
1/40

Models of type theory given by program translation

Simon Boulier, Pierre-Marie Pédrot, Nicolas Tabareau

École des Mines de Nantes - INRIA

2/40

I Can we prove (∀ x . f x = g x)→ f = g ?

I Can we prove that a term of ∀A. A→ A is necessarily the
identity function?

I . . .

3/40

https://coq.inria.fr/faq

https://coq.inria.fr/faq

4/40

Can we prove Funext := ∀ f g , (∀ x . f x = g x)→ f = g ?

Funext is independent of Coq. That means:

1. Funext is not provable in Coq:

Coq + ¬Funext 6` t : ΠX : �. X

i.e. Coq + ¬Funext consistent

2. Funext does not introduce inconsistency:

Coq + Funext 6` t : ΠX : �. X

i.e. Coq + Funext consistent

Post-talk edit: it seems that this reasoning of reducing
independence to consistency is classical . . .

4/40

Can we prove Funext := ∀ f g , (∀ x . f x = g x)→ f = g ?

Funext is independent of Coq. That means:

1. Funext is not provable in Coq:

Coq + ¬Funext 6` t : ΠX : �. X

i.e. Coq + ¬Funext consistent provided that Coq is consistent

2. Funext does not introduce inconsistency:

Coq + Funext 6` t : ΠX : �. X

i.e. Coq + Funext consistent provided that Coq is consistent

Post-talk edit: it seems that this reasoning of reducing
independence to consistency is classical . . .

5/40

Proving that T is consistent:

syntactic way proving confluence and normalization

semantic way give an interpretation in a model

I set theoretic models
I syntactic models
I program translations

A model is (for instance) a category with families.

5/40

Proving that T is consistent:

syntactic way proving confluence and normalization

semantic way give an interpretation in a model
I set theoretic models
I syntactic models
I program translations

A model is (for instance) a category with families.

6/40

1 - Set theoretic model

E.g. the set model.

context set
type set family

proposition either {∗} or ∅
t =A u {∗ | t = u}

. . .

Funext holds in the set models.

Remark: There are numerous variations of the set model: groupoid
model, . . .

7/40

Problem: You have to learn (precise) set theory!

E.g. the universes are interpreted by large cardinals and
Grothendieck universes . . .

8/40

2 - Syntactic model: a model of S reusing type theoretic
construction of T .

E.g. : the term model

context of S type of T
type of S type family of T
term of S term of T

3 - Program translation:

context of S context of T
type of S type of T
term of S term of T

Compilation of S toward T .

8/40

2 - Syntactic model: a model of S reusing type theoretic
construction of T .

E.g. : the term model

context of S type of T
type of S type family of T
term of S term of T

3 - Program translation:

context of S context of T
type of S type of T
term of S term of T

Compilation of S toward T .

9/40

set models < syntactic models < program translations

Set theoretic models
I realize many things

Syntactic models
I simpler
I rely only on type theory

Program translations
I still simpler (independent of the notion of model)
I implementable and modular (composition)

10/40

Not new:
I Gödel translation, CPS translations, . . .
I subset model (Hofmann)
I forcing
I parametricity
I Dialectica translation
I . . .

11/40

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

12/40

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

13/40

CCω

We will consider variations of CCω.

Terms and types :
I x

I �0, �1, �2, . . .

I Π x : A. B, λ x : A. t, t u

I Σ x : A. B, (t, u), π1 t, π2 t

I B
I t =A u

+ streams, Prop, inductive-recursive types, . . .

14/40

Program Translation

S −→ T
term t term [t]

type A type JAK
context Γ context JΓK

where JAK := ι [A]
ι : term→ term

and JΓK := x1 : JA1K, . . . , xn : JAnK

Γ = x1 : A1, . . . , xn : An

15/40

Program Translation

computational soundness
if t ≡ u then [t] ≡ [u],

typing soundness
if Γ ` t : A then JΓK ` [t] : JAK,

consistency preservation
if J⊥SK is inhabited then ⊥T is inhabited too.

Theorem
Under those conditions, the consistency of T implies the one of S.

16/40

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

17/40

Negate Funext

Goal: CCω + notFunext −→ CCω

Where notFunext axiom of type :(
Π(A B : �)(f g : A→ B).(Π x : A. f x = g x)→ f = g

)
→ ⊥

18/40

Negate Funext: Translation
CCω + notFunext −→ CCω

[Π x : A. B] := (Π x : [A]. [B])× B
[λ x : A. t] := (λ x : [A]. [t], true)

[t u] := π1 [t] [u]

[�i] := �i

[x] := x

. . .

[notFunext] := (cf. demo)

JAK := [A]

notFunext :(
Π(A B : �)(f g : A→ B).(Π x : A. f x = g x)→ f = g

)
→ ⊥

19/40

Negate Funext: Correction

Lemma
If Γ ` t : A, then [Γ] ` [t] : [A].

Proof.

19/40

Negate Funext: Correction

Lemma
If Γ ` t : A, then [Γ] ` [t] : [A].

Proof.
E.g. : rules of lambda

Γ, x : A ` t : B

Γ ` λ x : A. t : Π x : A. B

[Γ], x : [A] ` [t] : [B]

[Γ] ` [λ x : A. t] :? [Π x : A. B]

ok because [λ x : A. t] = (λ x : [A]. [t], true)

[Π x : A. B] = (Π x : [A]. [B])× B

19/40

Negate Funext: Correction

Lemma
If Γ ` t : A, then [Γ] ` [t] : [A].

Proof.
E.g. : conversion rule

Γ ` t : A Γ ` B : � A ≡ B

Γ ` t : B

ok using computational soundness

19/40

Negate Funext: Correction

Lemma
If Γ ` t : A, then [Γ] ` [t] : [A].

