Models of type theory given by program translation

Simon Boulier, Pierre-Marie Pédrot, Nicolas Tabareau

École des Mines de Nantes - INRIA

- Can we prove $(\forall x . f x=g x) \rightarrow f=g$?
- Can we prove that a term of $\forall A . A \rightarrow A$ is necessarily the identity function?

5.2 Axioms

30 What axioms can be safely added to Coq?

There are a few typical useful axioms that are independent from the Calculus of Inductive Constructions and that can be safely added to Coq. These axioms are stated in the directory Logic of the standard library of Coq. The most interesting ones are

- Excluded-middle: $\forall \mathrm{A}:$ Prop, $\mathrm{A} \vee \neg \mathrm{A}$
- Proof-irrelevance: $\forall \mathrm{A}$: Prop $\forall \mathrm{p} 1 \mathrm{p} 2: \mathrm{A}, \mathrm{p} 1=\mathrm{p} 2$
- Unicity of equality proofs (or equivalently Streicher's axiom K): $\forall A \forall x y: A \forall p 1 p 2: x=y$, p1 $=$ p2
- The axiom of unique choice: $\forall x \exists$! y $R(x, y) \rightarrow \exists f \forall x R(x, f(x))$
- The functional axiom of choice: $\forall x \exists y R(x, y) \rightarrow \exists f \forall x R(x, f(x))$
- Extensionality of predicates: $\forall \mathrm{PQ}: \mathrm{A} \rightarrow \operatorname{Prop}_{,}(\forall \mathrm{x}, \mathrm{P}(\mathrm{x}) \leftrightarrow \mathrm{Q}(\mathrm{x})) \rightarrow \mathrm{P}=\mathrm{Q}$
- Extensionality of functions: $\forall \mathrm{f} g: A \rightarrow B,(\forall x, f(x)=g(x)) \rightarrow f=g$

Here is a summary of the relative strength of these axioms, most proofs can be found in directory Logic of the standard library. The justification of their validity relies on the interpretability in set theory.
https://coq.inria.fr/faq

Can we prove Funext $:=\forall f g,(\forall x . f x=g x) \rightarrow f=g ?$
Funext is independent of Coq. That means:

1. Funext is not provable in Coq:

$$
\text { Coq }+\neg \text { Funext } \forall t: \Pi X: \square . X
$$

i.e. Coq $+\neg$ Funext consistent
2. Funext does not introduce inconsistency:

$$
\text { Coq }+ \text { Funext } \forall t: \Pi X: \square . X
$$

i.e. Coq + Funext consistent

Post-talk edit: it seems that this reasoning of reducing independence to consistency is classical ...

Can we prove Funext $:=\forall f g,(\forall x . f x=g x) \rightarrow f=g ?$
Funext is independent of Coq. That means:

1. Funext is not provable in Coq:

$$
\text { Coq }+\neg \text { Funext } \forall t: \Pi X: \square . X
$$

i.e. Coq $+\neg$ Funext consistent provided that Coq is consistent
2. Funext does not introduce inconsistency:

$$
\text { Coq }+ \text { Funext } \forall t: \Pi X: \square . X
$$

i.e. Coq + Funext consistent provided that Coq is consistent

Post-talk edit: it seems that this reasoning of reducing independence to consistency is classical ...

Proving that \mathcal{T} is consistent:
syntactic way proving confluence and normalization
semantic way give an interpretation in a model

Proving that \mathcal{T} is consistent:
syntactic way proving confluence and normalization
semantic way give an interpretation in a model

- set theoretic models
- syntactic models
- program translations

A model is (for instance) a category with families.

1 - Set theoretic model

E.g. the set model.

$$
\begin{aligned}
& \text { context } \rightsquigarrow \text { set } \\
& \text { type } \rightsquigarrow \\
& \text { set family } \\
& \text { proposition } \rightsquigarrow \text { either }\{*\} \text { or } \emptyset \\
& t=A_{A} u \rightsquigarrow\{* \mid t=u\}
\end{aligned}
$$

Funext holds in the set models.
Remark: There are numerous variations of the set model: groupoid model, ...

Problem: You have to learn (precise) set theory!

E.g. the universes are interpreted by large cardinals and Grothendieck universes ...

