Battage par insertion Temps de remontée d'une carte Minoration du nombre de battages Vers d'autres modèles de battage

## Battages de cartes

CHAUB Thomas, LE SCORNET Pierre, ORSINI Nicolas

16/04/2018



### Sommaire

- Battage par insertion
  - Chaînes de Markov : exemple
  - Convergence en loi vers la loi uniforme
  - Formalisation d'un mélange "satisfaisant"
- Temps de remontée d'une carte
  - Propriétés du temps de remontée
  - Estimations quantitatives
- Minoration du nombre de battages
- Vers d'autres modèles de battage
  - Autres modèles de battage par insertion
  - Introduction de la coupe et battage américain



# Battage par insertion

#### Définition : Battage par insertion

Le battage par insertion d'un jeu de N cartes consiste à effectuer une suite d'insertions aléatoires, en choisissant à chaque étape au hasard uniformément dans  $\{1,\ldots,N\}$  la place à laquelle l'insertion à lieu, indépendamment de l'insertion précédente.

#### Remarque

Insérer à la k-ième place revient à passer de  $\sigma$  à  $\sigma'$  telle que  $\sigma'=(k,k-1,\ldots,2,1)\sigma$ .

### Lien avec les chaînes de Markov

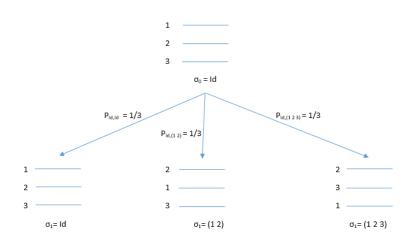
#### Définition : Chaîne de Markov

Soit  $(X_n)_{n\in\mathbb{N}}$  une suite de variables aléatoires à valeurs dans un ensemble dénombrable E.  $(X_n)_{n\in\mathbb{N}}$  est appelée chaîne de Markov si pour tout n>0 et tous  $i_0,\ i_1,\ldots,i_{n-1},\ i,\ j\in E$ :

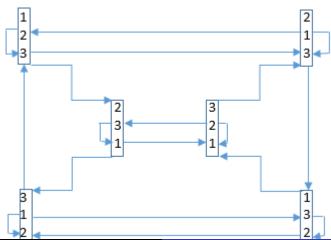
$$\mathbb{P}(X_{n+1} = j \mid X_n = i, \ X_{n-1} = i_{n-1}, \ \dots, \ X_0 = i_0) = \mathbb{P}(X_{n+1} = j \mid X_n = i)$$

Dans ce cas, E est appelé **espace d'états** et les probabilités  $\mathbb{P}(X_{n+1} = j \mid X_n = i)$  sont appelées **probabilités de transition** de  $(X_n)_{n \in \mathbb{N}}$ .

### Probabilités de transition



# Graphe pour N = 3



# Convergence en loi de la chaîne de Markov associée

#### Définition : Probabilité invariante

Soit une chaîne de Markov de matrice de transition P. Un vecteur non nul de coordonnées non négatives est une mesure de probabilité invariante de P si c'est un vecteur propre de  $^tP$  pour la valeur propre 1 tel que la somme des coordonnées soit égale à 1.

#### Théorème

La chaine de Markov  $(X_n)_{n\in\mathbb{N}}$  est irréductible. Elle possède une unique mesure de probabilité invariante sur  $\mathfrak{S}_N$ , qui est la mesure uniforme  $\pi$  et vers laquelle elle converge en loi.

## Matrice de transition

|       | ld  | (12) | (13) | (23) | (123) | (132) |
|-------|-----|------|------|------|-------|-------|
| Id    | 1/3 | 1/3  | 0    | 0    | 1/3   | 0     |
| (12)  | 1/3 | 1/3  | 0    | 1/3  | 0     | 0     |
| (13)  | 0   | 1/3  | 1/3  | 0    | 1/3   | 0     |
| (23)  | 0   | 0    | 1/3  | 1/3  | 0     | 1/3   |
| (123) | 0   | 0    | 1/3  | 0    | 1/3   | 1/3   |
| (132) | 1/3 | 0    | 0    | 1/3  | 0     | 1/3   |

### Distance en variation

#### Définition : Distance en variation

Soient  $\mu$  et  $\nu$  deux mesures de probabilité sur  $\mathfrak{S}_N$ . La distance en variation entre  $\mu$  et  $\nu$  est le réel  $d_V(\mu,\nu) \in [0,1]$  défini par

$$d_V(\mu,\nu) = \max_{A \subset P(\mathfrak{S}_N)} |\mu(A) - \nu(A)|$$

#### Proposition

Pour toutes mesures de probabilité  $\mu$  et  $\nu$  sur  $\mathfrak{S}_N$ ,

$$d_V(\mu,\nu) = \frac{1}{2} \sum_{\sigma \in \mathfrak{S}} |\mu(\{\sigma\}) - \nu(\{\sigma\})|$$

# Remontée de la carte $C_N$

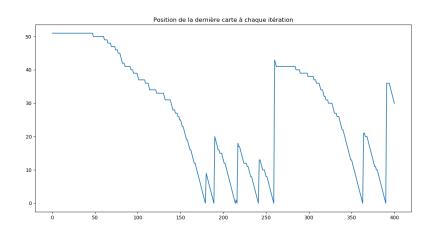
## Définition : Temps de remontée de la carte $C_N$

$$\begin{cases} T_0 = 0 \\ \forall k \ge 1, \ T_k = \min\{n \mid X_n(N) = N - k\} - \sum_{j=1}^{k-1} T_j \\ T = \sum_{k=1}^{N-1} T_k + 1 \end{cases}$$

### Proposition

La permutation aléatoire  $X_T$  est indépendante de T et de loi uniforme sur  $\mathfrak{S}_N$ . Plus généralement, pour tout entier  $m \geq 0$ , la permutation aléatoire  $X_{T+m}$  est indépendante de T et de loi uniforme sur  $\mathfrak{S}_N$ .

