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Abstract

In this report, we present a design for EIS, a new in-memory dis-
tributed file system optimized for intensive parallel file creation and file
access. The main use for such a system is as the storage layer for HPC
applications that typically need a big number of files to store intermediate
data. The main contribution of our design is a way to transform a stor-
age system with a flat namespace into one with a hierarchical namespace,
suitable for a file system. We completed the first step of implementing EIS
by designing and implementing a DHT to be later used as the flat storage
layer. The implementation has been done with the ECRAM framework,
which provides applications with a shared object space.

Keywords: In-memory data storage, file system, distributed hash-table,
distributed metadata, scalability, ECRAM.
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Résumé

Ce rapport présente EIS, un système de fichier distribué conçu pour
fonctionner en RAM et optimisé pour la création concurrente de fichiers.
Le principal intérêt d’un tel système est de servir de moyen de stockage
pour des applications de calcul distribué. La principale contribution de ce
rapport est un moyen de transformer un système de stockage non hiérar-
chique en un espace de nom hiérarchique approprié pour un système de
fichier. Nous avons réalisé la première étape de l’implémentation de EIS
en concevant et implémentant ECHT, une table de hachage distribuée.
L’implémentation a été réalisée en utilisant le framework ECRAM qui
fournit un espace d’adresse unique à des applications distribuées.

Mot-clefs : Stockage en RAM, système de fichier, table de hachage
distribuée, gestion de metadonnées distribuée, évolutivité, ECRAM.



1 Introduction
Data storage and file systems are not new in computer science, and it is a
traditional topic in operating systems research. There is a huge amount of
papers discussing how to build efficient file systems for all kind of applications:
local or distributed file systems, optimized for small or big files, with different
operation semantics, etc. Therefore, it might be dubious what relevance can still
be found in designing new file systems. And yet, the ever-evolving hardware
and changing use-cases call for appropriate new designs.

In this report, we propose a new tentative design for EIS, a distributed file
system which characteristics we think may be of some interest.

Our motivations were twofold; first we wanted to design and implement a
file system as a proof of concept for the ECRAM framework [2, 4, 7], in order
to show how distributed software transactional memory (DTM) could partially
be used to build a not-so-trivial, scalable application (that is EIS).

Second, we wanted to experiment with in-memory file systems, which use
RAM as the primary storage hardware and not only for caching. It has recently
been argued that the steadily decreasing cost of RAM makes the incentive to
use it for durable but frequently requested data stronger and stronger [6]. In
our case, we are typically interested in storing intermediate data used in high-
performance computing applications (e.g. bioinformatics applications), focusing
thereby on systems confined to a single geographical area and excluding storage
on global worldwide systems like the Internet.

The result is something we would call an expendable in-memory distributed
file system, which can be set up quickly for the duration of an application to
provide highly available data storage with a traditional file system interface.
The design was tuned to enable quick and highly parallel file creation in a same
directory and very fast file searching. It is also expected to cope well with a big
number of files.

The design of EIS paved the way for the design and implementation of an-
other new component for ECRAM. As it can be seen later, EIS uses an efficient
distributed lookup service at the core of it design. It became then necessary
to add such a service to ECRAM to allow for a future prototype to be imple-
mented. This resulted in ECHT, a distributed hash-table designed to allow an
efficient implementation with ECRAM and with similar scalability requirements
than EIS in mind.

The rest of this report is organized as follows. Section 2 briefly presents the
ECRAM framework used for the implementation. Section 3 presents the design
of EIS and an analysis of its expected performance. Sections 4 and 5 present
the design of ECHT, and an experimental evaluation of its performance. We
discuss related work in section 6, and section 7 concludes.

2 ECRAM Background
ECRAM is a framework that provides in-memory data storage for distributed
applications [2, 4, 7]. Data are stored in the form of binary objects which are
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globally identified by the same ID among all participating application nodes.
Keeping all objects in RAM allows to achieve low access-latency for arbitrary
data access patterns.

Replication and backup of the objects are dealt with internally, to ensure
high data availability and reliability. It is possible to ensure consistency in
case of concurrent accesses by using transactions on distributed shared storage,
so that objects can in fact be considered as stored in a distributed software
transactional memory (DTM), with several consistency models being available.

