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1 Introduction

Training a classifier on a training dataset stems from the expectation that if
the performance is satisfying on the training data, it should also be so on some,
different, application data. In practice, this is not always the case as training
sets are rarely exactly representative of the domain which actually needs to
be studied by the classifier. Shifts between the training domain for which the
classifier optimized its internal parameters and the application domain mean the
classifier has little reason to maintain a satisfying performance.

This is particularly problematic as machine learning takes on a more and more
prominent part in large scale task automation and classification tasks difficult to
human beings. Beyond the fact that classifiers rarely have perfect performance
on the training set to begin with, lies a more troubling issue. Indeed, if it is
not necessarily meant to work on the application data it is being used on, the
classifier’s decisions should not be trusted.

An instinctive but problematic answer would be to check by manually label-
ing the data. Such a method would however often defeat the purpose of using
the classifier in the first place. Even if one were to only check part of the data,
this part would need to be large enough to provide statistically significant dis-
crepancies. Dynamic changes in streaming data would complicate the task even
further, as it is not clear how often the data would need to be checked. It is
therefore necessary to find an automated way to spot possible domain shifts.
Most such approaches rely on studying the inputs to detect domain shifts, but
such shifts are not necessarily a good measure for classifier performance.

We postulate classifier output distribution could actually be indicative of
such shifts, and a good target for statistical testing. After shortly discussing
vocabulary and our general framework (Section 2), we will describe the following
parts of our framework: methods to detect windows of problematic samples at
application time (Section 3) and means to extract information as to the nature of
the problem (Section 4). Finally, after a brief overview of related works (Section
5) we will propose experiments (Section 6) and discuss results (Section 7).

2 Detecting domain shifts

The task we study here is the automated detection of shifts in the domain
that lead to loss of classifier performance in a multiclass setting. This setting
can be justified for a number of applications as labeling even a fraction of the
data can become very costly. That might be either because of the sheer size
of the application dataset (when analyzing tweets for instance) or because the
action of labeling is costly in itself (as would be the case if the labeling must
be done through a destructive test). In a large number of those applications,
binary classification does not provide enough information and it is much more
convenient to use a multiclass classifier.

The nature of our problem, detecting and dealing with domain shifts that
harm classifier performance, requires some specific vocabulary and notions to



be properly understood. In this section we define notations and give a broad
overview of our contribution. Two elements of the framework are further dis-
cussed in later sections: find a large group of samples that indicate a shift in
domain (Section 3) and analyse a group of problematic samples to isolate the
most problematic ones (Section 4).

2.1 Problem formulation and notations

Notations Throughout this paper, sets are denoted by calligraphic letters (such
as X ) and random variables by capital letters (s.a. X). Probability distributions
are given by capital letter P with density or mass functions given by p. Other
entity denomination will be introduced as such in the relevant sections.

Domains In a dataset, some types of samples can be more abundant than oth-
ers, even though in theory those samples are drawn from an underlying set X
(s.a. pictures, sentences, . . . ) where there is no such difference in representation.
Loosely speaking, this is what we refer to as a domain. Formally, we define a
domain as a pair made of a distribution P on a set from which samples are drawn
X and a joint probability P (X,Y ) where X is a random variable representing
samples and Y a random variable representing output classes. As pointed out
in the introduction, what interests us are shifts between a source domain 〈PS〉
on which the classifier would be trained and an application domain 〈PA〉 on
which it would be used. It is important to note that neither of those domains
are tractable in practice as we can only observe samples drawn from both but
not the exact distributions or joint probabilities.

Because we specifically study shifts in classifier output distribution, X is
taken to be the set of possible classifier outputs. As such, the joint probability
P (X,Y ) is of little interest as it is usually straightforward to compute from
classifier outputs and only the probability distribution P over possible outputs
X interests us here.