# Estimation qualitative de T



# Majoration de $\mathbb{P}(T > n)$

#### Proposition

Pour tout  $n \geq 0$ ,

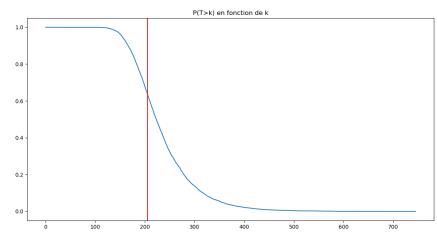
$$d_V(\mu_n,\pi) \leq \mathbb{P}(T>n)$$

#### Proposition

Pour tout  $N \in \mathbb{N} - \{0\}$ , pour tout c > 0,

$$\mathbb{P}(T > N \ln N + cN) \le \frac{K}{c^2}, \text{ avec } K = \sum_{k=1}^{+\infty} \frac{1}{k^2}$$

# Représentation de $\mathbb{P}(T > k)$ en fonction de k



# Algorithme en $O(N \ln N)$

## Théorème : Décroissance exponentielle de $\mathbb{P}(\mathit{T}>\mathit{m})$

Pour tout entier  $m \geq 1$ ,

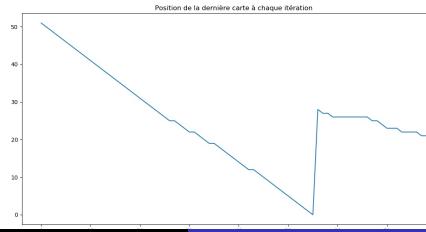
$$\mathbb{P}(T > m) = \mathbb{P}(S > m) \le N \left(1 - \frac{1}{N}\right)^m \le Ne^{-\frac{M}{N}}$$

### Théorème : Minoration asymptotique

Soit  $(c_N)_{N\geq 1}$  une suite de réels positifs de limite infinie et telle que, pour tout  $N\geq 1$ ,  $C_NN\leq N\ln N$ . Alors :

$$\lim_{N\to+\infty} d_V(\mu_{N\ln N-c_N N},\pi)=1$$

# Algorithme en O(N)



# Battage avec coupe et mélange

#### Définition : Battage américain

- Coupons le paquet ainsi formé en deux paquets numérotés 1 et 2, de J et N-J cartes respectivement, avec J choisi entre 0 et N en suivant une loi binomiale  $B\left(N,\frac{1}{2}\right)$ .
- Soient  $Y_1$  et  $Y_2$  les variables aléatoires comptant le nombre de cartes dans les paquets 1 et 2 respectivement à chaque étape. On reconstitue le jeu en choisissant, à chaque étape, la carte placée en dernière position dans le paquet 1 avec probabilité  $\frac{Y_1}{Y_1+Y_2}$ , et dans le paquet 2 sinon.

### Suites montantes

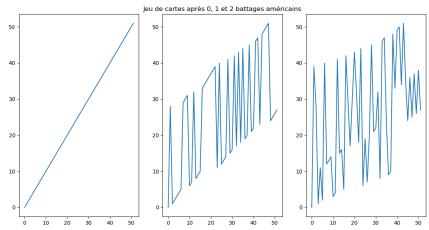
#### Définition : suite montante

Soit  $\sigma$  une permutation de  $\mathfrak{S}_N$ . Une suite montante dans  $\sigma$  est une sous-suite maximale de l'ensemble  $\{\sigma(i), i \in [|1,N|]\}$  constituée de nombres consécutifs.

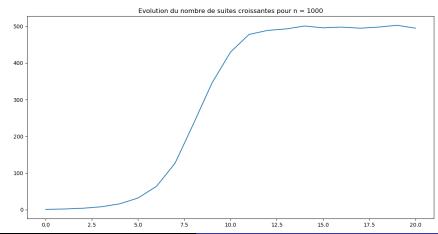
### Exemple

Lors d'une coupe d'un paquet de cartes dans la configuration identité au niveau de la carte  $C_k$ , deux suites montantes sont crées si  $2 \le k \le N-1$ :  $(1\ 2\ \dots\ k)$  et  $(k\ k+1\ \dots\ N)$ . Si k=1 ou k=N-1, il n'y a qu'une seule suite montante.

# Suites montantes après quelques battages



# Asymptotique des suites montantes



# Algorithme en $O(\log_2(N))$

### Théorème : Probabilité d'une configuration

Soit  $m \geq 1$  et  $\sigma \in \mathfrak{S}_N$ . Notons r le nombre de suites montantes dans  $\sigma$ . La probabilité que le paquet soit dans la configuration  $\sigma$  après m battages est égale à :

$$\mathbb{P}(X_m = \sigma) = \frac{1}{2^{Nm}} C_{2^m + N - r}^N$$

### Théorème : Minoration du nombre de battages

Au sens de la distance de variation entre les mesures de probabilité des variables modélisant le battage et la loi uniforme, il faut  $\lceil \frac{3}{2} \log_2(n) \rceil$  battages pour mélanger un jeu de cartes.

# Distances en variation pour N = 52

| 1     | 2     | 3     | 4     | 5     | 6    | 7     | 8      | 9     |
|-------|-------|-------|-------|-------|------|-------|--------|-------|
| 1,000 | 1,000 | 1,000 | 1,000 | 0,924 | 0614 | 0,334 | 0, 167 | 0,085 |

$$\lceil \frac{3}{2} \log_2(52) \rceil = 9$$