3 The design of EIS
The core of EIS design is a way to transform a distributed storage system with a
flat namespace into a storage system with a fully hierarchical namespace, while
retaining the good scalability properties and distributed nature of the former.
In particular, a great care is taken to ensure that the transformation will not
prevent parallel file creation and file access within a directory.

The design we present here is tailored to the functionalities provided by
ECRAM; it is however probably possible to adapt it to other systems. It uses
a DHT for its underlying flat storage system, strongly relying on the ability to
store key/data pairs with arbitrarily chosen keys.

3.1 Hierarchical namespace construction
The first step in namespace construction is simple, and consists in associating a
file’s metadata with its path as a key. For instance, a pointer to the metadata
for the file /Food/clafoutis is located under the key H(/Food/clafoutis), where
H(.) stands for the DHT hash function, supposed to be virtually conflict-free.

Accessing already existing data is therefore easy and fast, be it a file or
a directory, and the challenge lies mostly with the management of directory
metadata (which is not so surprising, as this is where we actually keep the
information about the hierarchical nature of the namespace).

In order to preserve scalability for parallel file creation, most of the directory
metadata (that is the list of files inside the directory) is actually split into local
tables, separately and concurrently managed by different nodes taking part in
EIS and having an interest in the directory. These local tables are then pointed
to by the global, easy-to-locate metadata. For instance, in the previous example,
a DHT lookup for the key H(/Food) would yield a series of pointers to local
tables.

More precisely, the directories metadata are only useful when one wants to
list the content of a directory. They do not need to allow efficient searching
for a particular file, as this can be done instead by a lookup in the DHT. The
actual information in the local tables therefore contains little more than a list of
pointers to other files’ metadata, and is typically updated only on file creation
and deletion. It also keeps a reference to the global metadata of the directory.
It should be noted that since those tables are local, the only way for some node
to access the table of another is through remote-procedure calls. The expected
performance impact of using local tables is discussed in section 3.3. Finally, the
placement policy for the metadata for a new file is easy: it is put in the local
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table managed by the node asking for the file to be created. A local table is
created and added in the global directory metadata list if it didn’t exist yet.

Now for file metadata, additionally to directly useful metadata like everything
from pointers to the file’s data or access rights, specific information is kept to
allow efficient file deletion. It consists in fact of a pointer to the entry for the
file in the directory local table to which the file belongs. Then, if one wants to
delete the file, this information is used to quickly perform the operation on the
metadata, either locally or by the way of a remote call, without any need for
further metadata lookups or data structure traversal. Finally, the file metadata
can be used as a witness for the file existence, therefore making possible to probe
the existence of a file of a specific name with a constant number of operations.

The structure of EIS described so far is summarized by the figure 1, the
colour-code bearing the following meaning:

• red is for information located inside the DHT;

• yellow is for information located in ECRAM’s single-ID space, with con-
current access managed with transactions;

• blue is for information located in ECRAM’s single-ID space that shall not
be accessed concurrently.

Figure 1: EIS structure overview

It is now easy to see again that all data and metadata can be retrieved quickly
from the DHT, while hierarchical information is enforced by the directories
metadata. We justify our choices for managing concurrency with transactions
or not by discussing a few scenarios.

In the case of global directory metadata, we do not expect it to be modified
often, as it only keeps track of the nodes which hold a local table for the dir-
ectory. Even if a lot of nodes were to repeatedly create files inside a directory
just to delete all of them shortly after, clever implementations could keep the
pointers to the empty local tables entries for a while before actually modifying
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the global metadata. Therefore, we think that the cost of using transactional
control would be bearable in practice.

In the case of file metadata, there is no particular point in the design that
will influence the likeliness of its modification, as this is wholly specific to the
file users’ behaviours. However, even in case of highly concurrent modifications
of a file, we think that the use of transactions is worth trying, especially because
only the most recent users of a file are ever notified of its modification. More
reflexion on the subject would be interesting, though, and we think that it would
be particularly valuable to test how weak consistency models can accommodate
a heavy load.

As for files’ actual data, as can be seen in figure 1, we think it could be
beneficial for users themselves to choose whether the data needs to be accessed
under transaction control or not. The use of transactions could allow concurrent
and consistent modifications of different parts of a single file, but resorting to
exclusive access is of course a possibility.

