Models of type theory given by program translation

Simon Boulier, Pierre-Marie Pédrot, Nicolas Tabareau

Ecole des Mines de Nantes - INRIA

» Can we prove (Vx. f x=gx)—>f=g"

» Can we prove that a term of VA. A — A is necessarily the
identity function?

5.2 Axioms

30 What axioms can be safely added to Coq?

There are a few typical useful axioms that are independent from the Calculus of Inductive Constructions
and that can be safely added to Coq. These axioms are stated in the directory Logic of the standard
library of Coq. The most interesting ones are

Excluded-middle: V A:Prop, Av = A

Proof-irrelevance: V A:Prop V p1 p2:A, pl=p2

Unicity of equality proofs (or equivalently Streicher's axiom K): VAV x y:AV pl p2:x=y,
pl=p2

The axiom of unique choice: ¥ x 3! y R(x,y) = 3 f V x R(x,f(x))

The functional axiom of choice: ¥ x 3y R(x,y) = 3 f V x R(x,f(x))

Extensionality of predicates: V P Q:A- Prop, (V X, P(x) & Q(x)) =» P=Q

Extensionality of functions: V f g:A- B, (V x, f(x)=g(x)) = f=g

Here is a summary of the relative strength of these axioms, most proofs can be found in directory Logic
of the standard library. The justification of their validity relies on the interpretability in set theory.

https://coq.inria.fr/faq

https://coq.inria.fr/faq

Can we prove Funext :==Vfg, (Vx.f x=gx)—>f=g?

Funext is independent of Coq. That means:

1. Funext is not provable in Coq:
Coq+ —Funextt/t:MX:0O X

i.e. Coq+ —Funext consistent

2. Funext does not introduce inconsistency:
Coq+ Funextt/t: MX: 0O X

i.e. Coq+ Funext consistent

Post-talk edit: it seems that this reasoning of reducing
independence to consistency is classical ...

Can we prove Funext :==Vfg, (Vx.f x=gx)—>f=g?

Funext is independent of Coq. That means:

1. Funext is not provable in Coq:
Coq+ —Funextt/t:MX:0O X

i.e. Coq+ —Funext consistent provided that Coq is consistent

2. Funext does not introduce inconsistency:
Coq+ Funextt/t:MX: 0O X

i.e. Coq + Funext consistent provided that Coq is consistent

Post-talk edit: it seems that this reasoning of reducing
independence to consistency is classical ...

Proving that T is consistent:
syntactic way proving confluence and normalization

semantic way give an interpretation in a model

Proving that T is consistent:
syntactic way proving confluence and normalization
semantic way give an interpretation in a model

» set theoretic models

» syntactic models
» program translations

A model is (for instance) a category with families.

1 - Set theoretic model

E.g. the set model.

context ~~ set
type ~» set family
proposition ~- either {x} or ()
t=au ~ {x|t=u}

Funext holds in the set models.

Remark: There are numerous variations of the set model: groupoid
model, ...

Problem: You have to learn (precise) set theory!

E.g. the universes are interpreted by large cardinals and
Grothendieck universes . ..

2 - Syntactic model: a model of S reusing type theoretic
construction of 7.

E.g. : the term model

context of S ~~ type of T
type of S ~» type family of T
term of S~ term of T

2 - Syntactic model: a model of S reusing type theoretic
construction of 7.

E.g. : the term model

context of S ~~ type of T
type of S ~» type family of T
term of S~ term of T

3 - Program translation:

context of S ~» context of T
type of S ~» type of T
termof S ~ termof T

Compilation of S toward 7.

set models < syntactic models < program translations

Set theoretic models

realize many things

Syntactic models
simpler

rely only on type theory

Program translations
still simpler (independent of the notion of model)

implementable and modular (composition)

Not new:

v

v

subset model (Hofmann)

v

forcing

v

parametricity

v

Dialectica translation

Godel translation, CPS translations, ...

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

1. Program translations

CC,

We will consider variations of CC,,.