Classifiers We define classifiers as functions - e.g. some kind of neural net-
work but any class of functions would do - mapping the input space I to a
decision space D: C : I → D. Typically this decision space can be taken
as I = {labels} but we can take some freedom with this definition and look
at the classifier output space, which we take as a probability simplex D =
I = Sn+(0, 1) where n is the number of labels. In this case, the output is a
probability vector (P (label|input))label∈{labels} where every coordinate gives the
probability that the input belongs to the corresponding label. In recent neu-
ral network classifiers, the classification decision is often obtained by apply-
ing the argmax function to such a probability vector. The softmax function
σ : Rn → Sn+(0, 1), (l1, l2, . . . , ln) 7→ elj∑n

i=1 e
li

is typically used in the last layer of
neural networks to convert logits to such a probability vector.

Now that we have laid out the notions of domain and classifier which we work
on, we introduce the general framework we propose to detect shifts in domain
distribution that impact classifier performance.
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2.2 Framework

After some preprocessing described here, the general framework we propose first
focuses on detecting domain shifts over large groups of samples (Section 3), be-
fore narrowing down the analysis to isolate actually problematic samples(Section
4). The problematic samples pinpointed in this way are meant to allow for a de-
cision to be made by either the system or the user on the nature of the shift and
then actions to be taken.

We make the assumption that changes in the distribution of classifier outputs
could actually be symptomatic of significant shifts between training domain and
application domain. Looking at outputs, as opposed to the inputs, should give
insight into the ’quality’ of the classifier’s decisions. If two input samples lead
to very different classifier outputs, they should definitely be treated as distinct.
Conversely, if two distinct samples actually yield exactly the same classifier out-
put, it might not be pertinent to treat them as separate.

Testing over groups of samples We make the choice to conduct detection of do-
main shift over large groups (or windows) of samples, as opposed to individual
samples. Indeed, testing over individual samples is problematic as one outlier
might not be enough to convincingly prove a change in the underlying probabil-
ity. Since we would therefore have to detect a significant number of outliers in a
certain timeframe anyway to declare a shift in the domain, we chose a number
nw of samples to look at in order to make a decision.

To obtain more reliable detection, we use larger values of nw during the de-
tection part of the framework. Although this will result in many non-problematic
samples being isolated by this detection phase, an analysis phase is performed
afterwards to narrow down the amount of problematic samples. This step is
important if manual labeling by a user is required on problematic samples for
instance

Temperature scaling We need the underlying output distribution to be contin-
uous for some of the results we use to hold, but this assumption is sometimes
challenged by recent neural networks. A well documented quirk of more recent
neural networks is a tendency to be largely overconfident in their prediction ([6]).
In practice, this translates to some sort of delta peak around 1 in the probability
distribution of outputs, and therefore a discontinuity.

We address the issue of discontinuous output distribution through the use of
temperature scaling, a technique suggested to be very efficient in a recent study on
network calibration ([6]). Temperature scaling is a technique that only intervenes
after the network is trained and has no incidence on the actual accuracy of the
network. Normally, given output logits v ∈ Rn and the softmax operator σ, the
probability output vector is given by σ(v). In the case of temperature scaling,
the output probability vector is given by σ( vT ) (where .

T is an element wise
division by T ∈ R). Determining the value of T can be done by checking output
probability distribution on some validation data. Technically, such calibration
should be done on a small part of the validation dataset set aside for that specific
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purpose so as to avoid skewing any statistical test done on the validation data
afterwards, but this influence is minimal and ignored in our work.

Framework We propose to obtain output logits and perform temperature scaling
to obtain probability vectors, and then look at subsets of nw probability vectors
from the testing data with same scaling. If a shift is detected, we announce it
(Section 3). On the subset that triggered the detection test, we perform some
analysis to narrow down the set of problematic samples (Section 4). Afterwards,
a decision can be taken with the information analyzed (manually label some
samples, retrain the classifier, . . . )

The questions of window detection and window analysis are developed more
in depth over the course of the next sections.