2 - Syntactic model: a model of \mathcal{S} reusing type theoretic construction of \mathcal{T}.
E.g. : the term model

$$
\begin{array}{rll}
\text { context of } \mathcal{S} & \rightsquigarrow & \text { type of } \mathcal{T} \\
\text { type of } \mathcal{S} & \rightsquigarrow & \text { type family of } \mathcal{T} \\
\text { term of } \mathcal{S} & \rightsquigarrow & \text { term of } \mathcal{T}
\end{array}
$$

2 - Syntactic model: a model of \mathcal{S} reusing type theoretic construction of \mathcal{T}.
E.g. : the term model

$$
\begin{array}{rll}
\text { context of } \mathcal{S} & \rightsquigarrow & \text { type of } \mathcal{T} \\
\text { type of } \mathcal{S} & \rightsquigarrow & \text { type family of } \mathcal{T} \\
\text { term of } \mathcal{S} & \rightsquigarrow & \text { term of } \mathcal{T}
\end{array}
$$

3 - Program translation:

$$
\begin{array}{rlr}
\text { context of } \mathcal{S} & \rightsquigarrow \text { context of } \mathcal{T} \\
\text { type of } \mathcal{S} & \rightsquigarrow & \text { type of } \mathcal{T} \\
\text { term of } \mathcal{S} & \rightsquigarrow & \text { term of } \mathcal{T}
\end{array}
$$

Compilation of \mathcal{S} toward \mathcal{T}.
set models < syntactic models < program translations

Set theoretic models

- realize many things

Syntactic models

- simpler
- rely only on type theory

Program translations

- still simpler (independent of the notion of model)
- implementable and modular (composition)

Not new:

- Gödel translation, CPS translations, ...
- subset model (Hofmann)
- forcing
- parametricity
- Dialectica translation

1. Program translations
2. Negate Funext
3. Other translations

Negate Propext
Negate Streamext
Pattern-matching on Type

1. Program translations
2. Negate Funext
3. Other translations

Negate Propext
Negate Streamext
Pattern-matching on Type

We will consider variations of CC_{ω}.

Terms and types:

- x
- $\square_{0}, \square_{1}, \square_{2}, \ldots$
$-\Pi x: A . B, \quad \lambda x: A . t, \quad t u$
$-\Sigma x: A . B, \quad(t, u), \quad \pi_{1} t, \quad \pi_{2} t$
- \mathbb{B}
$\downarrow t=A u$
+ streams, Prop, inductive-recursive types, ...

Program Translation

$$
\begin{array}{rll}
\mathcal{S} & \longrightarrow & \mathcal{T} \\
\text { term } t & \rightsquigarrow & \text { term }[t] \\
\text { type } A & \rightsquigarrow & \text { type } \llbracket A \rrbracket \\
\text { context } \Gamma & \rightsquigarrow & \text { context } \llbracket\ulcorner\rrbracket
\end{array}
$$

where $\llbracket A \rrbracket:=\iota[A]$

$$
\iota: \text { term } \rightarrow \text { term }
$$

and $\llbracket\left\ulcorner\rrbracket:=x_{1}: \llbracket A_{1} \rrbracket, \ldots, x_{n}: \llbracket A_{n} \rrbracket\right.$

$$
\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

Program Translation

computational soundness

$$
\text { if } t \equiv u \text { then }[t] \equiv[u] \text {, }
$$

typing soundness

$$
\text { if } \Gamma \vdash t: A \text { then } \llbracket\ulcorner\rrbracket \vdash[t]: \llbracket A \rrbracket \text {, }
$$

consistency preservation if $\llbracket \perp_{\mathcal{S}} \rrbracket$ is inhabited then $\perp_{\mathcal{T}}$ is inhabited too.

Theorem
Under those conditions, the consistency of \mathcal{T} implies the one of \mathcal{S}.

1. Program translations
2. Negate Funext
3. Other translations

Negate Propext
Negate Streamext
Pattern-matching on Type

Negate Funext

Goal: $\mathrm{CC}_{\omega}+$ notFunext $\longrightarrow \mathrm{CC}_{\omega}$

Where notFunext axiom of type :

$$
(\Pi(A B: \square)(f g: A \rightarrow B) \cdot(\Pi x: A . f x=g x) \rightarrow f=g) \rightarrow \perp
$$

