2Sat

2Sat est dans P

On va étudier le problème 2SAT.

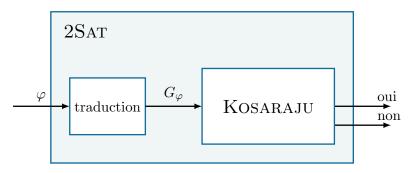
 $\underline{\text{entr\'ee}}$: une formule φ en calcul propositionnel sous forme normale

conjonctive avec 2 littéraux par clause;

 $\underline{\text{sortie}}$: oui si φ est satisfiable, non sinon.

Théorème 1. Le problème 2SAT est dans P.

Démonstration. On va réduire le problème 2SAT au problème des composantes fortement connexes. On peut trouver les composantes fortement connexes grâce à l'algorithme de Kosaraju.



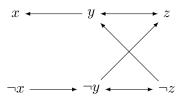
Soit φ une forme sous forme CNF avec 2 littéraux par clause. On pose le graphe $G_{\varphi}=(S,A)$ avec

$$S = \{x, \neg x, x \in VAR(\varphi)\}$$

$$A = \{(\neg a, b), (\neg b, a) \text{ pour } a \lor b \in \varphi\}$$

ici a et b sont des littéraux.

Exemple: La formule $\varphi = (x \vee \neg y) \wedge (\neg y \vee z) \wedge (y \vee \neg z) \wedge (y \vee z)$ donne le graphe G_{φ} suivant :



On veut montrer que

 φ est satisfiable \iff pour tout $x \in VAR(\varphi)$, x et $\neg x$ ne sont pas dans la même composante fortement connexe

 \implies | Soit ν une valuation satisfaisant φ .

Montrons que s'il existe un chemin de a à b et $\nu(a) = 1$, alors on a $\nu(b) = 1$, par récurrence sur la longueur n du chemin de a à b.

<u>Initialisation</u>: Pour n = 1, $(a, b) \in A$, donc $\neg a \lor b$ est une clause de φ . Comme $\nu(a) = 1$, on a $\nu(\neg a) = 0$, il faut donc que $\nu(b) = 1$ pour satisfaire φ .

<u>Hérédité</u>: Soit un chemin $a_0 \to a_1 \to \cdots \to a_{n+1}$ avec $\nu(a_0) = 1$. Par hypothèse de récurrence au rang n, on a $\nu(a_n) = 1$, puis, comme pour l'initialisation, on trouve que $\nu(a_{n+1}) = 1$.

<u>Conclusion</u>: Pour tout chemin de $a \ge b$ de G_{φ} avec $\nu(a) = 1$, on a $\nu(b) = 1$.

Par l'absurde, si pour un certain $x \in VAR(\varphi)$, x et $\neg x$ était dans la même composante fortement connexe, on aurait un chemin de x à $\neg x$ et un chemin de $\neg x$ à x.

Supposons que $\nu(x) = 1$, alors $\nu(\neg x) = 1$, contradiction avec le résultat de la récurrence. De même, si $\nu(\neg x) = 1$, on aurait $\nu(x) = 1$, contradiction.

Supposons que pour tout $x \in VAR(\varphi)$, x et $\neg x$ ne sont pas dans la même composante fortement connexe.

On va créer une valuation qui satisfait φ .

- S'il existe un chemin de $\neg l$ à l (où l est un littéral), alors on pose $\nu(l) = 1$ et $\nu(\neg l) = 0$.
 - Pour tout $l' \in \varphi$ tel qu'il existe un chemin de l à l' (avec $\nu(l) = 1$), on pose $\nu(l') = 1$. On itère le procédé jusqu'à saturation.
- 2) S'il reste des variables $x \in VAR(\varphi)$ sans affectation, on lui assigne 1 ainsi qu'à tous les l' tel qu'il existe un chemin de x à l'.

Vérifions que c'est vraiment une valuation, autrement dit, que l'on n'a pas affecté 0 et 1 à la même variable.

Par l'absurde, si pendant la phase 1), on a mis des variables $x \ge 0$ et ≥ 1 , c'est que l'on a

$$\neg l_1 \to^* l_1 \to^* x$$
$$\neg l_2 \to^* l_2 \to^* \neg x$$

Or, on peut remarquer que si $a \to^* b \in G_{\varphi}$, alors $\neg b \to^* \neg a \in G_{\varphi}$. Ainsi, on a

$$\neg x \to^* \neg l_1$$
 et $x \to^* \neg l_2$

Ainsi, en mettant bout à bout les chemins, on trouve

$$l_1 \rightarrow^* \neg l_1$$

Absurde, car par hypothèse l_1 et $\neg l_1$ ne sont pas dans la même composante fortement connexe et on avait déjà $\neg l_1 \rightarrow^* l_1$.

Pour la phase 2), on procède de la même façon.

Montrons maintenant que cette valuation satisfait φ .

C'est le cas puisque s'il existe un chemin de l à l' avec $\nu(l)=1$, alors $\nu(l')=1$. De plus, toute clause $a\vee b\in \varphi$, on a un chemin $\neg a\to b$ et un chemin $\neg b\to a$. Ainsi, la clause $a\vee b$ est satisfaite par ν .

Remarques:

Pour être plus précis, le problème 2SAT est dans NL.