3 Leveraging classifier output as an indicator of domain
shift

In this section, we present two approaches to domain shift detection, one distance
based non parametric approach relying on the Kolmogorov-Smirnov statistic and
a direct density estimation using Gaussian mixture models.

Recall that we make the assumption the distribution of classifier outputs
would shift between training time and application time from PS to PA in the
case of a change in the domain that causes a loss of classifier performance. For
this we need to be able to decide that a window of samples is not drawn from
PS .

Hypothesis testing Given a null hypothesis and an alternative hypothesis, the
two being mutually exclusive, a statistical hypothesis test either rejects the null
hypothesis in favor of the alternative hypothesis or fails to reject the null hy-
pothesis with confidence α (s.a. 0, 0.2, 0.5, 1). It analyzes sample data to evaluate
the null hypothesis, typically by computing a single test statistic on which the
test makes a decision. This decision is reliant on the confidence level α that
represents the rate (such as 0%, 20%, 50%, 100%) at which the null hypothesis
could be wrongly rejected.

Here, we take the null hypothesis (H0)PS = PA (and the alternative hy-
pothesis (H1)PS 6= PA) and need to define methods for sample analysis given
confidence level α. A rejection of the null hypothesis with confidence α means
the tested window is caused by PA 6= PS , e.g. there is indeed a shift in the
domain that impacts classifier performance.

Parametric and non-parametric Simple parametric assumptions on the sample
analysis are unrealistic as it is doubtful the output distribution can be perfectly
modeled by a Gaussian or some other distribution. Nevertheless, it might be
possible to model the output distribution well enough by looking at more com-
plicated parametric models like Gaussian Mixtures that should be able to model
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the output distribution closely enough at the cost of a more complicated density
function and estimation process.

There exist non-parametric tests that make no assumption on the supposed
distribution of the tested sample. The advantage of those tests lies in their greater
flexibility, although parametric tests are better studied and performant as long
as their underlying assumptions hold.

The following two subsection outline sample analysis methods for statistical
hypothesis testing that use two distinct approaches: a two sample non parametric
test over windows with a well known test statistic over real valued outputs and
a parametric density estimation of PS over complete probability vector outputs.
We first describe the two sample approach.

3.1 Kolmogorov-Smirnov test

Here we present a first approach to domain shift detection that takes the output
space to be D = [0, 1] and makes use of well known properties of the two sample
Kolmogorov-Smirnov test to detect domain shifts.

Confidence level We propose to simplify classifier output by collapsing the prob-
ability vector to one single value that intuitively represents the confidence level
with which the classifier took its decision. To this end, we make the choice of
using the maximum probability of the output vector. This provides us with one
real random variable as output. Our problem in this setting can therefore be
interpreted as deciding if two windows of samples, each window containing i.i.d.
samples, were drawn from the same underlying distribution.

A non-parametric statistical test In the case of statistical tests on samples of real
random variables, parametric assumptions are typically fairly simple (Gaussian
distribution, . . . ) which we already pointed out is a problem. We therefore rely on
a well known non-parametric test on real random variables: the Kolmogorov-
Smirnov test ([14]).

Definition 1 (Two samples Kolmogorov-Smirnov statistic [14]). Let X1, X2, . . . , Xn

be n ∈ N i.i.d. samples drawn from PX (resp. Y1, Y2, . . . , Ym be m ∈ N i.i.d.
samples drawn from PY ). F : x 7→ 1

n

∑n
i=1 I]−∞,x](Xi) where I]−∞,x](X) is the

indicator function over ]−∞, x] (resp. G) denotes the empirical cumulative dis-
tribution function for (Xi)i≤n (resp. (Yi)i≤m).

Then the Kolmogorov-Smirnov KS(F,G) statistic is given by

KS(F,G) = supx|F (x)−G(x)|.