Terms and types :
> X
> Oo, Oy, O, ...
» Mx:A B, Ax:At, tu

» Yx:A B, (tyu), mt, mpt
» B
Pt:Au

+ streams, Prop, inductive-recursive types, ...

Program Translation

S — T
term t ~> term [t]
type A~ type [A]

context [~» context [I]

where [A] :=¢ [A]
L. term — term

and [I] :=x1:[A1], ..., xn: [An]

N=xy: A1, ..., xp: Ay

Program Translation

computational soundness
if t = u then [t] = [u],
typing soundness
if T t: Athen [I]F[t] : [A],
consistency preservation
if [Ls] is inhabited then L7 is inhabited too.

Theorem
Under those conditions, the consistency of T implies the one of S.

2. Negate Funext

Negate Funext

Goal: CC,, + notFunext — CC,,

Where notFunext axiom of type :

(I‘I(AB:D)(fg:A—>B).(I'Ix:A.fx:gx)—)f

Negate Funext: Translation
CC, + notFunext — CC,,

[Mx:A. B] = (Nx:[A]. [B]) xB
[Ax: A t] = (Ax:[A]. [t], true)
[t u] = my [t] [u]
[I:,I] = D,’
[x] = X
[‘n‘(.)tFunext] = (cf. demo)
[A] = [Al
notFunext :

(I'I(AB:D)(fg:A%B).(I'IX:A.fx:gx)%f:g)%J_

Negate Funext: Correction

Lemma
IfFT =t A, then [T+ [t] : [A].

Proof.

Negate Funext: Correction

Lemma
IfT Et: A, then [F [t] : [A].

Proof.
E.g. : rules of lambda

Mx:AFt: B [, x: [A] F[t] : [B]

FEAx:A t:Mx:A B MEMAx:A t] 7 [MNx: A B]

ok because [Ax: A t] = (Ax:[A]. [t], true)
[Mx:A Bl =(Nx:[A]. [B]) xB

OJ

Negate Funext: Correction

Lemma
IfFT =t A, then [T+ [t] : [A].

Proof.

E.g. : conversion rule

Fr=t: A N B:0 A=B
~t:B

ok using computational soundness

Negate Funext: Correction

Lemma
IfFT =t A, then [T+ [t] : [A].

Proof.

E.g. : notFunext rule

F notFunext: (MN(AB:O)(fg:A—B)....)—> 1L

demo!

Negate Funext: Correction

Lemma

IF[NX : 0. X] is inhabited, then M X : 0. X is inhabited too.

Proof.
ok because [MX : 0. X =(NX:0. X)xB

Negate Funext: Consequence

Theorem
If CC,, is consistent, then CC,, + notFunext is consistent too.

Negate Funext: Formalization

Formalization of computational soundness, typing soundness, and
preservation of consistency.

Deep embedding using de Bruijn indices.
Rely on the Coq contrib PTSATR.

https://github.com/CoqHott/Program-translations-CC-omega

https://github.com/CoqHott/Program-translations-CC-omega

Negate Funext: Formalization

Fixpoint tsl (t : S.Term) : T.Term :=

Inductive Term : Set := match t with
| var : N — Term |SVar v = TVarv
| Sort : Sorts — Term | S.Sort s = T.Sorts
| II: Term — Term — Term | STAB = T.L (I A’ BY) Bool
| A: Term — Term — Term | SAAM = TPair (A A" M) true
| App : Term — Term — Term | S.App MN = T.App (w1 M') N*
| Eq:V (A t1 to : Term), Term | SEq Aty t, = TEq A £yttt
| refl : Term — Term | Srefl e = T.refle’
| J:V (AP tyutyp: Term), Term. |SJAPtiut,p = T.JA' P t,f uf £, p
end where "M'" := (ts1 M).

Theorem tsl_correctness :
(WL, TH—= T A)A(VTMATHEM: A—T" M AY).