Negate Funext: Translation
$\mathrm{CC}_{\omega}+$ notFunext $\longrightarrow \mathrm{CC}_{\omega}$

$$
\begin{array}{ll}
{[\Pi x: A . B]} & :=(\Pi x:[A] \cdot[B]) \times \mathbb{B} \\
{[\lambda x: A . t]} & :=(\lambda x:[A] .[t], \text { true }) \\
{[t u]} & :=\pi_{1}[t][u] \\
{\left[\square_{i}\right]} & :=\square_{i} \\
{[x]} & :=x
\end{array}
$$

$$
\begin{array}{ll}
\text { [notFunext }] & :=\quad(\text { cf. demo }) \\
\llbracket A \rrbracket & :=[A]
\end{array}
$$

notFunext :

$$
(\Pi(A B: \square)(f g: A \rightarrow B) \cdot(\Pi x: A . f x=g x) \rightarrow f=g) \rightarrow \perp
$$

Negate Funext: Correction

Lemma
If $\Gamma \vdash t: A$, then $[\Gamma] \vdash[t]:[A]$.

Proof.

Negate Funext: Correction

Lemma

If $\Gamma \vdash t: A$, then $[\Gamma] \vdash[t]:[A]$.

Proof.

E.g. : rules of lambda

$$
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A \cdot t: \Pi x: A \cdot B} \quad \frac{[\Gamma], x:[A] \vdash[t]:[B]}{[\Gamma] \vdash[\lambda x: A \cdot t]: ?[\Pi x: A \cdot B]}
$$

ok because

$$
\begin{aligned}
{[\lambda x: A \cdot t] } & =(\lambda x:[A] \cdot[t], \text { true }) \\
{[\Pi x: A \cdot B] } & =(\Pi x:[A] \cdot[B]) \times \mathbb{B}
\end{aligned}
$$

Negate Funext: Correction

Lemma
If $\Gamma \vdash t: A$, then $[\Gamma] \vdash[t]:[A]$.

Proof.
E.g. : conversion rule

$$
\frac{\Gamma \vdash t: A}{} \quad \Gamma \vdash B: \square \quad A \equiv B
$$

ok using computational soundness

Negate Funext: Correction

Lemma
If $\Gamma \vdash t: A$, then $[\Gamma] \vdash[t]:[A]$.

Proof.
E.g. : notFunext rule
$\vdash \operatorname{notFunext}:(\Pi(A B: \square)(f g: A \rightarrow B) \ldots) \rightarrow \perp$
demo!

Negate Funext: Correction

Lemma
If $\llbracket \Pi X: \square . X \rrbracket$ is inhabited, then $\Pi X: \square . X$ is inhabited too.

Proof.
ok because $\llbracket \Pi X: \square . X \rrbracket=(\Pi X: \square . X) \times \mathbb{B}$

Negate Funext: Consequence

Theorem
If CC_{ω} is consistent, then $\mathrm{CC}_{\omega}+$ notFunext is consistent too.

Negate Funext: Formalization

Formalization of computational soundness, typing soundness, and preservation of consistency.

Deep embedding using de Bruijn indices.
Rely on the Coq contrib PTSATR.
https://github.com/CoqHott/Program-translations-CC-omega

Negate Funext: Formalization

```
Inductive Term: Set :=
    Var: N -> Term
    Sort:Sorts }->\mathrm{ Term
    |:Term }->\mathrm{ Term }->\mathrm{ Term
    | \lambda: Term }->\mathrm{ Term }->\mathrm{ Term
    App:Term }->\mathrm{ Term }->\mathrm{ Term
    |qq: }\forall(\mp@subsup{A}{\textrm{t}}{1
    refl:Term }->\mathrm{ Term
    | J:\forall(AP t c u t p p:Term), Term.
```

```
Fixpoint tsl (t : S.Term) : T.Term :=
match t with
    | S.Var \(\mathrm{v} \Rightarrow\) T.Var v
    |S.Sort s \(\Rightarrow\) T.Sort s
    | S.П A B \(\Rightarrow\) T. \(\sum\left(\right.\) П A \(^{t} \mathrm{~B}^{t}\) ) Bool
    S. \(\lambda\) A M \(\Rightarrow\) T.Pair \(\left(\lambda A^{t} M^{t}\right)\) true
    |S.App MN \(\Rightarrow\) T.App \(\left(\pi_{1} \mathrm{M}^{t}\right) \mathrm{N}^{t}\)
    |S.EqA \(\mathrm{t}_{1} \mathrm{t}_{2} \Rightarrow\) T.Eq A \(\mathrm{t}_{1}{ }^{t} \mathrm{t}_{2}{ }^{t}\)
    S.refl e \(\Rightarrow\) T.refl \(\mathrm{e}^{t}\)
    S.JAP \(\mathrm{t}_{1} \mathrm{ut} \mathrm{t}_{2} \mathrm{p} \Rightarrow\) T.J A \({ }^{t} \mathrm{P}^{t} \mathrm{t}_{1}{ }^{t} \mathrm{u}^{t} \mathrm{t}_{2}{ }^{t} \mathrm{p}^{t}\)
    end where \({ } \mathrm{M}^{t} ":=(\mathrm{tsl} M)\).
```