Critical values A very interesting property of the two samples Kolmogorov-
Smirnov statistic is that, assuming both (Xi)i≤n and (Yi)i≤m are i.i.d. from the
same continuous distribution P (our null hypothesis), the statistic is distribution
free (it is not affected by the underlying distribution P ). This is important as it
means we have a criterion to reject the null hypothesis with confidence level α.
In fact, the critical values of the statistic in the null hypothesis for confidence
level α have been approximated ([14]).
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Statistical testing for window detection. A first possible framework we propose
is, given (Xi)i≤n (outputs from the entire validation set) and (Yi)i≤m (from the
application set), to compute the corresponding statistic KS(FX , FY ) and detect
a domain shift with significance level α if KS(FX , FY ) > cα. It has however been
shown ([5]) that the two sample Kolmogorov Smirnov statistic loses in power if
n >> m as would typically be the case if we take the whole validation set to
compare to application samples.

To remedy this we propose a similar second framework that uses equal sized
windows such that m = n by randomly sampling m samples from the validation
set. It is not advisable to always re-use the same window from validation as
this short sample window is unlikely to be representative of the actual source
distribution and will skew the test.

We presented a non parametric distance based approach using the Kolmogorov-
Smirnov statistic. We will now propose to use a parametric explicit density es-
timation approach sensible to internal hyperparameters.

3.2 Estimating PS with Gaussian mixture matrixes

Performing an estimation of the source distribution PS as a sum of Gaussians is
a well studied problem for which there exist a number of efficient solutions. We
propose to use validation outputs to train a Gaussian Mixture model (GMM) in
order to obtain a density estimation. A significant advantage of this method is
that contrarily to the previous test, it is not constrained to real random variables.

Sorted output vectors Therefore, we use the complete output vectors sorted by
increasing probabilities as samples. The reason for sorting probability in the
output vector by increasing value is so as to avoid explicitly taking into account
class distribution. While a shift in class proportion is not innocuous, we feel it
is better to let the detection operate on more subtle information.

Framework We propose to fit a Gaussian mixture over a portion of the valida-
tion data and use a threshold over the likelihood of a sample window in this
approximated distribution. The threshold can be determined by computing like-
lihood values of windows from the remaining validation data and keeping the α
percentile.

In this section we have presented methods to detect suspicious output dis-
tribution on fairly large windows. Such windows however are unlikely to only
contain problematic samples, and it seems to us necessary to study those win-
dows in more detail before making decisions as to the nature of the problem.

4 Pinpointing possible problematic samples

This section describes the second part of our contribution: the analysis and
characterization of a domain shift once it has been detected.
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In the case where we detect shifts over windows of samples, not all samples
in the window are necessarily problematic. It would therefore be better to be
able to refine the detection further by outlining samples that are likely to have
caused the detection of a domain shift. Such samples could then be presented to
someone who could ideally diagnose the underlying issue (apparition of a new
class, ambiguous inputs, . . . ). At the very least, it would be possible to obtain
labeled samples for problematic cases.

Therefore, the problem treated in this section is the following: given a window
of samples and knowing this window is likely to have been taken from a different
domain than the one training data is from, highlight informative aspects of the
window that are caused by the detected domain shift.

Biggest difference in mass The method we propose is to look at the maximum
probabilities that are much more likely to appear in the tested window than in
the reference. The idea behind this is that, while the distribution of confidence
levels is a bit more peaked around 1 in the reference than in tested windows, this
probability mass is ’spread out’ over the rest of the possible confidence values.
We assume that the problematic samples will be more concentrated around con-
fidence values with inflated representation in the tested window. Formally, we
actually look at samples around argmaxxP̃window(x)− P̃S(x). In practice this is
implemented through binning of the probabilities and finding the bin with the
biggest population difference between the reference and the suspicious window.

In the previous three section we developed tools and methods to detect and
adapt to shift in the application domains. The following section provides some
context on the issue.