Negate Funext: Formalization

Another formalization:
https://github.com/TheoWinterhalter/formal-type-theory

» explicit substitutions instead of de Bruijn indices

» modular way to add and remove feature to the base theory

https://github.com/TheoWinterhalter/formal-type-theory

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext

Negate Propext

Prop impredicative universe:

A x:AlF P:Prop
Mx:A. P:Prop

Goal : showing that (P <> Q) /4 (P=0Q) for P,Q : Prop.

Negate Propext

CC, + Prop + notPropext — CC,, 4+ Prop

[D,] = (D, x B, true)

[Prop] = (Prop x B, true)
[Mx: A B] = (Mx: [A]. [B], true)
[A] = m [A]

Remark : we have [0;] : [0i+1]

because [[J;] = (0; x B, true)
and HD,'Jrl]] = 71 [D;+1] = D,'+1 xB.

1. Program translations

2. Negate Funext

3. Other translations

Negate Streamext

Negate Streamext

Goal: Bisim sy sy /4 s; =sy for sq,s5: Stream A.

CC,, + Stream + notStreamext —> CC,, + Stream

[Stream A] = (Stream [A]) x B
[hd] hd (1 [t])

1. Program translations

2. Negate Funext

3. Other translations

Pattern-matching on Type

Pattern-matching on []

f-NA:OA=A

f:=AA:0). match Awith
| B = neg
|Mx:B. C=1id
| O=1id

end

f B+ neg
f(B—B)— id

Operator written univ_rec.

Pattern-matching on []

Idea : translate (] by an inductive-recursive type on which
pattern-matching is allowed.

Pattern-matching on []

Idea : translate (] by an inductive-recursive type on which
pattern-matching is allowed.

Inductive TYPE : O :=

|B : TYPE

| Pi : M(a: TYPE)(b : E1t a — TYPE). TYPE
|U : TYPE

with E1t : TYPE — [:= fun

| B = B

|Piab = [(x:Elt a). Elt (b x)
| U = TYPE.

Pattern-matching on []

Inductive TYPE : OJ :=
|B : TYPE

| Pi : M(a: TYPE)(b : E1t a — TYPE). TYPE
|U :TYPE

with E1t : TYPE — [:= fun

| B = B

|Piab = M(x:Elt a). E1t (b x)

|U = TYPE.

CCy +univ_rec — CC, + TYPE

O] = U

[Mx: A B] = Pi [A] (Ax: [A]. [B])
[Ax: A t] = Ax:[A]. [t]
[univ_rec] := TYPE rec

(A - B

Pattern-matching on []

Theorem
If CC,, + TYPE is consistent, then CC,, + univ_rec is consistent
too.

Pattern-matching on []

Theorem

If CC,, + TYPE is consistent, then CC,, + univ_rec is consistent
too.

Without type-in-type:

Theorem
If CC,, + (TYPE);cy is consistent, then CCE®' + univ_rec is
consistent too.

Summary

Models given by program translation: S — 7.

Benefits:
» simple
» use only type theory
» modular

» implementable

Summary

4 translations (CC,, 4+ something — CCy,) :
» notFunext
» notStreamext , Formalized and implemented as plugin.
» notPropext

> univ rec

https://github.com/CoqHott/Program-translations-CC-omega

Remark: all rely on the fact that negative types are under specified.

https://github.com/CoqHott/Program-translations-CC-omega

Future Work

Defining a generic plugin using Template Cogq.
https://github.com/gmalecha/template-coq

Inductive term : Set =

| tRel :N — term

| tEvar :N — term

| tSort : sort — term

| tCast :term — cast_kind — term — term
| tProd i name — term — term — term

| tLambda : name — term — term — term

https://github.com/gmalecha/template-coq

Future Work

We could define:
> tsl _term: term — term

> tsl _type : term — term

And get a ML function acting on Coq terms by quoting mechanism.

Then, we could prove that the translation is correct by reifying the
typing judgment of Coq as an inductive.

For thinking in RER . ..

Find a model that negates:

Ab:B.b = Ab:B.if b then true else false

(Harder than negating funext because

Vb, b = if b then true else false

is provable).

	Program translations
	Negate Funext
	Other translations
	Negate Propext
	Negate Streamext
	Pattern-matching on Type