Theorem tsl_correctness :
$\left(\forall \Gamma, \quad \Gamma \dashv \rightarrow \Gamma^{t} \dashv\right) \wedge\left(\forall \Gamma \mathrm{MA}, \Gamma \vdash \mathrm{M}: \mathrm{A} \rightarrow \Gamma^{t} \vdash \mathrm{M}^{t}: \mathrm{A}^{t}\right)$.

Negate Funext: Formalization

Another formalization:
https://github.com/TheoWinterhalter/formal-type-theory

- explicit substitutions instead of de Bruijn indices
- modular way to add and remove feature to the base theory

1. Program translations
2. Negate Funext
3. Other translations

Negate Propext
Negate Streamext
Pattern-matching on Type

1. Program translations
2. Negate Funext
3. Other translations

Negate Propext
Negate Streamext
Pattern-matching on Type

Negate Propext

Prop impredicative universe:

$$
\frac{A: \square_{i} \quad x: A \vdash P: \operatorname{Prop}}{\Pi x: A \cdot P: \operatorname{Prop}}
$$

Goal : showing that $(P \leftrightarrow Q) \nrightarrow(P=Q)$ for $P, Q:$ Prop.

Negate Propext

$\mathrm{CC}_{\omega}+$ Prop + notPropext $\longrightarrow \mathrm{CC}_{\omega}+$ Prop

$$
\begin{array}{ll}
{\left[\square_{i}\right]} & :=\left(\square_{i} \times \mathbb{B}, \text { true }\right) \\
{[\text { Prop }]} & :=(\text { Prop } \times \mathbb{B}, \text { true }) \\
{[\Pi x: A . B]} & :=(\Pi x: \llbracket A \rrbracket . \llbracket B \rrbracket, \text { true }) \\
\ldots & :=\pi_{1}[A]
\end{array}
$$

Remark: we have $\left[\square_{i}\right]: \llbracket \square_{i+1} \rrbracket$
because $\left[\square_{i}\right]=\left(\square_{i} \times \mathbb{B}\right.$, true $)$
and $\llbracket \square_{i+1} \rrbracket=\pi_{1}\left[\square_{i+1}\right]=\square_{i+1} \times \mathbb{B}$.

1. Program translations
2. Negate Funext
3. Other translations

Negate Propext
Negate Streamext
Pattern-matching on Type

Negate Streamext

Goal: Bisim $s_{1} s_{2} \nrightarrow s_{1}=s_{2}$ for $s_{1}, s_{2}:$ Stream A.
$\mathrm{CC}_{\omega}+$ Stream + notStreamext $\longrightarrow \mathrm{CC}_{\omega}+$ Stream

$$
\begin{array}{ll}
{[\text { Stream } A]} & :=(\text { Stream } \llbracket A \rrbracket) \times \mathbb{B} \\
{[\text { hd } t]} & :=\text { hd }\left(\pi_{1}[t]\right)
\end{array}
$$

1. Program translations
2. Negate Funext
3. Other translations

Negate Propext
Negate Streamext
Pattern-matching on Type

Pattern-matching on \square

$$
\begin{aligned}
f: \Pi A: \square . A \rightarrow & A \\
f:=\lambda(A: \square) . & \text { match } A \text { with } \\
& \mid \mathbb{B} \Rightarrow \text { neg } \\
& \mid \Pi x: B . C \Rightarrow \mathrm{id} \\
& \mid \square \Rightarrow \mathrm{id} \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
f \mathbb{B} & \mapsto \text { neg } \\
f(\mathbb{B} \rightarrow \mathbb{B}) & \mapsto \text { id }
\end{aligned}
$$

Operator written univ_rec.