5 Related work

The issue of domain shift detection has surfaced over the years in one form or
the other and we now discuss two instances of problems close to it: unknown
class detection and concept drift detection.

Unknown class detection Open set recognition is the issue of detecting the ap-
parition of classes unknown to classifiers (and adapting to them). As to the
detection of unknown classes, it has been proposed ([9]) to use thresholds on
maximum output probability as a baseline and use extreme value theory to de-
rive classifier outputs more fit to such thresholding. However, this method is
specific to an adaptation of one class Support Vector Machines to the multiclass
setting and cannot be compared to our methods that are meant to work out of
the box on trained state of the art classifiers.

Concept drift detection Concept drift is the issue of detecting and adapting to
a stream of input data changing distribution over time. Most works on this
particular case have focused on either having access to true labels and detecting
shifts through issues in classifier performance ([18],[16],[7]) or using statistical
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techniques on the input data which leads to detecting shifts irrelevant to the
classifier ([4], [17],[12],[11]).

Nevertheless, the idea of leveraging classifier output probabilities to detect
concept drift has surfaced over the years but has been mostly applied to bi-
nary classification problems to our knowledge. The use of theoretical statistical
bounds on windows of Support Vector Machines margins was explored in a bi-
nary classification setting ([13],[19],[2],[3]). These approaches are similar to our
window detection methods, and in particular our Kolmogorov-Smirnov test. The
use of windows of SVM margins (albeit linear SVMs) as proposed in [13],[2],[3] is
functionally the same thing as the max of the softmax output we track here. How-
ever, we argue that the theoretical statistical bounds derived in [3] are too loose.
Furthermore, the A−distance used in [2] is calibrated directly on the (small) ref-
erence which skews the test. Both [13] and [2] use a fixed reference window (the
first possible one in the data stream), but this is unlikely to be representative of
source distribution. Although [19] uses the Kolmogorov-Smirnov statistic among
others (and concludes the Kolmogorov-Smirnov test detects changes faster), it
looks at posterior probability P (label|input). Although the experiments have
only been run for binary tasks, it is suggested to track n such sequences of
probabilities for a n class problem. We argue this is a misleading information to
monitor as what truly matters in classification is the confidence of the classifier
in the decision, not probabilities of other labels. The windows used in this ap-
proach are two contiguous sliding windows, which only allows to detect abrupt
changes.

6 Experiments

We have performed experiments to evaluate the various proposed methods for
the two tasks we outlined previously: detection of problematic windows and
analysis of problematic windows. Experiments were carried out in python using
the tensorflow ([1]) and scikit-learn ([15]) libraries among others.

6.1 Evaluation of detection criterions

We evaluate the separation criterions on an easily quantifiable domain shift: the
apparition of classes unknown to the classifier. For this task, we train on the
CIFAR10 dataset ([10]). The CIFAR10 dataset is a set of small 32× 32 pictures
from 10 different categories: plane, trucks, birds, cats, deers, dogs, frogs, horses,
cars and ships. There are 50 000 training pictures with 5000 samples for each
category and 10 000 test samples with 1000 samples for each category. We also
split 10 000 samples from the training set for validation.

To provide unknown classes to discriminate from, we take pictures from the
CIFAR 100 dataset ([10]). The CIFAR100 dataset is a dataset containing pictures
from 20 different superclasses, with each 2500 samples normally used for training.
We use the dataset’s training set from 10 superclasses that do not overlap with
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CIFAR 10: aquatic mammals, fish, flowers, food containers, fruits and vegetables,
household furniture, insects, large carnivores, trees and people.

Once the classifier has been trained on the 40 000 training samples, we have at
our disposal 10 000 validation samples, 10 000 test samples from known classes
and 25 000 samples from unknown classes. The validation set will be used to
calibrate our statistical test.