3.2 File system specifics
The full design of EIS being not finished for the moment, there is no well-defined
semantics or consistency models yet for the various file system operations. As
suggested just above, we think however that experimenting with different con-
sistency models for transactions can be interesting, but this should be supported
by relevant testing and use-cases.

The complete metadata for files has not been defined either, and in particular
there is no exact plan yet for how the files’ data blocks should be defined and
stored. We think that using RAM as the primary storage medium should greatly
influence this point of the design, as a bigger variation of block sizes is possible
than when a hard drive is used. Therefore, it should be possible to use only
a few blocks tuned to the files’ sizes, probably pre-allocating space for files to
which data is frequently appended.

Finally, we consider that the fault management of the file system should be
dealt with by the lower layers of the system, this being the DHT in our case.

3.3 Theoretical performance analysis
In this section, we discuss more precisely the cost of each file system operation
in terms of accesses to the DHT, overhead due to the use of transactions, and
possibly other kind of communication between EIS nodes.

Reading and writing to a file when its name is known is simple and cheap
(most of the time). In case of reading, one access to the DHT is needed to
retrieve the file’s metadata, and then one memory access is needed for each
data block. The actual access to data blocks is dealt with by ECRAM’s object
management, which ensures that the latest version of the metadata and data is
accessed. In the worst case, the metadata and all of the data need to be fetched
over the network, but in the case of frequently accessed but seldom modified
files, local replicas of the metadata and of the data blocks will hopefully be
accessed instead.

In case of writing, the number of accesses is the same, but the data modi-
fication implies that replicas of the file’s metadata held by other nodes need to
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be invalidated. Therefore, one network communication is needed for every node
that held a valid replica of the metadata prior to its modification, but nodes
that already held obsolete versions of the metadata need not to be contacted.
The same holds for the file’s data blocks if those are replicated.

In both cases, concurrent access to the file’s metadata (and possibly to the
file’s data) will be detected by ECRAM’s DTM system.

In summary EIS is friendly with highly parallel file reading when the data is
seldom modified, but frequently updated data will cause network communication
proportional to the number of nodes actively interested in it.

Creating or deleting a file or a directory is quite simple too. In case of file
creation, a lookup in the DHT is performed both for the file’s parent directory
and for the file itself, and an appropriate error is returned if the former doesn’t
exist or if the latter already does. If everything went fine, a new metadata
structure is created for the file and put in the DHT. It is then inserted in the
creating node’s local table for the parent directory, creating it if necessary. The
total cost for the successful creation of a file is then two read access and one
write access to the DHT, one access to the parent directory’s local table, plus an
occasional modification of the parent directory’s metadata. It should be noted
that the latter is the only already existing global information that is potentially
modified, and therefore the only potential cause of network communication with
other nodes to invalidate locally held replicas. Most of the time, though, nodes
would be able to create files in the same directory in a completely parallel
fashion, without more overhead than the three access to the DHT and the one
access to the local table.

The process is similar in case of file deletion, the only difference and poten-
tially additional cost being that the access to the parent directory’s local table
may need to be done by the way of a remote call to the node actually holding
the table. In any case, finding the proper entry to delete in the local table is
easy thanks to it being referenced in the file’s metadata. If a local directory
table were to be emptied by the deletion, its reference in the global directory
metadata may be removed, although it may be interesting to keep it if new files
are to be created soon; this is in any case implementation-specific.

The process for directory creation and deletion is completely similar, with
the additional check that a directory must be empty to be deleted (checking for
emptiness is cheap, unless local tables with no entries can be kept in the global
metadata; in this case, it becomes necessary to ask every node with a registered
local table if this one is empty or not).

In summary, EIS is friendly with both file and directory creation and dele-
tion, and should be able to withstand highly parallel file creation within a single
directory.

