Colle semaine 15 MP

Pierre Le Scornet

18 février 2021

Exercice 1 - *

Soit u un endomorphisme symétrique d'un espace euclidien de dimension n, et soit $\lambda_1 \leq \cdots \leq \lambda_n$ ses valeurs propres. Montrer que :

$$\forall x \in E, \lambda_1 ||x|| \le \langle x, u(x) \rangle \le \lambda_n ||x||$$

Exercice 2 - *

Rappeler la définition d'un endomorphisme symétrique. En supposant seulement la condition de symétrie sur une fonction $f: E \to E$, montrer que f est linéaire.

Exercice 3 - *

Soit $M \in \mathcal{O}_n(\mathbb{R})$, $(C_i)_i$ ses colonnes. Notons v leur somme et $u = t(1, \dots 1)$.

- Montrer que \$\sum_{i,j=1}^n m_{i,j} = \langle u, v \rangle\$.
 En déduire que cette double somme est bornée par n.
- 3) Montrer que $n \leq \sum_{i,j=1}^{n} |m_{i,j}| \leq n^{\frac{3}{2}}$ (commencer par la deuxième inégalité).

Exercice 4 - **

Soit B une base d'un espace euclidien E, et C la base orthonormée obtenue par l'algorithme de Gram-Schmidt.

- 1) Énoncer cet algorithme. Que peut-on dire de la matrice de passage de C à B? 2) Montrer que pour toute matrice inversible réelle A, il existe $Q, R \in \mathcal{M}_n(\mathbb{R})$ tels que R est triangulaire supérieure stricte avec des coefficients diagonaux positifs, et Q orthogonale.
- 3) Ce couple est-il unique?

Exercice 5 - **

Soit $A_1, \ldots A_k$ des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$, commutant deux à deux. Montrer qu'il existe Q orthogonal tel que QA_iQ^{-1} est diagonal pour tout i.

Exercice 6 - **

Calculer le cardinal de l'ensemble des matrices orthogonales à coefficients entiers.

Exercice 7 - **

Soient $p \leq n \in \mathbb{N}$, on se place dans l'espace préhilbertien réel \mathbb{R}^n muni du produit scalaire canonique. Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$ de rang p et $B \in \mathbb{R}^n$.

1) Montrer qu'il existe un unique vecteur $X_0 \in \mathbb{R}^p$ tel que :

$$||AX_0 - B|| = \inf_{X \in \mathbb{R}^p} ||AX - B||$$

- 2) Montrer que X_0 est l'unique solution de ${}^tAAX = {}^tAB$.
- 3) En déduire

$$\inf_{x,y\in\mathbb{R}} (x+y-1)^2 + (x-y)^2 + (2x+y+2)^2$$

Solution 1

On peut diagonaliser u dans une base orthonormée $\mathcal{B} = (b_1, \dots b_n)$ adaptée aux vp. Alors pour tout $x \in E$, en écrivant $x = \sum_{i=1}^{n} x_i e_i$, on a :

$$||x|| = \sum x_i^2$$
$$\langle x, u(x) \rangle = \sum \lambda_i x_i^2$$

En appliquant l'inégalité $\lambda_1 \leq \lambda_i \leq \lambda_n$ à chaque terme des sommes, on obtient l'inégalité demandée.

Solution 2

Supposons que pour tous $x, y \in E$, on a $\langle u(x), y \rangle = \langle x, u(y) \rangle$. On va montrer que $u(x + \lambda y) = u(x) + \lambda u(y)$: pour tous $z \in E$, on a:

$$\langle u(x + \lambda y) - u(x) - u(\lambda y), z \rangle$$

$$= \langle u(x + \lambda y), z \rangle - \langle u(x), z \rangle - \langle u(\lambda y), z \rangle$$

$$= \langle x + \lambda y, u(z) \rangle - \langle x, u(z) \rangle - \langle \lambda y, u(z) \rangle$$

$$= \langle x + y - x - y, u(z) \rangle = 0$$

On a donc $u(x + \lambda y) = u(x) + u(\lambda y)$.