The 35 000 remaining samples are the ones actually used to draw conclu-
sions. We can emulate generating sample windows from the source distribution
by drawing from the 10 000 CIFAR 10 samples. To approximate corrupted sam-
ple windows, we can draw some samples from the 25 000 unknown CIFAR100
samples and some from the 10 000 CIFAR10 samples in fixed proportion to
simulate varying degrees of domain shifts.

In this way, we try to separate between non-overlapping windows of length
200 of completely known data and of mixed data. For a threshold calibrated for
confidence level α = 0.05, we provide both the true positive rate (the proportion
of mixed window detected as part of a shift) and the false positive rate (the
proportion of known classes only windows wrongly detected). To evaluate the
separative power of the methods, we also look at the area under the ROC curve
(which plots true positive rate against false positive rate by varying the threshold
used). The closer this area is to 1, the more powerful the method.

We use a standard Resnet 32 architecture ([8]) (Hyperparameters in Annex).
The network is trained on the 40 000 training samples for 50000 iterations on
batches of size 128 and typically achieves around 90% accuracy on the 10 000
validation samples.

(a) different methods (b) hyperparameter influence

Fig. 1: Roc area under curve in function of the proportion of unknown classes in
the mixed set.

We present results for false positive rates (Table 1, our methods are bolded),
true positive rates (Figure 2, our methods are in solid line when compared to
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others) and ROC area under curve (Figure 1). We include two baseline methods
(random rejection of half and always reject tested windows) for reference. For
further reference, we test thresholding the maximum output probabilities ([9])
and the Kolmogorov-Smirnov statistic in the case it is used to track posterior
probabilities for every class ([19]) but still scale the softmax activations as the
result would otherwise be equivalent to always rejecting the window. A 100
components GMM is used with 8000 validation samples used for fitting and
2000 kept for threshold calibration. For each measure, we train ten classifiers
and report average values.

(a) different methods (b) hyperparameter influence

Fig. 2: True positive rate in function of the proportion of unknown classes in the
mixed set.

method threshold KS 10 streams KS KS α = 0.01 KS partial GMM
false positive rate 0.053±6·10−6 0.243±5·10−3 0.057±1·10−3 0.004±7·10−5 0.049±1·10−3 0.122±3·10−3

Table 1: False positive rates for various methods

6.2 Window analysis

We proposed a method to isolate more problematic samples. As is the case for
shift detection, there are distinct possible criterions to look at when evaluat-
ing the quality of the analysis. In this case, there are at least two things that
need detecting: samples representing unknown classes, and samples on which the
classifier made a mistake.

We reuse most of the setup from the unknown class detection experiment
(classifier, datasets). In practice, this means selecting at random a window of 200
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samples from the mixed set and dividing into bins of width 0.025 to apply the
proposed method. Results are presented in Table 2, proportions in the analyzed
windows are provided as a baseline. For each measure, we train ten classifiers
and report average values and variance.

Unknown proportion 1 0.8 0.6 0.4 0.2 0.05
Unknown bin 1.000±0 0.948±4·10−3 0.851±2·10−2 0.646±3·10−2 0.427±4·10−2 0.155±1·10−2

Misclassified 1.000±0 0.820±6·10−5 0.631±9·10−5 0.454±4·10−4 0.271±9·10−5 0.147±1·10−4

Misclassified bin 1.000±0 0.954±4·10−3 0.878±2·10−2 0.762±2·10−2 0.546±6·10−2 0.365±7·10−2

Table 2: Proportions of unknown and misclassified samples

7 Discussion

In the last section we described experiments over both parts of our contribution
and we first discuss the results of our detection module.

Detection False positive rates recorded in Table 1 show that the Kolmogorov-
Smirnov based methods we propose follow the expected false positive rates set by
our confidence level. Using the theoretical threshold value for the method derived
from [19] however leads very high false positive rates as would be expected. While
this could be alleviated by dividing critical values by the number of classes to
obtain an upper bound, this approach would also make it difficult to reject
problematic windows. The false positive rate using GMMs is also difficult to
calibrate and sensitive to the number of components used.

