Colle semaine 3

Pierre Le Scornet

2 octobre 2020

Exercice 1 - *

- 1) Démontrer la convergence de l'intégrale $I=\int_0^{\frac{\pi}{2}} \ln(\sin t) dt.$
- 2) Exprimer les intégrales $K = \int_0^{\frac{\pi}{2}} \ln(\cos t) dt$ et $J = \int_0^{\pi} \ln(\sin t) dt$ en fonction de I.
- 3) Exprimer $L = \int_0^{\frac{\pi}{2}} \ln(\sin t \cos t) dt$ en fonction de I, K
- 4) En déduire les valeurs de I, J, K, L

Exercice 2 - *

- On définit pour tout $n \in \mathbb{N}^*$, $u_n : t \in [0; +\infty[\mapsto 2(n+1)te^{-(n+1)t^2} 2nte^{-nt^2}]$. 1) Montrer que $v_n : t \mapsto 2nte^{-nt^2}$ est intégrable et que son intégrale est constante selon n.
- 2) Montrer que $\sum_{n=1}^{\infty} u_n$ est intégrable et la calculer. 3) Comparer $\int_0^{+\infty} \sum_{n=1}^{+\infty} u_n$ et $\sum_{n=1}^{+\infty} \int_0^{+\infty} u_n$.

Exercice 3 - *

Donner la nature de :

$$\int_0^1 \frac{x}{(1-x)^2} dx, \int_0^1 \frac{1}{1-\sqrt{x}} dx, \int_0^{+\infty} 2^{-x} x^4 dx$$

Exercice 4 - **

Soit 0 < a < b.

- 1) Justifier la convergence de $\int_0^{+\infty} \frac{e^{-at} e^{-bt}}{t} dt$.
- 2) Soient 0 < x < y. Montrer que

$$\int_{x}^{y} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{ax}^{bx} \frac{e^{-t}}{t} dt - \int_{au}^{by} \frac{e^{-t}}{t} dt$$

3) Démontrer que pour tout z > 0,

$$e^{-bz} \ln \frac{b}{a} \le \int_{az}^{bz} \frac{e^{-t}}{t} dt \le e^{-az} \ln \frac{b}{a}$$

1

4) En déduire que $\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \ln \frac{b}{a}$.

Exercice 5 - **

Soit $a < b, f : [a; b] \to \mathbb{R}$ continue et $g : \mathbb{R} \to \mathbb{R}$ continue et convexe. Montrer que :

$$g\left(\frac{1}{b-a}\int_a^b f(t)dt\right) \le \frac{1}{b-a}\int_a^b g(f(t))dt$$

Exercice 6 - **

Soit $I_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$.

- 1) Établir une relation entre I_n et I_{n+2} .
- 2) En déduire I_{2p} et I_{2p+1} pour tout $p \in \mathbb{N}$.
- 3) Montrer que I_n est décroissante et strictement positive.
- 4) En déduire que $I_n \sim I_{n+1}$.
- 5) Calculer nI_nI_{n+1} .
- 6) Donner un équivalent simple de I_n .

Solution 1

- 1) L'impropreté de cette intégrale est en 0. Puisque $\sin t = t\phi(t)$ avec ϕ continue qui tend vers 1 en
- 0. Alors on a $\ln(\sin t) = \ln t + \ln(\phi(t))$, le premier étant intégrable en 0 et le second continu en 0.
- 2) Par le changement de variable $x = \frac{\pi}{2} t$, on montre que K = I, et en séparant $]0; \pi[$ en deux intervalles $]0; \frac{\pi}{2}[$ et $]\frac{\pi}{2}; \pi[$, on montre que J=2I.
- 3) L = I + K
- 4) Puisque $\sin t \cos t = \frac{\sin 2t}{2}$, on a aussi

$$L = \int_0^{\frac{\pi}{2}} \ln\left(\frac{\sin 2t}{2}\right) dt = \int_0^{\pi} \ln\left(\frac{\sin x}{2}\right) \frac{1}{2} dx = \frac{J}{2} - \frac{\pi \ln 2}{2}$$

Ainsi, on sait que $I=L-K=(\frac{J}{2}-\frac{\pi \ln 2}{2})-I=-\frac{\pi \ln 2}{2}.$

Solution 2

- 1) v_n est positive et a pour primitive $t \mapsto e^{-nt^2}$ qui converge en $t \to +\infty$ donc v_n est intégrable. 2) On note $v_n(t) = 2nte^{-nt^2}$. On a $u_n = v_{n+1} v_n$ et donc u_n est intégrable et $\int_0^{+\infty} u_n = \int_0^{+\infty} v_{n+1} \int_0^{+\infty} v_n$. Or $\int_0^{+\infty} v_n = \left[-e^{-nt^2} \right]_0^{+\infty} = 1$. Ainsi, on a $\int_0^{+\infty} u_n = 0$.
- 3) La série $\sum_{n=1}^{+\infty} \int_0^{+\infty} u_n$ converge absolument (puisque tous les termes sont nuls). Or, à t fixé, on

$$\sum_{k=1}^{n} u_k(t) = \sum_{k=1}^{n} (v_{k+1}(t) - v_k(t)) = v_{n+1}(t) - v_1(t)$$

et v_n converge simplement vers 0 donc la série des u_n converge simplement et $\sum_{n=1}^{+\infty} u_n = -2te^{-t^2}$, qui est continue et intégrable sur \mathbb{R}_+ . Ainsi on a :

$$\int_{0}^{+\infty} \sum_{n=1}^{+\infty} u_n(t)dt = \int_{0}^{+\infty} -2te^{-t^2}dt = -1$$

On a donc un contre-exemple au théorème d'intégration terme à terme.