Pattern-matching on \square

Idea : translate \square by an inductive-recursive type on which pattern-matching is allowed.

Pattern-matching on \square

Idea : translate \square by an inductive-recursive type on which pattern-matching is allowed.

```
Inductive TYPE : \(\square:=\)
| B : TYPE
| Pi : П(a : TYPE)(b : Elt a \(\rightarrow\) TYPE). TYPE
| U : TYPE
with Elt: TYPE \(\rightarrow \square:=\) fun
| \(\mathrm{B} \quad \Rightarrow \mathbb{B}\)
| Pi a b \(\Rightarrow\) П(x:Elt a). Elt (b x)
\(\mid \mathrm{U} \quad \Rightarrow\) TYPE.
```


Pattern-matching on \square

$$
\begin{aligned}
& \text { Inductive TYPE : } \square:= \\
& \text { | B : TYPE } \\
& \text { | Pi : П(a : TYPE)(b : Elt a } \rightarrow \text { TYPE). TYPE } \\
& \text { | U : TYPE } \\
& \text { with Elt: TYPE } \rightarrow \square:=\text { fun } \\
& \text { | } \quad \Rightarrow \mathbb{B} \\
& \mid \text { Pi a b } \Rightarrow \Pi(\mathrm{x} \text { : Elt a). Elt (b x) } \\
& \mathrm{U} \quad \Rightarrow \text { TYPE. } \\
& \mathrm{CC}_{\omega}+\text { univ_rec } \longrightarrow \mathrm{CC}_{\omega}+\text { TYPE } \\
& {[\square] \quad:=\mathrm{U}} \\
& {[\Pi x: A . B] \quad:=\operatorname{Pi}[A](\lambda x: \llbracket A \rrbracket \cdot[B])} \\
& {[\lambda x: A . t] \quad:=\lambda x: \llbracket A \rrbracket \cdot[t]} \\
& \text { [univ_rec] }:=\text { TYPE_rec } \\
& \llbracket A \rrbracket \quad:=\text { Elt }[A]
\end{aligned}
$$

Pattern-matching on \square

Theorem
If $\mathrm{CC}_{\omega}+$ TYPE is consistent, then $\mathrm{CC}_{\omega}+$ univ_rec is consistent too.

Pattern-matching on \square

Theorem
If $\mathrm{CC}_{\omega}+$ TYPE is consistent, then $\mathrm{CC}_{\omega}+$ univ_rec is consistent too.

Without type-in-type:
Theorem
If $\mathrm{CC}_{\omega}+(\text { TYPE })_{i \in \mathbb{N}}$ is consistent, then $\mathrm{CC}_{\omega}^{\text {expl }}+$ univ_rec is consistent too.

Summary

Models given by program translation: $\mathcal{S} \longrightarrow \mathcal{T}$.

Benefits:

- simple
- use only type theory
- modular
- implementable

Summary

4 translations $\left(\mathrm{CC}_{\omega}+\right.$ something $\left.\longrightarrow \mathrm{CC}_{\omega}\right)$:

- notFunext
- notStreamext

Formalized and implemented as plugin.

- notPropext
- univ_rec
https://github.com/CoqHott/Program-translations-CC-omega

Remark: all rely on the fact that negative types are under specified.

Future Work

Defining a generic plugin using Template Coq. https://github.com/gmalecha/template-coq

Inductive term : Set :=

tRel	$: \mathbb{N} \rightarrow$ term
tEvar	$: \mathbb{N} \rightarrow$ term
tSort	$:$ sort \rightarrow term
tCast	$:$ term \rightarrow cast_kind \rightarrow term \rightarrow term
tProd	$:$ name \rightarrow term \rightarrow term \rightarrow term
tPambda	$:$ name \rightarrow term \rightarrow term \rightarrow term
	t.

Future Work

We could define:

- tsl_term : term \rightarrow term
- tsl_type : term \rightarrow term

And get a ML function acting on Coq terms by quoting mechanism.

Then, we could prove that the translation is correct by reifying the typing judgment of Coq as an inductive.

For thinking in RER ...

Find a model that negates:

$$
\lambda b: \mathbb{B} . b=\lambda b: \mathbb{B} . \text { if } b \text { then true else false }
$$

(Harder than negating funext because

$$
\forall b, b=\text { if } b \text { then true else false }
$$

is provable).