True positive rates, as shown by Figure 2 indicate that GMMs are the better
detectors of mixed windows followed by the method outlined in [19]. Nevertheless
both of those methods exhibit higher false positive rates, and the Kolmogorov-
Smirnov based method using the entire validation set is not far worse. While the
version using only a small, randomly drawn part of the validation performs
slightly worse than the rest, this version only has access to 400 samples as
opposed to 10200. The comparison of hyperparameters suggest that both the
density estimation and distance based methods benefit significantly from larger
window sizes and lowering the confidence level also slightly impacts the ability
to reject problematic windows as would be expected.

Regarding the overall discriminative power of the metrics, Figure 1 suggests
that the GMM based method would outperform the Kolmogorov-Smirnov based
ones, but this is difficult to leverage as it is not clear how to choose the likelihood
threshold. All Kolmogorov-Smirnov based methods perform similarly regarding
the ROC area under curve, and hyperparameter influence graphs confirm the
conclusions drawn from Figure 2.

On the whole, the GMM based approach seems more powerful than the
Kolmogorov Smirnov based approaches given properly tuned hyperparameters
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(which are not self evident to tune). Nevertheless, it is necessary to keep in mind
such a method scales poorly with more classes as the number of components and
the time/samples needed to fit a mixture would keep growing too, something
also true for the multi stream Kolmogorov-Smirnov baseline used. Therefore, it
seems to us that the GMM based method should be used for classifiers with
fewer classes while the Kolmogorov-Smirnov methods should be able to be used
for larger classifiers at the cost of less separative power.

Analysis Experiments in table 2 show that problematic samples outlined by
our mass difference method are significantly more likely to be from unknown
classes compared to samples from the window in general. This phenomenon is
especially flagrant for windows with low amounts of unknown classes (tripling
the proportion of unknown samples for 5% of unknown classes), though the
method is not enough to only isolate unknown samples. A similar conclusion can
be reached looking at misclassified samples, and the proportion of misclassified
samples could be considered as justification enough to have users manually label
the samples.

8 Conclusion

We proposed a modular framework to detect domain shifts relevant to classifier
performance and isolate problematic samples in the test domain. By looking
at classifier outputs, we could detect shifts directly affecting the classifier and
use hypothesis testing on large windows - implemented through both a density
estimation and a sample comparison method - to spot shifts in the domain.
Leveraging differences in probability mass between problematic samples and a
reference source distribution, we could then isolate a small portion of problematic
samples from those large windows.

A natural continuation of the work presented here would be proposing ways
to leverage the problematic samples singled out after window analysis, like re-
training the classifier. One solution could be to only retrain the last layer of
a deep classifier to make up for the limited amount of new data. Nevertheless,
this solution would leave open questions regarding the training set used, and
more importantly what validation set would be used afterwards. This last point
would be crucial as one of the great advantages of our method over concept drift
methods is that we can rely on a (large) validation set, something heavily used
in our methods.

Beyond the issue of retraining the classifier, there is still much to explore as
to the possible ways to leverage the outputs of our window analysis methods.
For instance, a purely statistical study over problematic output vectors might be
used to provide preliminary indications as to the nature of the shift even before
any kind of user feedback. It has been discussed that non maximal probabilities
carry some information as to the decision process of a classifier, which makes
those a good target for statistical tests and metrics.
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A Classifier architecture

The classifiers used in experiments were based on the Residual Network architec-
ture proposed in [8] with following hyperparameters according to the implemen-
tation proposed at https://github.com/wenxinxu/resnet-in-tensorflow:

– 5 residual blocks (32 layers)
– Initial learning rate of 0.1 with decay to 0.01 after 40000 iterations on batches

of size 128
– Weight decay of scale 0.0002 for regularization

15