Finally, listing the content of a directory is quite simple, but can be expens-
ive. What is basically needed in this case is to retrieve the directory’s global
metadata at the cost of one DHT lookup, and then to scan the list of local
tables and to send a remote request to every corresponding node, asking for the
list of the files they locally know of. Therefore, the number of nodes that need
to be contacted is equal to the number of nodes owning a local table for this
directory (that is the number of nodes that created files in this directory). It
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should be noted that the amount of data fetched over the network is not big-
ger than when using a remote centralized metadata for the directory, only the
number of network interrupts will increase. In any way, we think that listing a
directory’s content wouldn’t be needed often in practice, as the targeted users
of EIS are most of the time expected to know the names of the files they want
to access (when those are intermediate data). Therefore, the case of a big num-
ber of nodes writing in the same directory and frequently listing its content is
considered pathological, and is deemed acceptable not to perform so well with.

The expected absolute cost of EIS operations are summarized in table 1.

Access type Freq. access on few nodes Freq. access on a lot of nodes

Read

Write (w. conflicts)

Search

Create/Delete

List

Table 1: EIS expected performance

If correct, we think that these results justify our design, by fulfilling the
scalability objectives we set to ourselves. We hope that a future implementation
will validate those claims.

4 The design of ECHT
We now discuss the design of ECHT, a simple distributed hash-table which
purpose is to serve as the flat storage mechanism in a future experimental im-
plementation of EIS with ECRAM.

Unlike some DHT designs [11, 9], ECHT needs limited global information
sharing. This simplifies the partitioning of the keyspace and message routing,
at the cost of scalability.

Yet we believe that sharing some information is relevant because the number
of nodes is relatively small (up to a thousand, confined to a single geographical
location) and the rate of dynamic nodes arrival or departure is expected to be
quite low. Therefore, we do not expect the amount of shared data to be more
than a few KB and to be updated more than maybe once every few minutes
while in steady state.

Another difference is that we target private local networks rather than wide
area networks, which implies first than the maximum round-trip time is very
low (typically a fraction of a millisecond), and second that we need not to care
about malicious nodes or authentication.
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The following sections describe the design choices made for ECHT, and in
some cases how something would be implemented when using the functionalities
provided by ECRAM.

4.1 Hash function
We currently use MD4 [8] as a hash function. The rationale for this choice is
that we do not realistically expect collisions from 128 bits keys generated by a
cryptographic hash function (even from a broken one), and uniqueness of the
keys is a key requirement for ECHT. The advantage of MD4 is that it is easy to
implement and faster than its secure counterparts like SHA224. Fast modern
functions like the BLAKE family could be meaningful alternatives when security
is needed.

4.2 Synchronisation and globally shared information
The only shared information between the ECHT nodes is a global counter of
how many nodes are currently part of the system, as well as a routing table
to map each node’s unique ID and IP address. The first information is used
to compute the ID of the node responsible for a given key, and the second to
actually send messages to other nodes.

The node IDs are determined at node start-up, and is the only information
that needs global synchronisation, in order to ensure that they remain unique
and contiguous. A node may change its ID during its life as part of the node
departure protocol.

As we use offline computation to determine the destination of a message,
the globally shared information is the only information needed by the nodes.
Sections 4.3 and 4.4 detail how it is used to perform a lookup, and how it is
maintained when nodes are joining or leaving. Section 4.6 addresses the poten-
tial impact and benefits of using weak consistency for the global information.

4.3 Keyspace partitioning
We take advantage of the fact that the number of nodes in the system is known
to use a very simple keyspace partitioning scheme. The node responsible for a
given key is simply the one which ID matches the longest possible binary prefix
of the key. As all the node IDs are contiguous by design, this can be computed
without any other kind of communication.

This is considered to be efficient as it splits the keyspace evenly; when a
node is joining or leaving, a single other node needs to modify its key-space,
effectively changing it by a factor of two.

In effect, this scheme virtually splits the keyspace along a balanced binary-
tree, as can be seen in figure 2. Therefore, the number of keys managed by a
given node should not differ from the number of keys managed by any other
node by more than a factor of two on average.

4.4 Node arrival and departure
When a node is joining the system, it retrieves a copy of the global information
and allocates itself a new node ID, equal to the new number of nodes in the
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key[0;127]

0:key[1;127]

ID0 — 00:key[2;127] ID2 — 01:key[2;127]

ID1 — 1:key[1:127]

Figure 2: ECHT virtual partitioning tree for three nodes

system minus one. Then it contacts the node which ID matches its own ID the
best, notifies it of its arrival, and asks for the data that now falls into its key
space. This is illustrated in the following example.

