Colle semaine 9 MP*

Pierre Le Scornet

5 décembre 2020

Question 1

Rappeler le théorème de comparaison série-intégrale, et son corollaire.

Question 2

On dit que x est algébrique (de degré d) s'il est la racine d'un polynôme non nul (de degré $\leq d$) à coefficients entiers.

- 1) Quels sont les nombres algébriques de degré 1?
- 2) Montrer que l'ensemble des nombres algébriques de degré d est dénombrable.
- 3) Montrer que l'ensemble des nombres algébriques est dénombrable.

Question 3

Soit E un evn, $(x_n)_{n\in\mathbb{N}}$ une suite convergente de E et x sa limite. Déterminer l'ensemble des valeurs d'adhérences de $\{x_n, n\in\mathbb{N}\}$, et montrer qu'il est compact.

Solutions

- 1) C'est du cours, mais je m'attends au résultat général qui est : pour f: $\mathbb{R} \to \mathbb{R}$ continue par morceaux, décroissante et minorée (ou positive), la série de terme général $\int_{n-1}^n f(t) f(n) dt$, $n \ge 1$ converge. Pour le montrer, il suffit d'appliquer la décroissance à $f(n) \le f(t) \le f(n-1)$, et de remarquer un terme télescopique. Le corollaire est bien entendu la commune nature de l'intégrale de f sur \mathbb{R}^+ et de la série de terme général f(n).
- 2)a) On introduit des notations : Alg_d l'ensemble des nombres algébriques de degré d et Alg l'ensemble des nombres algébriques. Alors $x \in Alg_1$ ssi $\exists (a,b) \in \mathbb{Z}^2 \setminus \{(0,0)\}, ax+b=0$ ssi $\exists a \in \mathbb{Z}^*, b \in \mathbb{Z}, ax+b=0$ (car a ne peut pas être nul, sinon le polynôme n'aurait pas de racines avec $b \neq 0$), i.e.

 $a \in \mathbb{Q}$.

- b) L'ensemble des polynômes de degré au plus $d \mathbb{Z}_{\leq d}[X]$ est en bijection coefficient par coefficient avec \mathbb{Z}^{d+1} , qui est dénombrable comme produit fini de dénombrables. Or $Alg_d = \{racines(P), P \in \mathbb{Z}_{\leq d}[X] \setminus \{0\}\}$, et chaque ensemble racines(P) est fini (puisque $P \neq 0$) donc Alg_d est dénombrable comme union dénombrables d'ensembles finis.
- c) D'une part $Alg_d \subset Alg$ par définition des nombres algébriques. D'autre part, pour $x \in Alg$, il existe un polynôme non nul à coefficients entiers P tel que P(x) = 0. Alors on a $x \in Alg_{\deg(P)}$, et donc $Alg \subseteq \bigcup_{d \in \mathbb{N}^*}$. Par double inclusion, on a donc l'égalité.
- 3) D'abord, on considère ici les x_n non pas comme une suite mais comme un ensemble. Les valeurs d'adhérence évidents de cet ensemble sont donc les x_n eux-mêmes en prenant la suite constante $y_k := x_n, \forall k \in \mathbb{N}$ et x en prenant $y_k := x_k, \forall k \in \mathbb{N}$. Montrons que ce sont les seules valeurs d'adhérence de l'ensemble : pour cela, soit $y_n := x_{\phi(n)}, \forall n \in \mathbb{N}$ convergeant vers $y \in E$. Alors si $y \neq x$, par la définition de la convergence des x_n , pour $\varepsilon = \frac{\|x-y\|}{2}$ il existe $N_1 \in \mathbb{N}$ tel que $\forall n \geq N_1, \|x_n x\| < \varepsilon$. De même, il existe $N_2 \in \mathbb{N}$ tel que $\forall k \geq N_2, \|y_k y\| < \varepsilon$. Pour tout $k \geq N_2$, on a $\|x y\| \leq \|x_{\phi(k)} x\| + \|x_{\phi(k)} y\|$. Si de plus $\phi(k) \geq N_1$, on aurait donc $\|x y\| < \frac{2}{2} \|x y\|$, ce qui est impossible. Ainsi, $\forall k \geq N_1, \phi(k) \in [0; N_1 1]$, et puisque tout ensemble fini d'éléments de E est compact on a $y \in \{x_0 \dots x_{N_1-1}\}$. Ainsi, toute valeur d'adhérence de l'ensemble qui n'est pas x est l'un des x_n .

Pour montrer que c'est un compact, on va prendre une suite $(x_{\phi(n)})_{n\in\mathbb{N}}$ de $\{x_{-1}:=x\}\cup\{x_n,n\in\mathbb{N}\}:$ si ϕ est borné par N, alors l'un des $x_k,k\in[0;N]$ est présent une infinité de fois et est donc une valeur d'adhérence. Sinon, il existe une extraction de ϕ qui tend vers $+\infty$, et alors x est valeur d'adhérence de $(x_{\phi(n)})_{n\in\mathbb{N}}$. Ainsi, toute suite de $\{x\}\cup\{x_n,n\in\mathbb{N}\}$ convergente converge à l'intérieur de cet ensemble, il est donc séquentiellement compact.