Solution 3

- 1) Pas de soucis à gauche, et à droite il est équivalent à $\frac{1}{(1-x)^2}$ qui n'est pas intégrable. (faire un changement de variable u=1-x pour s'en convaincre).
- 2) Pas de soucis en 0, et en 1 il faut écrire que $1 \sqrt{x} \sim_{x \to 1} \frac{1-x}{2}$, donc en inversant on voit que l'intégrale diverge.
- 3) Intégrable par comparaison de l'exponentielle et de x^4 .

Solution 4

- 1) En $+\infty$ c'est évident, et en 0 on fait un développement limité en 0 des deux exponentielles.
- 2) On sépare les deux intégrales et on fait un changement de variable u = at et v = bt et on réarrange les intégrales.
- 3) Par croissance de l'exponentielle, on a $e^{-bz} \le e^{-t} \le e^{-az}$ pour $t \in [az; bz]$, et on intègre le $\frac{1}{t}$ restant.
- 4) On fixe y et on va faire tendre x vers 0. En utilisant les deux questions précédentes avec z=x, on a :

$$e^{-bx} \ln \frac{b}{a} - \int_{ay}^{by} \frac{e^{-t}}{t} dt \le \int_{x}^{y} \frac{e^{-at} - e^{-bt}}{t} dt$$
$$\le e^{-at} \ln \frac{b}{a} - \int_{ay}^{by} \frac{e^{-t}}{t} dt$$

On fait tendre x vers 0 et on obtient $\int_0^y \frac{e^{-at}-e^{-bt}}{t}dt = \ln \frac{b}{a} - \int_{ay}^{by} \frac{e^{-t}}{t}dt$. On fait maintenant tendre y vers $+\infty$ et on utilise le 3) en z=y et on obtient :

$$e^{-by} \ln \frac{b}{a} \le \int_{ay}^{by} \frac{e^{-t}}{t} dt \le e^{-ay} \ln \frac{b}{a}$$

et les deux côtés tendent vers 0 quand y tend vers l'infini, ce qui nous donne le résultat demandé.

Solution 5

On utilise la définition d'une intégrale comme limite d'une somme de Riemann. Ainsi, soit $u_n = \frac{1}{n} \sum_{i=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$. Puisque f est continue, on a $u_n \to \frac{1}{b-a} \int_a^b f(t) dt$. De plus, par convexité de g on a : $g(u_n) \le \frac{1}{n} \sum_{k=0}^{n-1} g \circ f\left(a + k \frac{b-a}{n}\right)$ et en passant à la limite, on retrouve la question demandée.

Solution 6

1) On écrit $I_{n+2} = \int_0^{\frac{\pi}{2}} \sin(t) \sin^{n+1}(t) dt$. On applique donc une intégration par parties qui nous donne : $I_{n+2} = [-\cos(t) \sin^{n+1}(t)]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \cos^2(t) \sin^n(t) dt$. On écrit $\cos^2 = 1 - \sin^2$, et on

obtient $I_{n+2} = (n+1) \int_0^{\frac{\pi}{2}} \sin^n(t) - \sin^{n+2}(t) dt = (n+1)(I_n - I_{n+2})$. Ainsi, $I_{n+2} = \frac{n+1}{n+2} I_n$. 2) Par une récurrence immédiate :

$$I_{2p} = \frac{2p-1}{2p} \frac{2p-3}{2p-2} \dots \frac{1}{2} I_0$$

et $I_0 = \frac{\pi}{2}$. De plus,

$$I_{2p+1} = \frac{2p}{2p+1} \frac{2p-2}{2p-1} \dots \frac{2}{3} I_1$$

et $I_1 = 1$.

- 3) Simplement par positivité du sinus entre 0 et $\frac{\pi}{2}$ et par décroissance de la suite \sin^n .
- 4) Le 3) nous donne que I_n est décroissante et minorée par 0 donc convergente. Si elle ne tend pas vers 0, alors $I_n \sim \lim I_n \sim I_{n+1}$. Sinon, on écrit la décroissance de I_n et on obtient $I_{n+2} < I_{n+1} < I_n$, i.e. $\frac{n+1}{n+2}I_n < I_{n+1} < I_n$. Ainsi, on a $\frac{n+1}{n+2} < \frac{I_{n+1}}{I_n} < 1$ et donc le quotient tend vers 1 et les deux suites sont équivalentes.
- 5) Pour n = 2p, on a:

$$nI_nI_{n+1} = 2pI_{2p}I_{2p+1}$$

$$= 2p\left(\frac{2p-1}{2p}\frac{2p-3}{2p-2}\dots\frac{1}{2}\frac{\pi}{2}\right)$$

$$\left(\frac{2p}{2p+1}\frac{2p-2}{2p-1}\dots\frac{2}{3}\right)$$

$$= \frac{2p}{2p+1}\frac{\pi}{2} = \frac{n}{n+1}\frac{\pi}{2}$$

De la même manière, pour n = 2p - 1, on a :

$$nI_nI_{n+1} = (2p-1)I_{2p-1}I_{2p}$$

$$= (2p-1)\left(\frac{2p-2}{2p-1}\dots\frac{2}{3}\right)$$

$$\left(\frac{2p-1}{2p}\frac{2p-3}{2p-2}\dots\frac{1}{2}\frac{\pi}{2}\right)$$

$$= \frac{2p-1}{2p}\frac{\pi}{2} = \frac{n}{n+1}\frac{\pi}{2}$$

6) On a donc $nI_nI_{n+1} \sim nI_n^2 \sim \frac{n+1}{n+2}\frac{\pi}{2}$. Ainsi, $I_n^2 \sim \frac{\pi}{2n}$ et donc $I_n \sim \sqrt{\frac{\pi}{2n}}$.