Assume we currently have 6 nodes in the system. The node IDs can be
coded on 3 bits, and can therefore match on 0, 1, or 2 bits. Prefix matching is
done with the IDs coded in little-endian (least significant bit first). Now a node
is joining and gets the ID 6 = 011. The node computes the unique smaller ID
which prefix matches on exactly 2 bits, and finds that it is 2 = 010. Then it
contacts this node of ID 2 (which was up to now managing all data with keys
starting with 01), and asks for the data of keys starting with 011 (statistically
one half of all the data the node 2 is managing). Now the new node updates the
global routing table, and every request for those keys will be directed to node
6.

Node departure is handled symmetrically. When a node is leaving, the node
with the highest ID merges back the keys it was managing with the node which
best matches its ID. Then, either the node leaving was the node of highest
ID and the operation is over, either it was some other node which will now
trade its ID and all the keys it was managing with the node of highest ID. This
effectively reduces the highest ID by one, and keeps all IDs contiguous. The
following example illustrates the node departure protocol.

Assume we have 7 nodes in the system, and the node 5 is leaving. It notifies
the node of highest ID (6) that it needs to merge its data with another node
and then trade IDs. The node 6 searches for the ID best matching its own one
and finds that it is 2 (cf. the above example). Then it transfers all of its data to
node 2, gets the data managed by node 5, assumes node 5’s identity by changing
its own ID, and updates the routing table accordingly. It then finally notices
the former node 5 that it can terminate.

4.5 Fault tolerance
Fault tolerance needs mostly to address two potential problems. The first is the
loss of the global state of the system: the number of participating nodes and the
routing table. This is clearly not an issue as this information is fully replicated
on each node, using transactions for consistency management.

The second is the loss of data due to node failure. This can be managed in a
rather efficient way by using the already-existing fault-management of ECRAM,
by keeping all the data structures used in ECHT as ECRAM global objects.
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This allows nodes to give the object ID pointing to the root of their data to
a few backup nodes, all the actual data replication being done by ECRAM.
When a failure is detected (either by ECRAM or by an ad-hoc implementation-
specific technique), the backup nodes for the failed node determine which node
will temporarily take over the failed node’s data (again, this is implementation-
specific). This node will then engage in the node departure protocol while
assuming the identity of the failed node.

4.6 Consistency management
In order to keep the global information consistent, we manage the node counter
and routing table by using the transactions of ECRAM. Whether end-to-end
locking of the information is necessary when a node is joining or leaving or if
parallel requests for key-space partitioning can be satisfied is for the moment left
as an implementation choice, but we think the parallel option may be challenging
when strict consistency of the global information is needed, considering the
contiguity constraint of the node IDs (cf. section 4.2).

However, when key duplicates are acceptable for a short period of time,
quicker parallel updates of the global information could be possible during the
joining process, by using less-than-strict consistency for the transactions. In
this case, contending nodes would eventually need to merge their data, and all
but one of them would have to start a new joining process.

Weak consistency could also be used when a node is leaving. In this case,
nodes may need to pull up-to-date global information when they are unable to
contact some node, in order to ensure that it is still part of the system.

All cases need however to be further investigated before bringing a definitive
answer.

5 Experimental results for ECHT
We implemented an early prototype of ECHT using ECRAM in order to assess
its scalability and to compare actual behaviour with what the analysis of the
design would predict.

All tests were performed on up to 32 nodes of a small cluster. Larger-scale
testing would be of course interesting, but was not possible due to a limited
amount of time and a lack of immediately available suitable testing infrastruc-
ture.

The cluster nodes were fit with AMD Opteron 244/246 CPUs with 2 to 8
GB of RAM. The first 20 nodes shared the same 1 Gbit switch, the 12 others
being plugged on another similar switch.

5.1 Evaluation of the keyspace partitioning scheme
In this section we try to validate the claim we made about the well-balanced
property of the keyspace partitioning. We set up a system with a few ECHT
nodes and instructed each of them to insert 1000 random keys. Then, we com-
pared how many keys were managed by each node, thereby assessing the beha-
viour of the partitioning scheme.
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The results have been plotted in figure 3, where we can observe the minimum
and maximum number of keys obtained for a single node in function of the total
number of nodes, along with the 50th and 90th percentile. The average number
of keys stored in a node is unsurprisingly steady at 1000, as few conflicts from
the random-number generator are to be expected at this rate, and none from
the hash function itself.