Solution 3

- 1) On remarque que $\langle C_i, e_i \rangle = m_{i,j}$ et donc $\langle u, v \rangle = \langle \sum_{i=1}^n C_i, \sum_{j=1}^n e_i \rangle$.
- 2) On utilise Cauchy-Schwarz, et les deux vecteurs u, v ont une norme de \sqrt{n} comme les e_i et les C_i forment des bases orthonormales.
- 3) Pour l'inégalité de gauche, on va utiliser le fait que la norme 1 est supérieure à la norme 2. La norme 1 d'une colonne est exactement $\sum_{i=1}^{n} |m_{i,j}|$ et la norme 2 est exactement 1, donc en sommant sur j on obtient le résultat.

Pour l'inégalité de droite, on utilise Cauchy-Schwarz sur chaque somme à j fixée, et on obtient :

$$\sum_{i=1}^{n} |m_{i,j}| \le \sqrt{\sum_{i=1}^{n} m_{i,j}^2} \sqrt{\sum_{i=1}^{n} 1^2} = \sqrt{n}$$

On somme sur j et on a gagné.

Solution 4

- 1) On sait que $c_i \in Vect(b_1 \dots b_i)$, donc la matrice de passage est triangulaire supérieure. De plus, les coefficients diagonaux sont les coefficients de c_i dans B, i.e. $\langle c_i, b_i \rangle > 0$.
- 2) Notons donc a_i les colonnes de A, qui sont base de \mathbb{R}^n . Ainsi, on peut calculer C_A la base obtenue par l'algorithme de Gram-Schmidt. Ainsi, on va pouvoir écrire $A = C_A B$, avec B la matrice de passage de C_A à A. C_A est orthogonale, car ses colonnes sont une BON, et B est triangulaire

supérieure avec des coefficients diagonaux strictement positifs.

3) Supposons que $Q_1R_1 = Q_2R_2$, alors toutes ces matrices sont inversibles donc $Q_2^{-1}Q_1 = R_2R_1^{-1}$. Le terme de gauche est orthogonal, celui de droite est le produit de deux matrices triangulaires supérieures, donc les deux termes sont orthogonaux et triangulaires supérieurs : on peut montrer (par récurrence sur les colonnes, par exemple, que c'est donc égal à l'identité), sachant que les coefficients diagonaux sont égaux à ± 1 . Ainsi, $Q_1 = Q_2$, $R_1 = R_2$.

Solution 5

Soit Q orthogonale qui diagonalise A_k . Alors, puisque A_k commute avec tous les A_i , les sous-espaces propres de A_k sont stables par les A_i : ainsi, leurs restrictions à chaque sous-espaces propres commutent aussi (on peut tous les écrire en diagonale par bloc dans cette base), et on applique l'hypothèse de récurrence à $A_1
ldots A_{k-1}$.

Solution 6

On va plutôt raisonner en terme de base orthonormale. Ainsi, soit M une telle matrice. Alors, les normes des colonnes de M sont égales à 1, donc exactement un de ses coefficients est ± 1 . De plus, les colonnes sont orthogonales entre elles, donc les 1 ne peuvent pas être sur la même ligne. Ainsi, la forme de la matrice est celle d'une matrice de permutation, avec ± 1 au lieu des 1. Ainsi, on a n! choix de permutations et 2^n choix des coefficients. Ainsi, le cardinal recherché est $2^n n!$.

Solution 7

- 1) C'est tout simplement l'unicité du projeté orthogonal, $\exists ! Y_0 \in A\mathbb{R}^p, ||Y_0 B|| = \inf_{Y \in A\mathbb{R}^p} ||Y B||$. Par injectivité de A, on a l'unicité de X_0 .
- 2) On a:

$$AX_0 = p_{A\mathbb{R}^p}(B) \iff \forall Y \in A\mathbb{R}^p, AX_0 - B \perp Z$$

$$\iff \forall X \in \mathbb{R}^p, AX_0 - B \perp AX$$

$$\iff \forall X \in \mathbb{R}^p, {}^tX^tA(AX_0 - B) = 0$$

$$\iff {}^tAAX_0 = {}^tAB$$

3) On pose $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$. A est bien injective, la borne inférieure est donc atteinte en la solution de ${}^tAAX_0 = {}^tAB$. On calcule donc tAA , et tAB , et on résoud l'équation ce qui nous

donne $x_0 = -\frac{1}{2}$ et $y_0 = 0$. L'inf est alors $\frac{7}{2}$.