Proof.
E.g. : notFunext rule

` notFunext : (Π(A B : �)(f g : A→ B). . . .)→ ⊥

demo!

20/40

Negate Funext: Correction

Lemma
If JΠX : �. X K is inhabited, then ΠX : �. X is inhabited too.

Proof.
ok because JΠX : �. X K = (ΠX : �. X)× B

21/40

Negate Funext: Consequence

Theorem
If CCω is consistent, then CCω + notFunext is consistent too.

22/40

Negate Funext: Formalization

Formalization of computational soundness, typing soundness, and
preservation of consistency.

Deep embedding using de Bruijn indices.

Rely on the Coq contrib PTSATR.

https://github.com/CoqHott/Program-translations-CC-omega

https://github.com/CoqHott/Program-translations-CC-omega

23/40

Negate Funext: Formalization

24/40

Negate Funext: Formalization

Another formalization:
https://github.com/TheoWinterhalter/formal-type-theory

I explicit substitutions instead of de Bruijn indices
I modular way to add and remove feature to the base theory

https://github.com/TheoWinterhalter/formal-type-theory

25/40

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

26/40

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

27/40

Negate Propext

Prop impredicative universe:

A : �i x : A ` P : Prop

Π x : A. P : Prop

Goal : showing that (P↔ Q) 6→ (P = Q) for P, Q : Prop.

28/40

Negate Propext

CCω + Prop + notPropext −→ CCω + Prop

[�i] := (�i × B, true)

[Prop] := (Prop× B, true)

[Π x : A. B] := (Π x : JAK. JBK, true)

. . .

JAK := π1 [A]

Remark : we have [�i] : J�i+1K

because [�i] = (�i × B, true)
and J�i+1K = π1 [�i+1] = �i+1×B.

29/40

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

30/40

Negate Streamext

Goal: Bisim s1 s2 6→ s1 = s2 for s1, s2 : Stream A.

CCω + Stream + notStreamext −→ CCω + Stream

[Stream A] := (Stream JAK)× B
[hd t] := hd (π1 [t])

31/40

1. Program translations

2. Negate Funext

3. Other translations
Negate Propext
Negate Streamext
Pattern-matching on Type

32/40

Pattern-matching on �

f : ΠA : �. A→ A

f := λ(A : �). match A with

| B⇒ neg

| Π x : B. C ⇒ id

| �⇒ id

end

f B 7→ neg

f (B→ B) 7→ id

Operator written univ_rec.

33/40

Pattern-matching on �

Idea : translate � by an inductive-recursive type on which
pattern-matching is allowed.

Inductive TYPE : � :=
| B : TYPE
| Pi : Π(a : TYPE)(b : Elt a → TYPE). TYPE
| U : TYPE
with Elt : TYPE → � := fun
| B ⇒ B
| Pi a b ⇒ Π(x : Elt a). Elt (b x)
| U ⇒ TYPE.

33/40

Pattern-matching on �

Idea : translate � by an inductive-recursive type on which
pattern-matching is allowed.

Inductive TYPE : � :=
| B : TYPE
| Pi : Π(a : TYPE)(b : Elt a → TYPE). TYPE
| U : TYPE
with Elt : TYPE → � := fun
| B ⇒ B
| Pi a b ⇒ Π(x : Elt a). Elt (b x)
| U ⇒ TYPE.

34/40

Pattern-matching on �

CCω + univ_rec −→ CCω + TYPE

[�] := U

[Π x : A. B] := Pi [A] (λ x : JAK. [B])

[λ x : A. t] := λ x : JAK. [t]

[univ_rec] := TYPE_rec

. . .

JAK := Elt [A]

35/40

Pattern-matching on �

Theorem
If CCω + TYPE is consistent, then CCω + univ_rec is consistent
too.

Without type-in-type:

Theorem
If CCω + (TYPE)i∈N is consistent, then CCexpl

ω + univ_rec is
consistent too.

35/40

Pattern-matching on �

Theorem
If CCω + TYPE is consistent, then CCω + univ_rec is consistent
too.

Without type-in-type:

Theorem
If CCω + (TYPE)i∈N is consistent, then CCexpl

ω + univ_rec is
consistent too.

36/40

Summary

Models given by program translation: S −→ T .

Benefits:
I simple
I use only type theory
I modular
I implementable

37/40

Summary

4 translations (CCω + something −→ CCω) :
I notFunext
I notStreamext

Formalized and implemented as plugin.
I notPropext
I univ_rec

https://github.com/CoqHott/Program-translations-CC-omega

Remark: all rely on the fact that negative types are under specified.

https://github.com/CoqHott/Program-translations-CC-omega

38/40

Future Work

Defining a generic plugin using Template Coq.
https://github.com/gmalecha/template-coq

Inductive term : Set :=
| tRel : N → term
| tEvar : N → term
| tSort : sort → term
| tCast : term → cast_kind → term → term
| tProd : name → term → term → term
| tLambda : name → term → term → term
| . . .

https://github.com/gmalecha/template-coq

39/40

Future Work

We could define:
I tsl_term : term→ term

I tsl_type : term→ term

And get a ML function acting on Coq terms by quoting mechanism.

Then, we could prove that the translation is correct by reifying the
typing judgment of Coq as an inductive.

40/40

For thinking in RER . . .

Find a model that negates:

λ b : B. b = λ b : B. if b then true else false

(Harder than negating funext because

∀ b, b = if b then true else false

is provable).

	Program translations
	Negate Funext
	Other translations
	Negate Propext
	Negate Streamext
	Pattern-matching on Type