Figure 3: ECHT keyspace partitioning

These results mirror well what we expected: in the best case, when the
number of nodes is a power of two, every node shares the same amount of key;
otherwise, some node will assume responsibility for more keys than others, but
never more than twice the least managed amount.

5.2 Performance of basic operations
In this section we focus on the average time needed to put and retrieve some
data from ECHT, depending on the number of nodes. We are also interested in
how this time can vary from a node to another.

From the design, we would expect the access times of a single node to be
split in two groups: local and remote accesses. A remote access is of course
more expensive than a local one, but keeps the overhead at the minimum as
only one pair of remote messages needs to be exchanged. We should however
note than due to the current state of ECRAM, an additional pair of messages
always needs to be exchanged with another node, regardless of the locality of
the access.

Therefore, considering that the more nodes, the more remote accesses, we ex-
pect the average access time to increase slightly with the number of nodes, while
being bounded by the access time for a node performing all accesses remotely.

We performed our experiments by setting up an ECHT system and re-
peatedly asking every node to perform a few hundreds of the operation we
wanted to measure.
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We plot the average access time for a get access in ECHT in function of the
number of nodes in figure 4, along with the 10th and 90th percentile of the node
population in order to check for variations from one node to another.

Figure 4: ECHT average get access time in microseconds

We believe that the obtained results justify our expectation of a very mod-
erate increase of the access time when the number of nodes grows. It also shows
great homogeneity between the nodes, although the data dispersion increases
slightly with more than 20 nodes. However, we think this to be directly caused
by the heterogeneity of the testing infrastructure itself (cf. section 5), and not
by the software.

We can also notice that the current cost of an access excluding all network
communications is moderate, as can be seen from the access time on one node
being slightly less than 20 milliseconds.

We obtained similar results when measuring the time for synchronous put
accesses, plotted in figure 5, although the nodes look a bit more heterogeneous
when performing this operation.

In conclusion, we think that the design for ECHT is sound and allows for
efficient implementations, as proven by experimental results. It should be noted,
however, that no testing has been done yet to assess the cost of reconfiguring an
existing ECHT system by adding or removing some nodes; and this are expected
to be the costlier operations of all. Therefore, we state again that we believe our
design to be viable when the number of participating nodes is seldom modified,
but it is probably not so useful in other cases.

6 Related work
A lot of work has been done on efficient data storage for distributed applications.
Lustre [1] is in widespread use among supercomputers, and shares a lot of our
objectives. Its approach is however quite different, as it uses RAID for storage
and fault-tolerance. It also centralizes metadata management within a single
server.

11



Figure 5: ECHT average synchronous put access time in microseconds

Several sophisticated file systems exist to serve as the backend storage for
MapReduce applications. They share some of our objectives of high data avail-
ability and efficient parallel accesses, but are tuned for much bigger files and
different access patterns. Some of them like the Google File System [3] use
centralized metadata management. BlobSeer [5] and the Hadoop Distributed
File System [10] both distribute their metadata, and BlobSeer also uses a DHT
for that purpose. However, both centralize their namespace.

The closest existing file system to ours may be Ceph [12], which can effi-
ciently serve as the storage service for HPC applications. It also distributes its
metadata and is tuned for similar access patterns, notably efficient concurrent
file creation within a single directory. The main differences of our design is the
use of a natively load-balancing DHT for metadata management, and using a
transactional memory to maintain the consistency of cached metadata. It is
also not an in-memory file system.

7 Conclusion
This report presented an early design for EIS, an in-memory distributed file
system to be later implemented with the ECRAM framework. We outlined the
technique we use to build a scalable distributed namespace, and its relevance
to the targeted use of EIS. We also presented a design and some experimental
results for ECHT, a distributed hash-table to be used in the future EIS imple-
mentation.

Future work on the subject should focus on implementing a prototype for EIS
and conducting significant large-scale benchmarking. In particular, the exact
impact of the different possible choices for consistency management should be
assessed.
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