus x$
 - ⇒ compact implementation
- ► ⇒ low amortized cost

Conclusion

- A model for standard MiTM on block ciphers
- A versatile and generic construction to increase the security of ciphers w.r.t MiTM attack
- Easy and efficient instantiations possible

